2024 Vol. 43, No. 2~3
Article Contents

NING Kuobu, DENG Qi, CUI Xiaozhuang, WANG Zhengjiang, REN Guangming, YANG Qingxiong. 2024. Zircon U-Pb age and stratigraphic significance of the tuff from the lowermost Liantuo Formation in the Dahongshan area of the northern Yangtze Block. Geological Bulletin of China, 43(2~3): 363-375. doi: 10.12097/gbc.2022.01.031
Citation: NING Kuobu, DENG Qi, CUI Xiaozhuang, WANG Zhengjiang, REN Guangming, YANG Qingxiong. 2024. Zircon U-Pb age and stratigraphic significance of the tuff from the lowermost Liantuo Formation in the Dahongshan area of the northern Yangtze Block. Geological Bulletin of China, 43(2~3): 363-375. doi: 10.12097/gbc.2022.01.031

Zircon U-Pb age and stratigraphic significance of the tuff from the lowermost Liantuo Formation in the Dahongshan area of the northern Yangtze Block

More Information
  • The Liantuo Formation, exposed on the northern Yangtze Block, is one of the important Neoproterozoic stratigraphic units in South China. However, no consensus has been reached on its depositional period, regional correlation, depositional environment and paleogeographic characteristics so far. In this study, we obtained a zircon LA-ICP-MS U-Pb age of 798.4 ± 4.5 Ma (MSWD = 0.40, n = 13) for the tuff layer from the bottom of the Liantuo Formation in the Dahongshan area. Integrating the previous reported data, the depositional period of the Liantuo Formation was constrained to ca. 800–714 Ma. Regionally, the Liantuo Formation is comparable to the middle-upper part of the Banxi Group and its equivalent strata, as well as to the Xiuning Formation, Chengjiang Formation, Kaijianqiao Formation, Wudang Group and Suixian Group. The Liantuo Formation is a set of rift filling deposition, which rests on the Jinning orogeny unconformity and underlies the Nanhua Glacial Period deposition, representing a filling sequence while the rift basin fully opening and the depositional area rapidly expansion. The depositional sequence is mainly composed of alluvial fan, fluvial and littoral-neritic facies sediments. During the Liantuo Period, the northern Yangtze Block was a rift basin, which gradually deepened to the north. Meanwhile, the Liantuo Formation in the Dahongshan area represents an alluvial fan deposition that distributed around the Northern Hubei Paleo-uplift, and evolves to the littoral-neritic-bathyal deposition that represented by the Suixian Group.

  • 加载中
  • [1] Bowring S A, Grotzinger J P, Condon D J, et al. 2007. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup Sultanate of Oman[J]. American Journal of Science, 307: 1097−1145. doi: 10.2475/10.2007.01

    CrossRef Google Scholar

    [2] Deng Q, Wang J, Wang Z J, et al. 2013. Continental flood basalts of the Huashan Group, northern margin of the Yangtze block−implications for the breakup of Rodinia[J]. International Geology Review, 55(15): 1865−1884. doi: 10.1080/00206814.2013.799257

    CrossRef Google Scholar

    [3] Du Q D, Wang Z J, Wang J, et al. 2013. Geochronology and paleoenvironment of the pre−Sturtian glacial strata: Evidence from the Liantuo Formation in the Nanhua rift basin of the Yangtze Block, South China[J]. Precambrian Research, 233: 118−131. doi: 10.1016/j.precamres.2013.04.012

    CrossRef Google Scholar

    [4] Hu J, Liu X C, Chen L Y, et al. 2013. A ~2.5 Ga magmatic event at the northern margin of the Yangtze craton: Evidence from U-Pb dating and Hf isotope analysis of zircons from the Douling Complex in the South Qinling orogen[J]. Chinese Science Bulletin, 58: 3564−3579. doi: 10.1007/s11434-013-5904-1

    CrossRef Google Scholar

    [5] Hu Z C, Gao S, Liu Y S, et al. 2008. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas[J]. Journal of Analytical Atomic Spectrometry, 23: 1093−1101. doi: 10.1039/b804760j

    CrossRef Google Scholar

    [6] Jiang X S, Wang J, Cui X Z, et al. 2012. Zircon SHRIMP U-Pb geochronology of the Neoproterozoic Chengjiang Formation in central Yunnan Province(SW China) and its geological significance[J]. Sci. China (Earth Sci), 55(11): 1815−1826. doi: 10.1007/s11430-012-4530-0

    CrossRef Google Scholar

    [7] Jiang Z F, Cui X Z, Jiang X S, et al. 2016. New zircon U-Pb ages of the pre−Sturtian rift successions from the western Yangtze Block, South China and their geological significance[J]. International Geology Review, 58(9): 1064−1075. doi: 10.1080/00206814.2016.1141719

    CrossRef Google Scholar

    [8] Lan Z W, Li X H, Zhu M Y, et al. 2014. A rapid and synchronous initiation of the wide spread Cryogenian glaciations[J]. Precambrian Research, 255: 401−411. doi: 10.1016/j.precamres.2014.10.015

    CrossRef Google Scholar

    [9] Lan Z W, Li X H, Zhang Q R, et al. 2015a. Global synchronous initiation of the 2nd episode of Sturtian glaciation: SIMS zircon U-Pb and O isotope evidence from the Jiangkou Group, South China[J]. Precambrian Research, 267: 28−38. doi: 10.1016/j.precamres.2015.06.002

    CrossRef Google Scholar

    [10] Lan Z W, Li X H, Zhu M Y, et al. 2015b. Revisiting the Liantuo Formation in Yangtze Block, South China: SIMS U-Pb zircon age constraints and regional and global significance[J]. Precambrian Research, 263: 123−141. doi: 10.1016/j.precamres.2015.03.012

    CrossRef Google Scholar

    [11] Li Z X, Li X H, Kinny P D, et al. 2003. Geochronology of Neoproterozoic syn−rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia[J]. Precambrain Research, 122: 85−109. doi: 10.1016/S0301-9268(02)00208-5

    CrossRef Google Scholar

    [12] Ling W L, Ren B F, Duan R C, et al. 2008. Timing of the Wudangshan, Yaolinghe volcanic sequences and mafic sills in South Qinling: U-Pb zircon geochronology and tectonic implication[J]. Chinese Science Bulletin, 53: 2192−2199. doi: 10.1007/s11434-008-0269-6

    CrossRef Google Scholar

    [13] Ling W L, Duan R C, Liu X M, et al. 2010. U-Pb dating of detrital zircons from the Wudangshan Group in the South Qinling and its geological significance[J]. Chinese Science Bulletin, 55: 2440−2448. doi: 10.1007/s11434-010-3095-6

    CrossRef Google Scholar

    [14] Liu Y S, Hu Z C, Gao S, et al. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1/2): 34−43.

    Google Scholar

    [15] Shi Y R, Liu D Y, Zhang Z Q, et al. 2007. SHRIMP zircon U-Pb dating of gabbro and granite from the Huashan ophiolite, Qinling orogenic belt, China: Neoproterozoic suture on the northern margin of the Yangtze Craton[J]. Acta Geologica Sinica, 81(2): 239−243. doi: 10.1111/j.1755-6724.2007.tb00947.x

    CrossRef Google Scholar

    [16] Wang J, Li Z X. 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia break−up[J]. Precambrian Research, 122: 141−158. doi: 10.1016/S0301-9268(02)00209-7

    CrossRef Google Scholar

    [17] Wang K, Li Z X, Dong S W, et al. 2018. Early crustal evolution of the Yangtze Craton, South China: New constraints from zircon U-Pb-Hf isotopes and geochemistry of ca. 2.9–2.6 Ga granitic rocks in the Zhongxiang Complex[J]. Precambrian Research, 314: 325−352. doi: 10.1016/j.precamres.2018.05.016

    CrossRef Google Scholar

    [18] Wang X C, Li X H, Li Z X, et al. 2012a. Episodic Precambrian crust growth: Evidence from U-Pb ages and Hf-O isotopes of zircon in the Nanhua Basin, central South China[J]. Precambrian Research, 222/223: 386−403.

    Google Scholar

    [19] Wang X L, Shu L S, Xing G F, et al. 2012b. Post−orogenic extension in the eastern part of the Jiangnan orogen: Evidence from ca 800-760 Ma volcanic rocks[J]. Precambrain Research, 222/223: 404−423. doi: 10.1016/j.precamres.2011.07.003

    CrossRef Google Scholar

    [20] Wang Z J, Wang J, Du Q D, et al. 2016. Geochronological and geochemical evidence for the sedimentary transformation from the Banxi Period to the Nanhua Glacial Period[J]. Acta Geologica Sinica, 90(5): 1915−1916. doi: 10.1111/1755-6724.12830

    CrossRef Google Scholar

    [21] Yang Y N, Wang X C, Li Q L, et al. 2016. Integrated in situ U-Pb age and Hf-O analyses of zircon from Suixian Group in northern Yangtze: New insights into the Neoproterozoic low-δ18O magmas in the South China Block[J]. Precambrian Research, 273: 151−164. doi: 10.1016/j.precamres.2015.12.008

    CrossRef Google Scholar

    [22] Zhang S B, Zheng Y F, Wu Y B, et al. 2006. Zircon U-Pb age and Hf-O isotope evidence for Paleoproterozoic metamorphic event in South China[J]. Precambrian Research, 151: 265−288. doi: 10.1016/j.precamres.2006.08.009

    CrossRef Google Scholar

    [23] Zhang S H, Jiang G Q, Dong J, et al. 2008. New SHRIMP U-Pb age from the Wuqiangxi Formation of Banxi Group: implications for rifting and stratigraphic erosion associated with the early Cryogenian (Sturtian) glaciation in South China[J]. Sci. China Ser D (Earth Sci), 51(11): 1537−1544. doi: 10.1007/s11430-008-0119-z

    CrossRef Google Scholar

    [24] Zhou L G, Xia Q X, Zheng Y F, et al. 2015. Tectonic evolution from oceanic subduction to continental collision during the closure of Paleotethyan ocean: geochronological and geochemical constraints from metamorphic rocks in the Hong’an orogen[J]. Gondwana Research, 28(1): 348−370. doi: 10.1016/j.gr.2014.03.009

    CrossRef Google Scholar

    [25] 崔晓庄, 江新胜, 邓奇, 等. 2016. 桂北地区丹洲群锆石U-Pb年代学及对华南新元古代裂谷作用期次的启示[J]. 大地构造与成矿学, 40(5): 1049−1063.

    Google Scholar

    [26] 崔晓庄, 江新胜, 王剑, 等. 2013. 滇中新元古代澄江组层型剖面锆石U-Pb年代学及其地质意义[J]. 现代地质, 27(3): 547−556. doi: 10.3969/j.issn.1000-8527.2013.03.005

    CrossRef Google Scholar

    [27] 邓奇, 王剑, 汪正江, 等. 2013. 扬子北缘西乡群大石沟组和三郎铺组凝灰岩锆石U-Pb年龄及其地质意义[J]. 吉林大学学报(地球科学版), 43(3): 797−808.

    Google Scholar

    [28] 邓奇, 王剑, 汪正江, 等. 2016. 江南造山带新元古代中期(830~750 Ma)岩浆活动及对构造演化的制约[J]. 大地构造与成矿学, 40(4): 753−771.

    Google Scholar

    [29] 邓奇, 汪正江, 杨菲, 等. 2019. 浙西北建德地区休宁组沉积时限的厘定: 来自凝灰岩锆石U-Pb年代学的制约[J]. 地质学报, 93(2): 414−427. doi: 10.3969/j.issn.0001-5717.2019.02.010

    CrossRef Google Scholar

    [30] 邓奇, 崔晓庄, 汪正江, 等. 2023. 扬子陆块北缘构造演化新认识: 来自原花山群年代学和地球化学的制约[J]. 沉积与特提斯地质, 43(1): 212−225. doi: 10.3969/j.issn.1009-3850.2023.01.016

    CrossRef Google Scholar

    [31] 冯连君, 储雪蕾, 张同钢, 等. 2006. 莲沱砂岩——南华大冰期前气候转冷的沉积记录[J]. 岩石学报, 22(9): 2387−2393. doi: 10.3321/j.issn:1000-0569.2006.09.015

    CrossRef Google Scholar

    [32] 高林志, 丁孝忠, 曹茜, 等. 2010. 中国晚前寒武纪年表和年代地层序列[J]. 中国地质, 37(4): 1014−1020.

    Google Scholar

    [33] 高林志, 丁孝忠, 庞维华, 等. 2011. 中国中—新元古代地层年表的修正——锆石U-Pb年龄对年代地层的制约[J]. 地层学杂志, 35(1): 1−7.

    Google Scholar

    [34] 高维, 张传恒. 2009. 长江三峡黄陵花岗岩与莲沱组凝灰岩的锆石SHRIMP U-Pb年龄及其构造地层意义[J]. 地质通报, 28(1): 45−50. doi: 10.3969/j.issn.1671-2552.2009.01.006

    CrossRef Google Scholar

    [35] 江新胜, 崔晓庄, 卓皆文, 等. 2020. 华南扬子陆块西缘新元古代康滇裂谷盆地开启时间新证据[J]. 沉积与特提斯地质, 40(3): 31−37.

    Google Scholar

    [36] 刘鸿允, 沙庆安. 1963. 长江峡东区震旦系新见[J]. 地质科学, 4(4): 177−187.

    Google Scholar

    [37] 刘军平, 宛胜, 李静, 等. 2021. 滇中易门地区古元古界易门群罗洼垤组火山岩锆石U-Pb年龄及其构造热事件[J]. 地质通报, 40(7): 1024−1032.

    Google Scholar

    [38] 陆松年. 2002. 关于中国新元古界划分几个问题的讨论[J]. 地质评论, 48(3): 241−248.

    Google Scholar

    [39] 王田, 汪正江, 肖渊甫, 等. 2020. 扬子陆块新元古代首次冰期前的区域沉降及其沉积响应研究[J]. 地质论评, 66(4): 1060−1080.

    Google Scholar

    [40] 汪正江, 许效松, 杜秋定, 等. 2013. 南华冰期的底界讨论: 来自沉积学与同位素年代学证据[J]. 地球科学进展, 28(4): 477−489.

    Google Scholar

    [41] 汪正江, 王剑, 江新胜, 等. 2015. 华南扬子地区新元古代地层划分对比研究新进展[J]. 地质论评, 61(1): 1−22.

    Google Scholar

    [42] 薛怀民, 马芳, 宋永勤. 2011. 扬子克拉通北缘随(州)—枣(阳)地区新元古代变质岩浆岩的地球化学和 SHRIMP锆石U-Pb年代学研究[J]. 岩石学报, 27(4): 1116−1130.

    Google Scholar

    [43] 杨济远, 李杰, 白春东, 等. 2023. 冀西北宣化盆地侏罗纪九龙山组凝灰岩形成时代、构造环境及地质意义[J]. 西北地质, 56(6): 314−328.

    Google Scholar

    [44] 尹崇玉, 柳永清, 高林志, 等. 2007. 震旦(伊迪卡拉)纪早期磷酸盐化生物群—瓮安生物群特征及其环境演化[M]. 北京: 地质出版社: 1−132.

    Google Scholar

    [45] 尹崇玉, 高林志. 2013. 中国南华系的范畴、时限及地层划分[J]. 地层学杂志, 37(4): 534−541.

    Google Scholar

    [46] 张靖怡, 张舒, 张赞赞, 等. 2022. 北淮阳东端牛王寨岩体年代学及地球化学研究: 对大别造山带早白垩世深部地质过程的制约[J]. 华东地质, 43(2): 141−153.

    Google Scholar

    [47] 张启锐. 2014. 关于南华系底界年龄780 Ma数值的讨论[J]. 地层学杂志, 38(3): 336−339.

    Google Scholar

    [48] 张启锐, 兰中伍. 2016. 南华系、莲沱组年龄问题的讨论[J]. 地层学杂志, 40(3): 297−301.

    Google Scholar

    [49] 卓皆文, 江新胜, 王剑, 等. 2015. 川西新元古代苏雄组层型剖面底部豆状熔结凝灰岩LA-ICP-MS锆石U-Pb 年龄及其地质意义[J]. 沉积与特提斯地质, 35(4): 85−91.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(678) PDF downloads(102) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint