2024 Vol. 43, No. 4
Article Contents

XIONG Maoqiu, LIU Xiaohuang, ZHANG Xuehui, LIU Jiufen, ZHENG Yiwen, ZHANG Zifan, LAI Ming, FU Yujia. 2024. Spatio-temporal variation of soil conservation in the upper reaches of the Tarim River Basin based on RUSLE model. Geological Bulletin of China, 43(4): 641-650. doi: 10.12097/gbc.2022.07.027
Citation: XIONG Maoqiu, LIU Xiaohuang, ZHANG Xuehui, LIU Jiufen, ZHENG Yiwen, ZHANG Zifan, LAI Ming, FU Yujia. 2024. Spatio-temporal variation of soil conservation in the upper reaches of the Tarim River Basin based on RUSLE model. Geological Bulletin of China, 43(4): 641-650. doi: 10.12097/gbc.2022.07.027

Spatio-temporal variation of soil conservation in the upper reaches of the Tarim River Basin based on RUSLE model

More Information
  • The Tarim River Basin in Xinjiang is a key ecological reserve in China, and the study of soil conservation in the basin is beneficial to the functional zoning of soil and water conservation and the layout of soil and water conservation management measures, and plays an important role in regional ecological restoration and maintenance. Based on the rainfall, soil and topography data of the upper Tarim River Basin from 2000 to 2020, the Revised Universal Soil Loss Equation (RUSLE model) is used to estimate the soil erosion and soil conservation of the watershed soils under hydraulic erosion from 2000 to 2020, analyse their spatial and temporal variation patterns, and conduct a sensitivity analysis on the soil conservation to its influencing factors. The results show that soil erosion and soil retention in the basin are characterised by micro- and micro-erosion. The results show that: soil erosion in the watershed is mainly slight and mild, and the area of soil erosion is generally decreasing from 2000 to 2020; the spatial distribution of soil conservation shows a pattern of high in the middle and low in the surroundings, and the intensity of soil conservation is enhanced to a certain extent from 2000 to 2020; rainfall, topography and land use are the main driving factors of soil conservation changes, and the soil conservation capacity is increasing with the amount of The results of the evaluation reveal that the soil conservation capacity of the study area is increasing in a gradient with the amount of precipitation and vegetation cover in general. The evaluation results reveal the spatial and temporal distribution characteristics of soil conservation in the study area, as well as the sensitivity of soil conservation to the driving factors, and the results of the study can provide guidance for the control of soil erosion and ecological conservation in the watershed.

  • 加载中
  • [1] Borrelli P, Märker M, Panagos P, et al. 2014. Modeling soil erosion and river sediment yield for an intermountain drainage basin of the Central Apennines, Italy[J]. Catena, 114: 45−58. doi: 10.1016/j.catena.2013.10.007

    CrossRef Google Scholar

    [2] De R A P J , Wesseling C G , Ritsema C J. 1996. LISEM: A single−event physically based gydrological and soil erosion model for drainage basins. I: Theroy, input and output[J]. Hydrological Processes, 10(8): 1107−1117.

    Google Scholar

    [3] Laflen J M, Lane L J, Foster G R. 1991. WEPP: A new generation of erosion prediction technology[J]. Journal of Soil and Water Conservation, 46(1): 34−38.

    Google Scholar

    [4] Morgan R P C, Quinton J N, Smith R E, et al. 1998. The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments[J]. Earth Surface Processes and Landforms, 23(6): 527−544. doi: 10.1002/(SICI)1096-9837(199806)23:6<527::AID-ESP868>3.0.CO;2-5

    CrossRef Google Scholar

    [5] Niyonsenga J D, Mugabowindekwe M, Mupenzi C. 2020. Spatial analysis of soil erosion sensitivity using the Revised Universal Soil Loss Equation model in Nyamasheke District, Western Province of Rwanda[J]. Transactions in Gis, 25(2): 735−750.

    Google Scholar

    [6] Rao E, Ouyang Z Y, Yu X X, et al. 2014. Spatial patterns and impacts of soil conservation service in China[J]. Geomorphology, 207: 64−70. doi: 10.1016/j.geomorph.2013.10.027

    CrossRef Google Scholar

    [7] Renard K G, Foster G R, Weesies G A, et al. 1997. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE)[M]. Agricultural Handbook.

    Google Scholar

    [8] Williams J R. 1990. The Erosion−Productivity Impact Calculator (EPIC) Model: A Case History[J]. Philosophical Transactions:Biological Sciences, 329(1255): 421−428. doi: 10.1098/rstb.1990.0184

    CrossRef Google Scholar

    [9] Wischmeier W H, Smith D D. 1985. Rainfall energy and its relationship to soil loss[J]. Eos, Transactions American Geophysical Union, 39(2): 285−291.

    Google Scholar

    [10] 白云岗, 洪传勋, 宋郁东, 等. 2005. 塔里木河下游水土保持生态修复研究[J]. 水土保持研究, 12(4): 256−257,263.

    Google Scholar

    [11] 蔡崇法, 丁树文, 史志华, 等. 2000. 应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J]. 水土保持学报, 14(2): 19−24.

    Google Scholar

    [12] 韩强, 薛联青, 刘远洪, 等. 2017 塔里木河中上游土地利用变化的径流响应[J]. 干旱区地理, 40(6): 1165−1170.

    Google Scholar

    [13] 郝姗姗, 李梦华, 马永强, 等. 2019. 黄土丘陵区土壤侵蚀因子敏感性分析[J]. 中国水土保持科学, 17(2): 77−86.

    Google Scholar

    [14] 贾振宇, 王世曦, 刘学, 等. 2021. 辽河保护区土壤保持功能时空变化及其影响因素分析[J]. 环境工程技术学报, 11(4): 686−692.

    Google Scholar

    [15] 蒋春丽, 张丽娟, 张宏文, 等. 2015. 基于RUSLE模型的黑龙江省2000—2010年土壤保持量评价[J]. 中国生态农业学报, 23(5): 642−649.

    Google Scholar

    [16] 雷泳南. 2020. 基于GIS的福建省水土保持功能重要性评价[J]. 水土保持通报, 40(5): 262−267,341.

    Google Scholar

    [17] 李佳蕾, 孙然好, 熊木齐, 等. 2021. 中国5年间隔水蚀区土壤侵蚀数据集的研发(2000—2015)[J]. 全球变化数据学报(中英文), 5(2): 203−212,322−331.

    Google Scholar

    [18] 李玉建, 侍克斌, 吴培军. 2010. 塔里木河下游水土保持与生态修复措施[J]. 人民黄河, 32(5): 77−78.

    Google Scholar

    [19] 刘宝元, 张科利, 焦菊英. 1999. 土壤可蚀性及其在侵蚀预报中的应用[J]. 自然资源学报, 14(4): 345−350.

    Google Scholar

    [20] 刘雨曈. 2022. 塔里木河流域水土流失动态变化分析[J]. 水生态学杂志, 43(3): 105−112.

    Google Scholar

    [21] 刘月, 赵文武, 贾立志. 2019. 土壤保持服务: 概念、评估与展望[J]. 生态学报, 39(2): 32−440.

    Google Scholar

    [22] 水利部水土保持司. 2008. 土壤侵蚀分类分级标准 SL190-2007 [S]. 北京: 中国水利水电出版社

    Google Scholar

    [23] 宋艺, 孙培新, 郭凯. 2004. 塔里木河上中游的水土流失及防治对策[J]. 中国水土保持, (7): 11−12.

    Google Scholar

    [24] 谭炳香, 李增元, 王彦辉, 等. 2005. 基于遥感数据的流域土壤侵蚀强度快速估测方法[J]. 遥感技术与应用, 20(2): 215−220.

    Google Scholar

    [25] 田宇, 朱建华, 李奇, 等. 2020. 三峡库区土壤保持时空分布特征及其驱动力[J]. 生态学杂志, 39(4): 1164−1174.

    Google Scholar

    [26] 王晓峰, 程昌武, 尹礼唱, 等. 2020. 新疆生态系统服务时空变化及权衡协同关系[J]. 生态学杂志, 39(3): 990−1000.

    Google Scholar

    [27] 薛联青, 张卉, 张洛晨, 等. 2017. 基于改进RVA法的水利工程对塔里木河生态水文情势影响评估[J]. 河海大学学报(自然科学版), 45(3): 189−196.

    Google Scholar

    [28] 于萌. 2019. 新疆地区土壤侵蚀强度变化趋势及原因分析[J]. 中国水土保持, 453(12): 36−37.

    Google Scholar

    [29] 张超, 王治国, 凌峰, 等. 2016. 水土保持功能评价及其在水土保持区划中的应用[J]. 中国水土保持科学, 14(5): 90−99.

    Google Scholar

    [30] 章文波, 付金生. 2003. 不同类型雨量资料估算降雨侵蚀力[J]. 资源科学, (1): 35−41.

    Google Scholar

    [31] 赵帮元, 张建国, 张栋, 等. 2020. 土壤侵蚀因子变化对县域水土流失动态变化的影响[J]. 中国水土保持, (3): 30−33,5.

    Google Scholar

    [32] 中华人民共和国生态环境部. 2017. 关于印发《生态保护红线划定指南》的通知[N/OL]. (2017-07-20

    Google Scholar

    2022-09-01].https://www.mee.gov.cn/gkml/hbb/bgt/201707/t20170728_418679.htm.

    Google Scholar

    [33] 邹雅婧, 闫庆武, 谭学玲, 等. 2019. 渭北矿区土壤侵蚀评估及驱动因素分析[J]. 干旱区地理, 42(6): 1387−1394.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(602) PDF downloads(48) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint