2024 Vol. 43, No. 1
Article Contents

YUAN Xingfang, YANG Mingshuang, WANG Xiaocui, LIU Luyong, ZHONG Zhennan, LI Fangzhou. 2024. Study on the hydrochemistry, genesis and development potential of Huleitang geothermal water in Weihai City, Shandong Province. Geological Bulletin of China, 43(1): 143-152. doi: 10.12097/gbc.2022.03.022
Citation: YUAN Xingfang, YANG Mingshuang, WANG Xiaocui, LIU Luyong, ZHONG Zhennan, LI Fangzhou. 2024. Study on the hydrochemistry, genesis and development potential of Huleitang geothermal water in Weihai City, Shandong Province. Geological Bulletin of China, 43(1): 143-152. doi: 10.12097/gbc.2022.03.022

Study on the hydrochemistry, genesis and development potential of Huleitang geothermal water in Weihai City, Shandong Province

More Information
  • Abundant medium and low temperature geothermal resources are stored in Shandong Province. Huleitang spring, located in Weihai of Shandong province, is a unique artesian spring in this area. Due to some unidentified genesis of Huleitang spring, the effective utilization of the geothermal resources cannot implement to a certain extent. In order to find out the genetic model of the Huleitang spring, this study comprehensively uses ground investigation, geophysical prospecting and sample analysis to analyze and study. The results show that the formation of the Hulaitang spring is controlled by Rongcheng fault in the region, and by Qinglonghe fault and Tangxi fault in the local area. Its source recharges from atmospheric precipitation, and its heat source is geothermal heating. The estimated recharge elevation is 436~559 m, the calculated geothermal reservoir temperature is 109~118℃, and the calculated circulation depth is 2159~2368 m. In summary, the genetic model of the Hulaitang spring is as follows: recharges from precipitation of Weide mountain area, infiltrates down along the Rongcheng fault and participates in the groundwater circulation system. In the process of runoff, the water type of SO4•Cl-Na was formed with the temperature of 110°C about 2 km underground by absorbing the heat of surrounding rock, dissolving and filtering, and water-rock interaction. Due to the increase of temperature and pressure, the hot water flows to the surface along the structural fractures. In the upwelling process, it mixes with some cold water, and the temperature decreases. However, it emerges as a free-flow spring at the intersection of Qinglonghe fault and Tangxi fault where is distributed with the minimum hydrostatic pressure. According to the evaluation and analysis of geothermal water development and utilization potential, geothermal water of Hulaitang spring area can be used for physiotherapy, bathing and heating, which can provide 1840 beds for physiotherapy, 460,000 people for bathing and 9.08 million m2 for heating each year.

  • 加载中
  • [1] Craig H. 1961a. Isotopic Variation in Meteoric Waters[J]. Science, 133(3465): 1702−1703.

    Google Scholar

    [2] Craig H. 1961b. Standard for reporting concentrations of deuterium and oxygen−18 in natural water[J]. Science, 133: 1833-1834.

    Google Scholar

    [3] Piper A M. 1944. A graphic procedure in the geochemical interpretation of water analyses[J]. Transaction, American Geophysical Union, 25: 914-923.

    Google Scholar

    [4] Rybach L, Muffler L J P. 1986. Geothermal systems principles and case histories[M]. 北京大学地质学系地热研究室译. 地热系统原理和典型地热系统分析. 北京: 地质出版社: 1− 277.

    Google Scholar

    [5] 程裕淇. 2004. 大别―苏鲁造山带地质图[M]. 北京: 地质出版社: 1−76.

    Google Scholar

    [6] 杜桂林, 曹文海, 翟滨. 2012. 威海市宝泉汤温泉成因及其对断裂和地震活动性的影响[J]. 海洋地质与第四纪地质, 32(5): 67−71.

    Google Scholar

    [7] 郭忠杰, 王锦国, 陈舟, 等. 2015.云南省鹤庆西山温水龙潭温泉成因机制探讨[J]. 工程勘察, (5): 43−48.

    Google Scholar

    [8] 高宗军, 孙智杰, 杨永红, 等. 2019. 山东省地热水水化学研究及赋存特征[J]. 科学技术与工程, 19(20): 85−90.

    Google Scholar

    [9] 贾东. 1993. 山东地体构造及其拼贴运动学研究[M]. 南京: 南京大学出版社: 1−100.

    Google Scholar

    [10] 金秉福, 张云吉, 栾光忠. 1999. 胶东半岛地热资源的特征[J]. 烟台师范学院学报(自然科学版), 15(4): 297−301.

    Google Scholar

    [11] 金秉福, 张云吉, 栾光忠. 2000. 胶东半岛温泉的地热特征[J]. 水文地质工程地质, 27(5): 31−37.

    Google Scholar

    [12] 刘春雷, 李亚松, 洪炳义, 等. 2023. 福建盐田海水补给型地热系统地球化学特征及其成因[J]. 水文地质工程地质, 50(1): 158−167.

    Google Scholar

    [13] 栾光忠, 刘红军, 刘冬雁, 等. 2002. 山东半岛温泉的地热属性及其特征[J]. 地球学报, 23(1): 79−84.

    Google Scholar

    [14] 龙汨, 周训, 李婷, 等. 2014. 北京延庆县松山温泉的特征与成因[J]. 现代地质, 28(5): 1053−1060.

    Google Scholar

    [15] 李曙光, 黄方, 李晖. 2001. 大别−苏鲁造山带碰撞后的岩石圈拆离[J]. 科学通报, 46(17): 1487−1491.

    Google Scholar

    [16] 李学伦, 孙效功, 王永红. 1997a. 山东半岛温泉的分布规律与成因[J]. 青岛海洋大学学报, 27(3): 389−396.

    Google Scholar

    [17] 李学伦, 刘保华, 孙效功, 等. 1997b. 山东半岛硅热流值与区域地质条件的关系[J]. 青岛海洋大学学报, 27(1): 75−83.

    Google Scholar

    [18] 山东省地质矿产局. 1995. 中华人民共和国区域地质调查报告(威海、羊亭等九幅, 1∶5万)[M]. 北京: 地质出版社: 1−564.

    Google Scholar

    [19] 史猛, 康凤新, 张杰, 等. 2019. 胶东半岛中低温对流型地热资源赋存机理及找矿模型[J]. 地质论评, 65(5): 1276−1287.

    Google Scholar

    [20] 拓明明, 周训, 郭娟, 等. 2018. 重庆温泉及地下热水的分布及成因[J]. 水文地质与工程地质, 45(1): 165−172.

    Google Scholar

    [21] 汪集旸, 熊亮萍, 庞忠和. 1993. 中低温对流型地热系统[M]. 北京: 科学出版社: 55−56.

    Google Scholar

    [22] 江海洋, 王树星, 刘连, 等. 2018. 沂沭断裂带临沂段地热资源水化学及环境同位素特[J]. 上海国土资源, 39(4): 90−94.

    Google Scholar

    [23] 王贵玲, 张薇, 梁继运, 等. 2017a. 中国地热资源潜力评价[J]. 地球学报, 38(4): 449−459.

    Google Scholar

    [24] 王贵玲, 张薇, 蔺文静, 等. 2017b. 京津冀地区地热资源成藏模式与潜力研究[J]. 中国地质, 44(6): 1074−1085.

    Google Scholar

    [25] 王婉丽, 王贵玲, 朱喜, 等. 2017. 中国省会城市浅层地热能开发利用条件及潜力评价[J]. 中国地质, 44(6): 1062−1073.

    Google Scholar

    [26] 王恒纯. 1991. 同位素水文地质概论[M]. 北京: 地质出版社: 37−57.

    Google Scholar

    [27] 王洁清, 周训, 李晓露, 等. 2017. 云南兰坪盆地羊吃蜜温泉水化学特征与成因分析[J]. 现代地质, 31(4): 822−831.

    Google Scholar

    [28] 王晓翠, 孙海龙, 袁星芳. 2022. 胶东典型花岗岩热储地下热水水化学特征及热储研究[J]. 水文地质工程地质, 49(5): 186−194.

    Google Scholar

    [29] 王莹, 周训, 于湲, 等. 2007. 应用地热温标估算地下热储温度[J]. 现代地质, 21(4): 605−612. doi: 10.3969/j.issn.1000-8527.2007.04.003

    CrossRef Google Scholar

    [30] 王聿军, 马祥县, 单伟. 2011. 威海市洪水岚汤温泉地热地质特征及成因机制探讨[J]. 山东国土资源, 27(2): 16−19.

    Google Scholar

    [31] 威海市统计局. 2020. 国家统计局威海调查队. 威海市统计年鉴[M]. 北京: 地质出版社: 1−512.

    Google Scholar

    [32] 许鹏, 谭红兵, 张燕飞, 等. 2018. 特提斯喜马拉雅带地热水化学特征与物源机制[J]. 中国地质, 45(6): 1142−1154.

    Google Scholar

    [33] 谢娜, 喻生波, 丁宏伟, 等. 2020. 甘肃省地热资源赋存特征及潜力评价[J]. 中国地质, 47(6): 1804−1812.

    Google Scholar

    [34] 余卓伟. 2016. 胶东东部地区早白垩世构造−岩浆时空演化、控金性及大地构造意义[D]. 中国地质大学(北京)硕士学位论文.

    Google Scholar

    [35] 余鸣潇. 2019. 云南省临沧地区部分温泉水化学同位素特征及成因研究[D]. 中国地质大学(北京) 硕士学位论文.

    Google Scholar

    [36] 袁星芳, 王敬, 霍光, 等. 2020. 胶东半岛洪水岚汤温泉水化学特征与成因分析[J]. 地质与勘探, 56(2): 427−437.

    Google Scholar

    [37] 袁星芳, 邢立亭, 贾群龙, 等. 2023. 威海市七里汤地热田特征及其成因机制[J]. 西北地质, 56(6): 209−218.

    Google Scholar

    [38] 张涛. 2011. 胶东温泉地热水水化学及同位素特征研究[J]. 山东国土资源, 27(12): 11−16.

    Google Scholar

    [39] 张田, 张岳桥. 2007. 胶东半岛中生代侵入岩岩浆活动序列及其构造制约[J]. 高校地质学报, 13(2): 323−336.

    Google Scholar

    [40] 张彧齐, 周训, 刘海生, 等. 2018. 云南兰坪−思茅盆地红层中温泉和盐泉的水文地质特征[J]. 水文地质工程地质, 45(3): 40−48.

    Google Scholar

    [41] 赵辉, 殷涛, 史猛, 等. 2019. 胶东地热田地热流体的补径排特征——以招远东汤地热田为例[J]. 山东国土资源, 35(1): 62−70.

    Google Scholar

    [42] 中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局. 2016.GB 8538—2016. 食品安全国家标准饮用天然矿泉水检验方法[S].

    Google Scholar

    [43] 中华人民共和国地质矿产部. 1993. DZ/T 0064—1993. 地下水质检验方法[S].

    Google Scholar

    [44] 中华人民共和国工业和信息化部. 2015. JCZX-BZ-002—2015. 水中氢氧同位素光谱法测定[S].

    Google Scholar

    [45] 环境保护部. 2017. HJ 826—2017. 水质 阴离子表面活性剂的测定流动注射——亚甲基蓝分光光度法[S].

    Google Scholar

    [46] 中华人民共和国住房和城乡建设部.2019.GB 50015—2019.建筑给水排水设计标准[S].

    Google Scholar

    [47] 中华人民共和国住房和城乡建设部. 2002.GB/T 50331—2002.城市居民生活用水量标准[S].

    Google Scholar

    [48] 中华人民共和国住房和城乡建设部. 2015.GB 50189—2015.公共建筑节能设计标准[S].

    Google Scholar

    [49] 周训. 2010. 地下水科学专论[M]. 北京: 地质出版社: 32−74.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(5)

Article Metrics

Article views(457) PDF downloads(120) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint