Citation: | RAN Zeyu, JIA Yongfeng, JIANG Yonghai, SHI Zheming, SHANG Changjian, ZANG Yongge, CHEN Fan, LIAN Xinying. 2024. Research progress of groundwater pollution source analysis methods. Geological Bulletin of China, 43(1): 153-162. doi: 10.12097/gbc.2022.05.052 |
Groundwater pollution is concealed, and the pollution process is slow and difficult to manage. In recent years, China has attached great importance to the protection of groundwater environment. The research on groundwater pollution source analysis technology, which supports the protection concept of ‘prevention first’, has become a research hotspot in the field of groundwater pollution prevention and control. This paper introduces the
main technical methods of groundwater pollution source analysis at home and abroad, including isotope method, fluorescence spectroscopy, geological statistics, principal component analysis, positive matrix factorization, self-organizing mapping technology, the basic principles of these six common methods and their application and research dynamics in the field of groundwater pollution identification, summarizes the advantages and disadvantages and applicability of the methods, and looks forward to the application prospects and development trends of the above methods in the research of groundwater pollution.
[1] | Chen R H, Teng Y G, Chen, H Y, et al. 2019. Groundwater pollution and risk assessment based on source apportionment in a typical cold agricultural region in Northeastern China[J]. Science of the Total Environment, 696: 133972. doi: 10.1016/j.scitotenv.2019.133972 |
[2] | Chen W, Westerhoff P, Jerry A, et al. 2003. Fluorescence Excitation-Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter[J]. Environ. Sci. Technol., 37: 5701−5710. doi: 10.1021/es034354c |
[3] | Cheng H F, Hu Y. 2010. Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review[J]. Environmental Pollution, 158(5): 1134−1146. doi: 10.1016/j.envpol.2009.12.028 |
[4] | Constantinos F, Phaedon K, Evangelos T. 2022. Application of geostatistical methods to groundwater salinization problems: A review[J]. Journal of Hydrology, 615: 128566. doi: 10.1016/j.jhydrol.2022.128566 |
[5] | Frank T, Marco S, Heinz J. 2012. Artificial sweeteners—a recently recognized class of emerging environmental contaminants: a review[J]. Anal. Bioanal. Chem., 403: 2503−2518. doi: 10.1007/s00216-012-5892-z |
[6] | Glaser B. 2005. Compound-specific stable-isotope (δ13C) analysis in soil science[J]. Journal of Plant Nutrition and Soil Science, 168(5): 633−648. doi: 10.1002/jpln.200521794 |
[7] | Hamed H, Johannesson K H, Gonzalez-pinzon R, et al. 2022. Groundwater geochemistry, quality, and pollution of the largest lake basin in the Middle East: Comparison of PMF and PCA-MLR receptor models and application of the source-oriented HHRA approach[J]. Chemosphere, 288: 132489. doi: 10.1016/j.chemosphere.2021.132489 |
[8] | Huang X Y, Zhang D, Zhao Z Q, et al. 2021. Determining hydrogeological and anthropogenic controls on N pollution in groundwater beneath piedmont alluvial fans using multi-isotope data[J]. Journal of Geochemical Exploration, 229: 106844. doi: 10.1016/j.gexplo.2021.106844 |
[9] | Kanagaraj G, Elango L. 2018. Chromium and fluoride contamination in groundwater around leather tanning industries in southern India: implications from stable isotopic ratio δ53C-δ52Cr, geochemical and geostatistical modelling[J]. Chemosphere, 220: 943−953. |
[10] | Kohonen T. 1982. Analysis of a simple self-organizing process[J]. Biological Cybernetics, 44(2): 135−140. doi: 10.1007/BF00317973 |
[11] | Kohonen T. 1997. Exploration of very large databases by self-organizing maps[C]//Proceedings of international conference on neural networks (icnn'97). IEEE, 1: PL1-PL6. |
[12] | Lee K J. 2019. The combined use of self-organizing map technique and fuzzy c-means clustering to evaluate urban groundwater quality in Seoul metropolitan city, South Korea[J]. Journal of Hydrology, 569: 685−697. doi: 10.1016/j.jhydrol.2018.12.031 |
[13] | Li M , Rui Z, Wang J S, et al. 2018, Apportionment and evolution of pollution sources in a typical riverside groundwater resource area using PCA-APCS-MLR model[J]. Journal of Contaminant Hydrology, 218: 70-83. |
[14] | Li X D, Masuda H, Kusakabe M, et al. 2006. Degradation of groundwater quality due to anthropogenic sulfur and nitrogen contamination in the Sichuan Basin, China[J]. Geochemical Journal, 40(4): 309−332. doi: 10.2343/geochemj.40.309 |
[15] | Malsburg C. 1973. Self-organization of orientation sensitive cells in the striate cortex[J]. Kybernetik, 14: 85−100. doi: 10.1007/BF00288907 |
[16] | Mao H R, Wang G C, Rao Z, et al. 2021. Deciphering spatial pattern of groundwater chemistry and nitrogen pollution in Poyang Lake Basin (eastern China) using self-organizing map and multivariate statistics[J]. Journal of Cleaner Production, 329: 129697. doi: 10.1016/j.jclepro.2021.129697 |
[17] | Nazzal Y, Yousef Z, Faisal K, et al. 2015. The combination of principal component analysis and geostatistics as a technique in assessment of groundwater hydrochemistry in arid environment[J]. Current Science: A Fortnightly Journal of Research, 108(6): 1138−1145. |
[18] | Nisi B, Raco B, Dotsika E. 2016. Groundwater contamination studies by environmental isotopes: A review[J]. Threats to the Quality of Groundwater Resources, 40: 115−150. |
[19] | Paatero P, Tapper U. 1994. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 5(2): 111−126. doi: 10.1002/env.3170050203 |
[20] | Rashid A, Farooqi A, et al. 2020. Geochemical modeling, source apportionment, health risk exposure and control of higher fluoride in groundwater of sub-district Dargai, Pakistan[J]. Chemosphere, 243: 125409. doi: 10.1016/j.chemosphere.2019.125409 |
[21] | Schmidt T, Zwank L, Elsner M, et al. 2004. Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges[J]. Analytical & Bioanalytical Chemistry, 378(2): 283. |
[22] | Taghvaee S, Sowlat M H, Mousavi A. 2018. Source apportionment of ambient PM2.5 in two locations in central Tehran using the Positive Matrix Factorization(PMF)model[J]. Science of the Total Environment, 628/629: 672−686. doi: 10.1016/j.scitotenv.2018.02.096 |
[23] | Torres J A, Mora A, Knappett P S K, et al. 2020. Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi-tracer approach combined with a Bayesian isotope mixing model[J]. Water Research, 182: 115962. doi: 10.1016/j.watres.2020.115962 |
[24] | Torres J A, Mora A, Mahlknecht J, et al. 2021. Determining nitrate and sulfate pollution sources and transformations in a coastal aquifer impacted by seawater intrusion—A multi-isotopic approach combined with self-organizing maps and a Bayesian mixing model[J]. Journal of Hazardous Materials, 417: 126103. doi: 10.1016/j.jhazmat.2021.126103 |
[25] | Voltaggio M, Spadoni M, Sacch: E, et al. 2015. Assessment of groundwater pollution from ash ponds using stable and unstable isotopes around the Koradi and Khaperkheda thermal power plants (Maharashtra, India)[J]. Science of the Total Environment, 518/519: 616−625. doi: 10.1016/j.scitotenv.2015.02.083 |
[26] | Zhang Y Z, Liu Y D, Zhou A G, et al. 2021. Identification of groundwater pollution from livestock farming using fluorescence spectroscopy coupled with multivariate statistical methods[J]. Water Research, 206: 117754. doi: 10.1016/j.watres.2021.117754 |
[27] | 陈宇男. 2017. 基于三维荧光光谱法的有机农药废水快速检测实验研究[D]. 合肥工业大学硕士学位论文. |
[28] | 郭涛, 陈海洋, 滕彦国, 等. 2017. 东北典型农产区流域地下水水质评价与污染源识别[J]. 北京师范大学学报(自然科学版), 53(3): 316−322. |
[29] | 郝红, 高博, 陆瑾, 等. 2013. 铅同位素示踪技术在水环境中的应用研究综述[C]//中国环境科学学会编. 2013 年水资源生态保护与水污染控制研讨会论文集, 194-200. |
[30] | 何小松, 余红, 席北斗, 等. 2014. 填埋垃圾浸提液与地下水污染物组成差异及成因[J]. 环境科学, 35(4): 1399−1406. |
[31] | 侯景儒. 1997. 中国地质统计学(空间信息统计学)发展的回顾与前景[J]. 地质与勘探, (1): 53−58. |
[32] | 李先国, 彭学伟, 张庆红. 2009. 单体同位素分析在有机污染物研究中的应用进展[J]. 中国海洋大学学报(自然科学版), 39(6): 1251−1256. |
[33] | 林斯杰, 齐永强, 杨梦曦, 等. 2020. 基于PCA-SOM的北京市平谷区地下水污染溯源[J]. 环境科学研究, 33(6): 1337−1344. |
[34] | 刘国卿, 张干, 彭先芝. 2004. 单体同位素技术在有机环境污染中的研究进展[J]. 地球与环境, (1): 23−27. doi: 10.3969/j.issn.1672-9250.2004.01.004 |
[35] | 龙玉桥, 崔婷婷, 李伟, 等. 2017. 地质统计学法在地下水污染溯源中的应用及参数敏感性分析[J]. 水利学报, 48(7): 816−824. |
[36] | 马春龙, 施小清, 许伟伟, 等. 2021. 基于自组织神经网络的污染场地多监测指标相关性分析[J]. 水文地质工程地质, 48(3): 191−202. |
[37] | 孟瑞芳, 孟舒然. 2021. 基于正定矩阵因子分析模型的滹沱河冲洪积扇地下水污染源解析[J]. 环境污染与防治, 43(5): 586-591. |
[38] | 庞凤梅, 吴文良, 孟凡乔, 等. 2011. 利用氮、氧稳定同位素识别地下水硝酸盐污染源研究进展[J]. 农业环境与发展, 28(4): 64−69. |
[39] | 彭莉, 虞敏达, 何小松, 等. 2018. 垃圾填埋场地下水溶解性有机物光谱特征[J]. 环境科学, 39(10): 4556−4564. |
[40] | 王会霞, 史浙明, 姜永海, 等. 2021. 地下水污染识别与溯源指示因子研究进展[J]. 环境科学研究, 34(8): 1886−1898. |
[41] | 王晓红, 魏加华, 成志能, 等. 2013. 地下水有机污染源识别技术体系研究与示范[J]. 环境科学, 34(2): 662−667. |
[42] | 吴娜娜, 钱虹, 李亚峰, 等. 2017. 多种同位素追踪水体硝酸盐污染来源[J]. 沈阳大学学报(自然科学版), 29(3): 103−106. |
[43] | 许明明, 余成龙, 姜建芳, 等. 2022. 建筑垃圾填埋场周边地下水化学组分来源解析[J]. 地质通报, 41(12): 2125−2137. doi: 10.12097/j.issn.1671-2552.2022.12.005 |
[44] | 闫颖, 张晓文, 郭波莉. 2020. 铅-镉-锌-汞稳定同位素在重金属污染源解析中的研究进展[J]. 环境化学, 39(10): 2712−2721. |
[45] | 杨琰, 蔡鹤生, 刘存富, 等. 2004. NO3-中15N和18O同位素新技术在岩溶地区地下水氮污染研究中的应用-以河南林州食管癌高发区研究为例[J]. 中国岩溶, (3): 40−46. |
[46] | 张凯, 郑新辉, 李晓楠, 等. 2020. 我国西南某区域地下水污染评价及其污染源解析[J]. 河南师范大学学报(自然科学版), 48(5): 64−73. |
[47] | 张琳, 张永涛, 刘君, 等. 2009. 有机单体同位素分析技术在地下水污染中的研究现状[J]. 地质科技情报, 28(5): 125−130. |
[48] | 张应华, 仵彦卿, 温小虎, 等. 2006. 环境同位素在水循环研究中的应用[J]. 水科学进展, 17(5): 732−747. |
[49] | 赵丽, 刘靖宇, 卫杰, 等. 2020. 某城市生活垃圾填埋场地下水“三氮”及溶解性有机质特征研究[J]. 河南理工大学学报(自然科学版), 39(3): 68−74. |
[50] | 赵然, 韩志伟, 申春华, 等. 2020. 典型岩溶地下河流域水体中硝酸盐源解析[J]. 环境科学, (41): 2664−2670. |
[51] | 智国铮. 2021. 三维荧光光谱技术在水环境中的研究与应用进展[J]. 四川环境, 40(5): 257−261. doi: 10.14034/j.cnki.schj.2021.05.040 |
[52] | 周广峰, 刘欣. 2011. 主成分分析法在水环境质量评价中的应用进展[J]. 环境科学导刊, 30(1): 75−78. |
[53] | 周建华, 李晓伟, 陈锋. 2020. 污染物源解析技术正定矩阵因子分析法的现状研究[J]. 北华航天工业学院学报, 30(4): 10−12,25. |
[54] | 周圆, 李怀波, 郑凯凯, 等. 2020. 印染工业园区集中废水处理达标难点及DOM 特征解析[J]. 环境工程学报, (8): 1−10. |
[55] | 左海英. 2015. 地下水中典型挥发性有机污染物单体碳氢同位素方法研究及应用[D].中国地质大学(北京)博士学位论文. |
Range of δ34S-SO4 and δ15N-NO3 from different sources of nitrates and sulfates
Various divisions of DOM in water
Addressing groundwater salinization issues involving univariate and multivariate datasets through the application of three thematic areas in geostatistics
SOM-K means clustering results and spatial features