Citation: | ZHAO Yuanfang, SHI Wei, ZHANG Yu. 2023. Study on the reconstruction of the paleo-tectonic stress field and its evolution in the Jinchuan mining district, Gansu Province, China. Journal of Geomechanics, 29(6): 770-785. doi: 10.12090/j.issn.1006-6616.2023161 |
The Jinchuan mining district has undergone a complex tectonic evolution history, and detailed analysis of the post-mineralization deformation characteristics and stress field evolution stages needs to be completed. This paper employs structural analysis methods to stage and correlate the faults in the bedrock of the Jinchuan mining district, determining the structural deformation sequence. It identifies four significant fault combinations in the region, including NE-trending thrust faults and NW-trending strike-slip faults, NE-trending strike-slip faults and NW-trending thrust faults, NW-trending normal faults, and NEE-trending strike-slip faults. The paleo-tectonic stress field of fault is reconstructed by using the lower hemisphere stereographic projection method on the base of studying faults and striations. Combining the paleo-tectonic stress field results with the regional tectonic evolution history, the study accurately defines the stress field evolution stages in the Jinchuan mining district after the mineralization period, which is crucial for understanding regional tectonic evolution and the development of new prospective areas. The results indicate that the Jinchuan mining district experienced four phases of paleo-tectonic stress field after the mineralization period, characterized by multi-stage compression or extension in different directions. These phases responds to a series of regional tectonic thermal events since the Mesozoic respectively: Phase I exhibits a NW–SE compression stress field during the early to middle Jurassic (J1-2); Phase II shows a NE–SW compression stress field during the late Jurassic (J3); Phase III reflects a NE–SW extensional stress field during the Early Cretaceous (K1); Phase IV represents a NE–SW compression stress field since the Late Cretaceous (K2).
[1] | ANGELIER J, 1984. Tectonic analysis of fault slip data sets[J]. Journal of Geophysical Research: Solid Earth, 89(B7): 5835-5848. doi: 10.1029/JB089iB07p05835 |
[2] | DONG X P, LI Z H, JING X H, et al. , 2023. Stratigraphic sequence characteristics and geochronology research progress of the Cenozoic in the arcuate tectonic belt on the northeastern margin of the Tibet Plateau[J]. Journal of Geomechanics, 29(4): 465-484. (in Chinese with English abstract) |
[3] | FAURE M, LIN W, CHEN Y, 2012. Is the Jurassic (Yanshanian) intraplate tectonics of North China due to westward indentation of the North China block?[J]. Terra Nova, 24(6): 456-466. doi: 10.1111/ter.12002 |
[4] | GAO Y L, TANG Z L, SONG X Y, et al. , 2009. Study on genesis of the concealed Cu-rich ore body in the Jinchuan Cu-Ni deposit and its prospecting in depth[J]. Acta Petrologica Sinica, 25(12): 3379-3395. (in Chinese with English abstract) |
[5] | GONG J H, ZHANG J X, YU S Y, 2011. The origin of Longshoushan Group and associated rocks in the southern part of the Alxa block: constraint from LA-ICP-MS U-Pb zircon dating[J]. Acta Petrologica Et Mineralogica, 30(5): 795-818. (in Chinese with English abstract) |
[6] | GONG J H, 2013. Compositions, characteristics, chronological framework and origin of early-Precambrian metamorphic basement in western Alxa block[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract) |
[7] | HE Q J, LAI J Q, MAO X C, et al. , 2019. Tectonic stress field and tectonic evolution in Jinchuan mining district, Gansu province[J]. Contributions to Geology and Mineral Resources Research, 34(2): 265-273. (in Chinese with English abstract) |
[8] | LI C S, XU Z H, DE WAAL S A, et al. , 2004. Compositional variations of olivine from the Jinchuan Ni-Cu sulfide deposit, western China: Implications for ore genesis[J]. Mineralium Deposita, 39(2): 159-172. doi: 10.1007/s00126-003-0389-5 |
[9] | LI W Y, TANG Z L, GUO Z P, et al. , 2004. Petrogenetic epoch and geochemical characteristics of mafic-ultramafic rocks on the southern margin of Alxa massif in northern China[J]. Acta Petrologica et Mineralogica, 23(2): 117-126. (in Chinese with English abstract) |
[10] | LI X H, SU L, SONG B, et al. , 2004. SHRIMP U-Pb zircon age of the Jinchuan ultramafic intrusion and its geological significance[J]. Chinese Science Bulletin, 49(4): 420-422. doi: 10.1007/BF02900329 |
[11] | LI Z, 2009. Analysis on the ore-controlling tectonic in Jinchuan copper-nickel Sulphide deposit, Gansu Province[D]. Changsha: Central South University. (in Chinese with English abstract) |
[12] | LI Z Y, DING L, LIPPERT P C, et al. , 2016. Paleomagnetic constraints on the Mesozoic drift of the Lhasa terrane (Tibet) from Gondwana to Eurasia[J]. Geology, 44(9): 727-730. doi: 10.1130/G38030.1 |
[13] | LIAO W J, 2016. Tectonic lithofacies mapping, stress field analysis and the deep metallogenetic prognosis in Jinchuan copper and nickel orefield[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract) |
[14] | MENG Q R, 2003. What drove late Mesozoic extension of the northern China–Mongolia tract?[J]. Tectonophysics, 369(3-4): 155-174. doi: 10.1016/S0040-1951(03)00195-1 |
[15] | MENG Q R, HU J M, JIN J Q, et al. , 2003. Tectonics of the late Mesozoic wide extensional basin system in the China-Mongolia border region[J]. Basin Research, 15(3): 397-415. doi: 10.1046/j.1365-2117.2003.00209.x |
[16] | MERCIER J L, CAREY-GAILHARDIS E, SÉBRIER M, 1991. Palaeostress determinations from fault kinematics: Application to the neotectonics of the Himalayas-Tibet and the Central Andes[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 337(1645): 41-52. |
[17] | MI W M, LUO X R, ZHANG L L, et al. , 2011. Research on geophysical and geochemical exploration for prospecting copper-nickel Sulphide deposits in South Jinchuan, Gansu Province[J]. Guangxi Sciences, 18(3): 249-252. (in Chinese with English abstract) |
[18] | MI W M, WANG J C, ZHANG Y L, et al. , 2018. Geological characteristics and its influence of F1 fault in Jinchuan Cu-Ni mining area in Gansu province[J]. Modern Mining, 34(3): 107-110, 114. (in Chinese with English abstract) |
[19] | RATSCHBACHER L, HACKER B R, CALVERT A, et al. , 2003. Tectonics of the Qinling (Central China): Tectonostratigraphy, geochronology, and deformation history[J]. Tectonophysics, 366(1-2): 1-53. doi: 10.1016/S0040-1951(03)00053-2 |
[20] | RITZ J F, TABOADA A, 1993. Revolution stress ellipsoids in brittle tectonics resulting from an uncritical use of inverse methods[J]. Bulletin de la Société Géologique de France, 164(4): 519-531. |
[21] | SHI W, HU J M, CHEN H, et al. , 2015. Cenozoic tectonic evolution of the arcuate structures in the Northeast Tibetan Plateau[J]. Acta Geologica Sinica-English Edition, 89(2): 676-677. doi: 10.1111/1755-6724.12457 |
[22] | SHI W, CHEN L, CHEN X Q, et al. , 2019. The Cenozoic tectonic evolution of the faulted basins in the northern margin of the Eastern Qinling Mountains, Central China: Constraints from fault kinematic analysis[J]. Journal of Asian Earth Sciences, 173: 204-224. doi: 10.1016/j.jseaes.2019.01.018 |
[23] | SHI W, DONG S W, HU J M, 2020. Neotectonics around the Ordos Block, North China: A review and new insights [J]. Earth-Science Reviews, 200: 102969. doi: 10.1016/j.earscirev.2019.102969 |
[24] | SONG X Y, KANG J, LONG T M, et al. , 2023. Bifurcate magma conduit of Jinchuan super-large Ni-Cu-PGE sulfide deposit in Gansu, China and its implications for deep ore prospecting[J]. Journal of Earth Sciences and Environment, 45(5): 1049-1062. (in Chinese with English abstract) |
[25] | SU Z, MAO X C, LI L J, et al. , 2023. Quantitative analysis of the structural ore-controlling laws in Jinchuan Ni-Cu-(PGE) deposit[J]. Mineral Exploration, 14(5): 679-690. (in Chinese with English abstract) |
[26] | TANG Z L, 1990. Minerogenetic model of the Jinchuan copper and nickel sulfide deposit[J]. Geoscience, 4(4): 55-64. (in Chinese with English abstract) |
[27] | TANG Z L, LI W Y, 1995. Mineralization model and geology of the Jinchuan PGE-bearing deposit[M]. Beijing: Geology Press. (in Chinese) |
[28] | TANG Z L, BAI Y L, 1999. Geotectonic framework and metallogenic system in the southwest margin of North China paleocontinent[J]. Earth Science Frontiers, 6(2): 271-283. (in Chinese with English abstract) |
[29] | TANG Z L, BAI Y L, 2000. The geotectonic setting of the large and superlarge mineral deposits in the southwest margin of North China Paleoplate[J]. Acta Geology Gansu, 9(1): 1-15. (in Chinese with English abstract) |
[30] | TANG Z L, QIAN Z Z, JIANG C Y, et al. , 2006. Magmatic Ni-Cu-PGE sulphide deposits and metallogenic prognosis in China[M]. Beijing: Geology Press. (in Chinese) |
[31] | TAO N, DUAN J, DANIŠÍK M, et al. , 2023. Paleozoic tectonothermal evolution of the Jinchuan Ni-Cu sulfide deposit, NW China: New constraints from 40Ar/39Ar and (U-Th)/He thermochronology[J]. Journal of Asian Earth Sciences, 250: 105622. doi: 10.1016/j.jseaes.2023.105622 |
[32] | TIAN Y L, WU S J, MENG R, et al. , 2007. LA-ICPMS Zircon U-Pb age of the Jinchuan ultramafic intrusion[J]. Acta Mineralogica Sinica, 27(2): 211-217. (in Chinese with English abstract) |
[33] | TONG H M, YIN A, 2011. Reactivation tendency analysis: A theory for predicting the temporal evolution of preexisting weakness under uniform stress state[J]. Tectonophysics, 503(3-4): 195-200. doi: 10.1016/j.tecto.2011.02.012 |
[34] | WAN Y S, LIU D Y, DONG C Y, et al. , 2009. The Precambrian Khondalite Belt in the Daqingshan area, North China Craton: evidence for multiple metamorphic events in the Palaeoproterozoic era[J]. Geological Society, London, Special Publications, 323(1): 73-97. doi: 10.1144/SP323.4 |
[35] | WU M B, LIU C Y, ZHENG M L, et al. , 2007. Jurassic depositional-tectonic evolution in the Yabulai basin, western Inner Mongolia, China and direction of petroleum exploration[J]. Geological Bulletin of China, 26(7): 857-863. (in Chinese with English abstract) |
[36] | YAN H Q, LIU Q F, TANG Z L, et al. , 2015. Structural properties of the Longshoushan block: Constraint from LA-ICP-MS U-Pb zircon dating[J]. Engineering Sciences, 17(2): 59-72. (in Chinese with English abstract) |
[37] | YANG Y T, GUO Z X, SONG C C, et al. , 2015. A short-lived but significant Mongol–Okhotsk collisional orogeny in latest Jurassic–earliest Cretaceous[J]. Gondwana Research, 28(3): 1096-1116. doi: 10.1016/j.gr.2014.09.010 |
[38] | YU J X, 2017. Active tectonics in the southern Gobi-Alashan Block and its response to the interactions of the adjacent crustal blocks[J]. Recent Developments in World Seismology(12): 40-41. (in Chinese) |
[39] | ZENG N S, WANG J C, LUO X R, et al. , 2013. Structural sequence and its relationship with Cu-Ni sulfide ore deposit in the Jinchuan Area, Gansu, China[J]. Earth Science Frontiers, 20(6): 210-218. (in Chinese with English abstract) |
[40] | ZENG R Y, LAI J Q, MAO X C, et al. , 2013. Evolution of fault system and its controlling on Jinchuan Cu-Ni (PGE) sulfide deposit[J]. The Chinese Journal of Nonferrous Metals, 23(9): 2574-2583. (in Chinese with English abstract) |
[41] | ZHANG B H, ZHANG J, WANG Y N, et al. , 2017. Late Mesozoic-Cenozoic exhumation of the northern Hexi Corridor: constrained by apatite fission track ages of the Longshoushan[J]. Acta Geologica Sinica-English Edition, 91(5): 1624-1643. doi: 10.1111/1755-6724.13402 |
[42] | ZHANG J, WANG Y N, QU J F, et al. , 2021a. Mesozoic intracontinental deformation of the Alxa Block in the middle part of Central Asian Orogenic Belt: a review[J]. International Geology Review, 63(12): 1490-1520. doi: 10.1080/00206814.2020.1783583 |
[43] | ZHANG J, CUNNINGHAM D, YUN L, et al. , 2021b. Kinematic variability of late Cenozoic fault systems and contrasting mountain building processes in the Alxa block, western China[J]. Journal of Asian Earth Sciences, 205: 104597. doi: 10.1016/j.jseaes.2020.104597 |
[44] | ZHAO H B, HE X R, WANG X Y, et al. , 2013. Structural characteristics of Chaoshui Basin[J]. Lithologic Reservoirs, 25(2): 36-40, 48. (in Chinese with English abstract) |
[45] | ZHENG M L, LI M J, CAO C C, et al. , 2003. Superposed characteristics of Cretaceous and Jurassic basins in Beishan-Alaxa area[J]. Geotectonica et Metallogenia, 27(4): 384-389. (in Chinese with English abstract) |
[46] | ZHENG Y D, ZHANG J J, ZHANG B, 2022. Two pillar theories of structural geology in the new century: The MEM criterion and the deformation partitioning[J]. Journal of Geomechanics, 28(3): 319-337. (in Chinese with English abstract) |
[47] | ZHU R X, ZHANG H F, ZHU G, et al. , 2017. Craton destruction and related resources[J]. International Journal of Earth Sciences, 106(7): 2233-2257. doi: 10.1007/s00531-016-1441-x |
[48] | 董晓朋, 李振宏, 井向辉, 等, 2023. 青藏高原东北缘弧形构造带新生代地层沉积序列及年代学研究进展[J]. 地质力学学报, 29(4): 465-484. |
[49] | 高亚林, 汤中立, 宋谢炎, 等, 2009. 金川铜镍矿床隐伏富铜矿体成因研究及其深部找矿意义[J]. 岩石学报, 25(12): 3379-3395. |
[50] | 宫江华, 张建新, 于胜尧, 2011. 阿拉善地块南缘龙首山岩群及相关岩石的起源和归属: 来自LA-ICP-MS锆石U-Pb年龄的制约[J]. 岩石矿物学杂志, 30(5): 795-818. |
[51] | 宫江华, 2013. 西阿拉善地块早前寒武纪变质基底组成、性质、年代格架及归属[D]. 北京: 中国地质科学院. |
[52] | 和秋姣, 赖健清, 毛先成, 等, 2019. 甘肃金川矿区构造应力场与构造演化研究[J]. 地质找矿论丛, 34(2): 265-273. doi: 10.6053/j.issn.1001-1412.2019.02.014 |
[53] | 李文渊, 汤中立, 郭周平, 等, 2004. 阿拉善地块南缘镁铁-超镁铁岩形成时代及地球化学特征[J]. 岩石矿物学杂志, 23(2): 117-126. |
[54] | 李献华, 苏犁, 宋彪, 等, 2004. 金川超镁铁侵入岩SHRIMP锆石U-Pb年龄及地质意义[J]. 科学通报, 49(4): 401-402. |
[55] | 李佐, 2009. 甘肃金川铜镍硫化物矿床控矿构造研究[D]. 长沙: 中南大学. |
[56] | 廖文建, 2016. 金川铜镍矿区构造岩相填图、应力场分析和深部成矿预测[D]. 中国地质大学(北京). |
[57] | 米文满, 罗先熔, 张琳琳, 等, 2011. 甘肃金川南延铜镍硫化物矿床物化探综合找矿研究[J]. 广西科学, 18(3): 249-252. |
[58] | 米文满, 王俊超, 张永龙, 等, 2018. 甘肃金川铜镍矿区F1断层地质特征及其影响[J]. 现代矿业, 34(3): 107-110, 114. |
[59] | 宋谢炎, 康健, 隆廷茂, 等, 2023. 甘肃金川超大型Ni-Cu-PGE硫化物矿床岩浆通道分枝构造及其深部找矿意义[J]. 地球科学与环境学报, 45(5): 1049-1062. doi: 10.19814/j.jese.2023.05063 |
[60] | 苏哲, 毛先成, 黎隆交, 等, 2023. 金川铜镍硫化物矿床构造控矿定量分析[J]. 矿产勘查, 14(5): 679-690. |
[61] | 汤中立, 1990. 金川硫化铜镍矿床成矿模式[J]. 现代地质, 4(4): 55-64. |
[62] | 汤中立, 李文渊, 1995. 金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M]. 北京: 地质出版社. |
[63] | 汤中立, 白云来, 1999. 华北古大陆西南边缘构造格架与成矿系统[J]. 地学前缘, 6(2): 271-283. |
[64] | 汤中立, 白云来, 2000. 华北板块西南边缘大型、超大型矿床的地质构造背景[J]. 甘肃地质学报, 9(1): 1-15. |
[65] | 汤中立, 钱壮志, 姜常义, 等, 2006. 中国镍铜铂岩浆硫化物矿床与成矿预测[M]. 北京: 地质出版社. |
[66] | 田毓龙, 武栓军, 孟蓉, 等, 2007. 金川超镁铁质岩体LA-ICPMS锆石U-Pb年龄[J]. 矿物学报, 27(2): 211-217. doi: 10.3321/j.issn:1000-4734.2007.02.017 |
[67] | 吴茂炳, 刘春燕, 郑孟林, 等, 2007. 内蒙古西部雅布赖盆地侏罗纪沉积-构造演化及油气勘探方向[J]. 地质通报, 26(7): 857-863. |
[68] | 闫海卿, 刘巧峰, 汤中立, 等, 2015. 龙首山地块的构造属性: 来自U-Pb锆石年龄的约束[J]. 中国工程科学, 17(2): 59-72. |
[69] | 俞晶星, 2017. 阿拉善地块南部构造活动及其对周边地块相互作用的响应[J]. 国际地震动态(12): 40-41. |
[70] | 曾南石, 汪劲草, 罗先熔, 等, 2013. 金川地区构造序列及与铜镍硫化物矿床的关系[J]. 地学前缘, 20(6): 210-218. |
[71] | 曾认宇, 赖健清, 毛先成, 等, 2013. 金川铜镍矿床中断裂系统的形成演化及对矿体的控制[J]. 中国有色金属学报, 23(9): 2574-2583. |
[72] | 赵宏波, 何昕睿, 王筱烨, 等, 2013. 潮水盆地构造特征[J]. 岩性油气藏, 25(2): 36-40, 48. |
[73] | 郑孟林, 李明杰, 曹春潮, 等, 2003. 北山—阿拉善地区白垩纪、侏罗纪盆地叠合特征[J]. 大地构造与成矿学, 27(4): 384-389. |
[74] | 郑亚东, 张进江, 张波, 2022. 新世纪构造地质学两大支柱理论: 最大有效力矩准则与变位形分解[J]. 地质力学学报, 28(3): 319-337. |
Geological map and tectonic setting of the study area
Features of paleo-tectonic stress at different points
The characteristics of fault intersection and superimposed striation
Typical deformation features under the NW–SE compression
Typical deformation features under the NE–SW compression (early stage)
Typical deformation features under the NE-SW extension
Typical deformation features under the NE–SW compression (late stage)
Tectonic evolution model of Jinchuan mining district since the mineralization