2023 Vol. 29, No. 5
Article Contents

REN Yazhe, FENG Chengjun, QI Bangshen, GE Weiya, TAN Chengxuan, MENG Jing. 2023. Quantitative research of the impact of Shunyi fault activity on the ground fissures in the Beijing Capital International Airport, China. Journal of Geomechanics, 29(5): 685-703. doi: 10.12090/j.issn.1006-6616.2023063
Citation: REN Yazhe, FENG Chengjun, QI Bangshen, GE Weiya, TAN Chengxuan, MENG Jing. 2023. Quantitative research of the impact of Shunyi fault activity on the ground fissures in the Beijing Capital International Airport, China. Journal of Geomechanics, 29(5): 685-703. doi: 10.12090/j.issn.1006-6616.2023063

Quantitative research of the impact of Shunyi fault activity on the ground fissures in the Beijing Capital International Airport, China

    Fund Project: This research is financially supported by the Geological Survey Project of the China Geological Survey (Grant No.DD20230540)
More Information
  • The Shunyi fault in the Beijing Plain region is a significant late Pleistocene active fault. The Beijing Capital International Airport (BCIA) is situated within the central segment of the Shunyi Fault. Since 2010, ground fissures on the airport's runway have progressively worsened, with a maximum vertical displacement difference of up to 20 cm, severely affecting airport safety. Presently, the impact of Shunyi fault activity on the ground fissures at the BCIA is primarily described qualitatively. This paper, based on research regarding the geometric structure of the Shunyi Fault, Quaternary activity, and investigations of the ground fissures at the Capital Airport, employs the fault dislocation model to quantitatively analyze the influence of the Shunyi Fault's creep-sliding activity as well as the 1996 Shunyi ML 4.5 earthquake on the formation of airport ground fissures. The study also discusses the increasing risk of ground fissure hazards in the event of a potential strong earthquake along the Shunyi fault in the future. The preliminary results suggest that with a vertical activity rate of 0.6 mm/year, 46 years of Shunyi Fault's creep-sliding activity results in differential subsidence of no more than 2.5 cm on both sides of the airport ground fissures, contributing to approximately 20% of the formation and development of these fissures. The impact of the Shunyi ML 4.5 earthquake on the formation of airport ground fissures is minimal. However, if a future M 7.0 earthquake occurs on the Shunyi fault, the estimated maximum land differential subsidence between two sides of the fault could reach 104 cm, increasing the risk of airport ground fissure disasters by a factor of five. Ground differential settlement due to groundwater extraction from the upper and deeper layers of the Shunyi fault's hanging wall contributes about 70% to the formation and development of airport ground fissures, remaining the primary factor. The study's results provide essential scientific references for precise prevention and control of ground fissure disasters at BCIA. Furthermore, to further reveal the causes and mechanisms of delayed geological disasters along the Shunyi fault, such as ground fissures and land differential subsidence, it is recommended to implement dynamic monitoring of cross-fault crustal displacement or deformation at crucial segments.

  • 加载中
  • BAI L Y, ZHANG L, CAI X M, et al., 2014. Quaternary magnetostratigraphic time framework constraints on activity characteristics of the Shunyi fault, Beijing plain[J]. Geoscience, 28(6): 1234-1242. (in Chinese with English abstract)

    Google Scholar

    BERRY D S, SALES T W, 1962. An elastic treatment of ground movement due to mining-Ⅲ three dimensional problem, transversely isotropic ground[J]. Journal of the Mechanics and Physics of Solids, 10(1): 73-83. doi: 10.1016/0022-5096(62)90030-3

    CrossRef Google Scholar

    CAI H, SUN H R, ZHAO Q L, et al., 2012. Coseismic displacement field of continental area of China associated with the MW9.0 Japan earthquake in 2011 by GPS[J]. Geomatics and Information Science of Wuhan University, 37(8): 953-955, 1009. (in Chinese with English abstract)

    Google Scholar

    CHINNERY M A, 1961. The deformation of the ground around surface faults[J]. Bulletin of the Seismological Society of America, 51(3): 355-372. doi: 10.1785/BSSA0510030355

    CrossRef Google Scholar

    CUI B W, YUE X Y WANG L H, 2021. Correlation between small earthquake activity in Beijing Area and significant earthquake in Beijing and surrounding area[J]. North China Earthquake Sciences, 39(4): 87-94. (in Chinese with English abstract)

    Google Scholar

    DAVIS P M, 1983. Surface deformation associated with a dipping hydrofracture[J]. Journal of Geophysical Research: Solid Earth, 88(B7): 5826-5834. doi: 10.1029/JB088iB07p05826

    CrossRef Google Scholar

    FAN Y L, FENG C J, ZHANG P, et al., 2022. Impact of Tohoku-Oki 3.11 M9.0 earthquake on the fault slip potential of the active Quaternary faults in Beijing City: New insights from in situ stress monitoring data[J]. Sensors, 22(13): 4888. doi: 10.3390/s22134888

    CrossRef Google Scholar

    FENG C J, ZHANG P, SUN W F, et al., 2013. A discussion on the impact of Japan MW 9.0 earthquake on the main active fault zone in north- and northeast-China continent and the seismic risk[J]. Earth Science Frontiers, 20(6): 123-140. (in Chinese with English abstract)

    Google Scholar

    FENG C J, YANG Y H, MA X D, et al., 2020. Local stress perturbations associated with the 2008 Wenchuan M 8.0 earthquake near the Longmenshan fault zone in the eastern margin of the Tibetan Plateau[J]. Journal of Asian Earth Sciences, 200: 104429. doi: 10.1016/j.jseaes.2020.104429

    CrossRef Google Scholar

    GAO M L, GONG H L, CHEN B B, et al., 2016. InSAR time-series investigation of long-term ground displacement at Beijing Capital International Airport, China[J]. Tectonophysics, 691: 271-181. doi: 10.1016/j.tecto.2016.10.016

    CrossRef Google Scholar

    GAO Z W, CHEN Q F, HUANG J L, et al., 2010. Velocity structure beneath the active faults in Beijing area and their seismo-tectonic characteristics[J]. Technology for Earthquake Disaster Prevention, 5(3): 271-280. (in Chinese with English abstract)

    Google Scholar

    GUAN H P, MA L, CHEN Q F, et al., 1997. Shunyi 4.0 earthquake swarm and the aftershock tendency analysis in the Capital area[J]. Earthquake, 17(4): 411-416. (in Chinese with English abstract)

    Google Scholar

    GUAN J H, GAO M L, GONG H L, 2021. Discussion on the causes of regional differential settlement of Beijing-capital international airport[J]. Science of Surveying and Mapping, 46(9): 67-75. (in Chinese with English abstract)

    Google Scholar

    GUO L Q, LI Y X, HUANG L R, et al., 2006. Characteristics of strain field variation in Beijing Area[J]. Journal of Geodesy and Geodynamics, 26(3): 46-52. (in Chinese with English abstract)

    Google Scholar

    HU P, LUO H C, MENG Y Q, et al., 2000. Analyses for activity of north section of the Shunyi-Liangxiang fault from the Shunyi ground rupture zone[J]. Seismology and Geology, 22(2): 123-128. (in Chinese with English abstract)

    Google Scholar

    HUANG J C, WAN Y G, 2015. Present tectonic stress field in the Capital Region of China determined from small and strong earthquake focal mechanisms[J]. Earthquake, 35(1): 17-27. (in Chinese with English abstract)

    Google Scholar

    JIA S M, GUO M, 2007. The relation between Huangzhuang-Gaoliying fault and by Gaoliying trench and earth fissure[J]. Geological Hazards, 2(4): 24-28. (in Chinese with English abstract)

    Google Scholar

    JIA S M, LIU M K, TIAN F, et al., 2011. The Classification of ground fissures and their prevention measures in Beijing area[J]. Urban Geology, 6(2): 4-7, 24. (in Chinese with English abstract)

    Google Scholar

    JIANG Y, WANG R, TIAN F, et al., 2014. Study on the relationship between land subsidence and ground fissures in Beijing[J]. Urban Geology, 9(4): 6-10. (in Chinese with English abstract)

    Google Scholar

    LEI X D, QI B S, GUAN W, et al., 2021. Research on the faults identification based on gravity anomaly in Beijing plain[J]. Chinese Journal of Geophysics, 64(4): 1253-1265. (in Chinese with English abstract)

    Google Scholar

    LIN C Y, CHEN X D, LUO H C, et al., 2006. Microscopic analysis of the trench across the Shunyi-Qianmen-Liangxiang fault at Shunyi, Beijing and its implications[J]. Seismology and Geology, 28(4): 561-578. (in Chinese with English abstract)

    Google Scholar

    LIU F C, QI S W, PENG J B, et al., 2016. Characters of the ground fissures developing in Beijing[J]. Journal of Engineering Geology, 24(6): 1269-1277. (in Chinese with English abstract)

    Google Scholar

    LIU M K, JIA S M, CHEN Z Z, et al., 2014. Study of the activity and impact of the Gaoliying ground fissure on the Beijing plain[J]. Shanghai Land & Resources, 35(4): 53-57. (in Chinese with English abstract) doi: 10.3969/j.issn.2095-1329.2014.04.012

    CrossRef Google Scholar

    LIU Y Y, CHONG J J, NI S D, 2011. Near surface wave velocity structure in Chinese capital region based on borehole seismic records[J]. Acta Seismologica Sinica, 33(3): 342-350. (in Chinese with English abstract)

    Google Scholar

    LONG F, WEN X Z, XU X W, 2006. Empirical relationships between magnitude and rupture length, and rupture area, for seismogenic active faults in North China[J]. Seismology and Geology, 28(4): 511-535. (in Chinese with English abstract)

    Google Scholar

    LU Q Z, PENG J B, DENG Y H, et al., 2014. Failure characteristics and influence width of Beiqijia-Gaoliying ground fissure in Beijing[J]. Geotechnical Investigation & Surveying, 42(6): 5-11. (in Chinese with English abstract)

    Google Scholar

    LV J B, ZHENG G S, LI L J, et al., 2016. Primary establishment of stratigraphic section in plain area of Beijing: Archean crystalline basement and Proterozoic strata[J]. Geology in China, 43(3): 879-889. (in Chinese with English abstract)

    Google Scholar

    LV P L, WANG H M, LV M M, 1998. The background and implication of the 1996 Shunyi earthquake[J]. Seismological and Geomagnetic Observation and Research, 19(3): 16-21. (in Chinese with English abstract)

    Google Scholar

    MA X J, YANG X D, JIA G X, 2015. Genesis analysis of fault creep type ground fissures in the Hebei plain[J]. Geological Survey of China, 2(8): 48-54. (in Chinese with English abstract)

    Google Scholar

    MARUYAMA T, 1964. Statical elastic dislocations in an infinite and semi-infinite medium[J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 42(2): 289-368.

    Google Scholar

    OKADA Y, 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 75(4): 1135-1154. doi: 10.1785/BSSA0750041135

    CrossRef Google Scholar

    OKADA Y, 1992. Internal deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 82(2): 1018-1040. doi: 10.1785/BSSA0820021018

    CrossRef Google Scholar

    OZAWA S, NISHIMURA T, SUITO H, et al., 2011. Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake[J]. Nature, 475(7356): 373-376. doi: 10.1038/nature10227

    CrossRef Google Scholar

    PENG J B, FAN W, LI X A, et al., 2007. Some key questions in the formation of ground fissures in the Fen-Wei basin[J]. Journal of Engineering Geology, 15(4): 433-440. (in Chinese with English abstract)

    Google Scholar

    PENG J B, LAN H X, QIAN H, et al., 2020. Scientific research framework of livable Yellow River[J]. Journal of Engineering Geology, 28(2): 189-201. (in Chinese with English abstract)

    Google Scholar

    PRESS F, 1965. Displacements, strains, and tilts at teleseismic distances[J]. Journal of Geophysical Research, 70(10): 2395-2412. doi: 10.1029/JZ070i010p02395

    CrossRef Google Scholar

    QI B S, PAN Z F, FENG C J, et al., 2020. Application of comprehensive geophysical-drilling exploration to detect the buried Shunyi active fault belt in Beijing[J]. Acta Geologica Sinica, 94(4): 1315-1329. (in Chinese with English abstract)

    Google Scholar

    QIAO J W, PENG J B, ZHENG J G, et al., 2020. Development rules and movement characteristics of earth fissures in China[J]. Journal of Engineering Geology, 28(5): 1016-1027. (in Chinese with English abstract)

    Google Scholar

    QIN X H, ZHANG P, FENG C J, et al., 2014. In-situ stress measurements and slip stability of major faults in Beijing region, China[J]. Chinese Journal of Geophysics, 57(7): 2165-2180. (in Chinese with English abstract)

    Google Scholar

    REN J J, ZHANG S M, TANG R Y, 2007. Activity characteristics of the ground fissure belt in Shunyi County, Beijing and measures for disaster reduction[J]. Urban Geology, 2(1): 33-38. (in Chinese with English abstract)

    Google Scholar

    SHEN W S, LUO Y, NI S D, et al., 2010. Resolving near surface S velocity structure in natural earthquake frequency band: A case study in Beijing region[J]. Acta Seismologica Sinica, 32(2): 137-146. (in Chinese with English abstract)

    Google Scholar

    STEKETEE J A, 1958. On Volterra's dislocations in a semi-Infinite elastic medium[J]. Canadian Journal of Physics, 36(2): 192-205. doi: 10.1139/p58-024

    CrossRef Google Scholar

    SUN W K, OKUBO S, 1998. Surface potential and gravity changes due to internal dislocations in a spherical earth-Ⅱ. Application to a finite fault[J]. Geophysical Journal International, 132(1): 79-88.

    Google Scholar

    SUN Y J, DONG S W, FAN T Y, et al., 2013. The effect of Tohoku MW9.0 earthquake on the near-field seismic activity from the coseismic and postseismic deformation[J]. Progress in Geophysics, 28(3): 1131-1139. (in Chinese with English abstract)

    Google Scholar

    TAN C X, ZHANG P, FENG C J, et al., 2014. An approach to deep borehole crustal stress measuring and real-time monitoring and its application in seismogeology research in Capital Beijing region[J]. Acta Geologica Sinica, 88(8): 1436-1452. (in Chinese with English abstract)

    Google Scholar

    TAN C X, YANG W M, ZHANG C S, et al., 2020. Jingjinji xietong fazhanqu huodong gouzao yu quyu diqiao wendingxing yanjiu[M]. Beijing: Geological Publishing House. (in Chinese)

    Google Scholar

    TIAN M Z, ZHAO L, LUO Y, et al., 2019. On the development characteristics and genesis of Shunyi ground fissure (Airport segment)[J]. Urban Geology, 14(4): 17-21. (in Chinese with English abstract)

    Google Scholar

    WAN J W, LI B, TAN C X, et al., 2019. Characteristics and mechanism of earth fissures in China: A case study of Fenhe river-Weihe river basin, Hebei plain and Suzhou-Wuxi-Changzhou plain[J]. Geological Review, 65(6): 1383-1396. (in Chinese with English abstract)

    Google Scholar

    WAN J W, LI B, TAN C X, et al., 2021. Formation mechanism of pumping-induced earth fissures associated with a pre-existing normal fault, Beijing, China[J]. Engineering Geology, 294: 106361. doi: 10.1016/j.enggeo.2021.106361

    CrossRef Google Scholar

    WAN J W, LI B, GAO Y, et al., 2022. Dynamic response of the inhomogeneous pavement structure containing a buried fault zone under the moving aircraft loads[J]. Bulletin of Engineering Geology and the Environment, 81(8): 301. doi: 10.1007/s10064-022-02770-4

    CrossRef Google Scholar

    WAN Y G, JIN Z T, CUI H W, et al., 2017. Study on displacement of the peaks of the Himalaya generated by the 2015 Nepal earthquake sequence[J]. Seismology and Geology, 39(4): 699-711. (in Chinese with English abstract) doi: 10.3969/j.issn.0253-4967.2017.04.006

    CrossRef Google Scholar

    WANG H G, LIU M K, JIA S M, et al., 2013. Simulation of Gaoliying ground fissure based on FLAC3D[J]. South-to-North Water Transfers and Water Science & Technology, 11(5): 86-90. (in Chinese with English abstract)

    Google Scholar

    WANG H M, LV M M, LV P L, 1998. On temporal features of Shunyi earthquake sequence of Dec. 16, 1996 and its relation with the seismicity in neighbouring area[J]. Earthquake, 18(1): 41-48. (in Chinese with English abstract)

    Google Scholar

    WANG J M, 2000. Theory of ground fissures hazards and its application[M]. Xi'an: Shaanxi Science and Technology Press. (in Chinese)

    Google Scholar

    WANG L F, LIU J, ZHAO J G, et al., 2013. Coseismic slip and post-seismic relaxation of the 2011 M 9.0 Tohoku-Oki earthquake and its influence on China mainland[J]. Earthquake, 33(4): 238-247. (in Chinese with English abstract)

    Google Scholar

    WANG M, LI Q, WANG F, et al., 2011. Far-field coseismic displacements associated with the 2011 Tohoku-oki earthquake in Japan observed by Global Positioning System[J]. Chinese Science Bulletin, 56(23): 2419-2424. doi: 10.1007/s11434-011-4588-7

    CrossRef Google Scholar

    WANG R J, MARTIN F L, ROTH F, 2006. PSGRN/PSCMP-a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory[J]. Computers & Geosciences, 32(4): 527-541.

    Google Scholar

    WANG S Z, 1990. Preduction of seisnigebic probabilities of potential hypocenters in Beijing Area by using the multi-criterion tectonophysical method[J]. Earthquake Research in China, 6(3): 11-19. (in Chinese with English abstract)

    Google Scholar

    WELLS D L, COPPERSMITH K J, 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 974-1002. doi: 10.1785/BSSA0840040974

    CrossRef Google Scholar

    WU M J, WU A X, XU P, et al., 2012. Comprehensive research on focal mechanism solutions in the Capital Area[J]. Earthquake Research in China, 28(4): 393-401. (in Chinese with English abstract) doi: 10.3969/j.issn.1001-4683.2012.04.006

    CrossRef Google Scholar

    WU Q, GAO M T, 2018. A preliminary study on the correlativity of seismic hazard between Beijing Area and Xiong'an New Area[J]. Seismology and Geology, 40(4): 935-943. (in Chinese with English abstract)

    Google Scholar

    WU Z H, 2019. The definition and classification of active faults: history, current status and progress[J]. Acta Geoscientica Sinica, 40(5): 661-697. (in Chinese with English abstract)

    Google Scholar

    XU H, SUN Y J, WU Z H, 2016. The effect of 1668 Tancheng M8.5 earthquake on the Seismic activity of the vicinity from coseismic and postseismic deformation[J]. Journal of Geomechanics, 22(3): 568-576. (in Chinese with English abstract)

    Google Scholar

    XU X W, WANG Z G, XU C, et al., 2021. Natural disaster risk analysis and its countermeasures of major urban agglomerations in China[J]. City and Disaster Reduction(6): 1-6. (in Chinese)

    Google Scholar

    XUAN Y, 2011. Fault activity research and seismic risk analysis of Beijing district[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)

    Google Scholar

    YANG F, HUANG J L, 2013. High precision 3D P-wave velocity model of the upper crust under the Chinese capital region based on oil seismic stack velocity and deep seismic sounding[J]. Chinese Journal of Geophysics, 56(5): 1487-1496. (in Chinese with English abstract)

    Google Scholar

    YANG T, GONG H L, ZHAO W J, et al., 2010. Distribution characteristics and cause analysis of ground fissures in Shunyi district of Beijing[J]. Journal of Natural Disasters, 19(6): 100-106. (in Chinese with English abstract)

    Google Scholar

    YANG X X, HU D G, JIA L Y, et al., 2023. Quaternary activity characteristics of the Qionghua-Liantang fault belt in Hainan[J]. Journal of Geomechanics, 29(1): 127-137. (in Chinese with English abstract)

    Google Scholar

    YANG Y, ZHENG F D, LIU L C, et al., 2013. Study on the correlation between groundwater level and ground subsidence in Beijing plain areas[J]. Geotechnical Investigation & Surveying, 41(8): 44-48. (in Chinese with English abstract)

    Google Scholar

    ZHANG H Y, XIE F R, JIAO Q, et al., 2007. Cross-fault deformation observation and crustal stress field in Capital circle region[J]. Seismology and Geology, 29(4): 706-715. (in Chinese with English abstract)

    Google Scholar

    ZHANG L, HE F B, BAI L Y, et al., 2015. Astronomical cyclostratigraphy study of Quaternary activities in northern segment of the Shunyi fault, Beijing[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 54(5): 147-154. (in Chinese with English abstract)

    Google Scholar

    ZHANG L, ZHANG X L, BAI L Y, et al., 2017. Activity study and disaster effect analysis of the north section of Huangzhuang-Gaoliying fault in Beijing[J]. Journal of Geomechanics, 23(4): 548-557. (in Chinese with English abstract) doi: 10.3969/j.issn.1006-6616.2017.04.006

    CrossRef Google Scholar

    ZHANG S M, LIU X D, REN J J, et al., 2005. Quaternary activities of northern segment of the Shunyi-Liangxiang fault[J]. Earthquake Research in China, 21(1): 84-92. (in Chinese with English abstract)

    Google Scholar

    ZHAO L, LIU J R, WANG R, et al., 2017. Distribution characteristics and cause analysis of Songzhuang ground fissures in Beijing[J]. Shanghai Land & Resources, 38(2): 35-38. (in Chinese with English abstract)

    Google Scholar

    ZHAO L, LI Y M, CUI W J, et al., 2018. Disaster characteristics and influence factors for ground fissures at Songzhuang Village in Beijing[J]. Journal of Engineering Geology, 26(6): 1600-1610. (in Chinese with English abstract)

    Google Scholar

    ZHAO L, LUO Y, LI Y M, et al., 2019. Characteristics of disaster-affected bodies and influence factors for earth fissure in Beijing Plain[J]. Hydrogeology & Engineering Geology, 46(6): 156-164. (in Chinese with English abstract)

    Google Scholar

    ZHAO Z H, 2006. Discussion on the distributions characteristic and genetic type of the land crack in Beijing[J]. Journal of Geological Hazards and Environment Preservation, 17(3): 75-78. (in Chinese with English abstract)

    Google Scholar

    ZHU S B, CAI Y E, 2009. Dynamic mechanisms of the post-seismic deformation following large events: Case study of the 1999 Chi-Chi earthquake in Taiwan of China[J]. Science in China Series D: Earth Sciences, 52(11): 1813-1824. doi: 10.1007/s11430-009-0144-6

    CrossRef Google Scholar

    白凌燕, 张磊, 蔡向民, 等, 2014. 磁性地层年代对北京平原顺义断裂第四纪活动性的约束[J]. 现代地质, 28(6): 1234-1242.

    Google Scholar

    蔡华, 孙汉荣, 赵齐乐, 等, 2012. GPS测定的2011年日本9.0级地震的中国大陆地区同震位移场[J]. 武汉大学学报·信息科学版, 37(8): 953-955, 1009. doi: 10.13203/j.whugis2012.08.020

    CrossRef Google Scholar

    崔博闻, 岳晓媛, 王丽红, 2021. 北京地区小震活动与北京及周边地区显著地震相关性研究[J]. 华北地震科学, 39(4): 87-94.

    Google Scholar

    丰成君, 张鹏, 孙炜锋, 等, 2013. 日本MW9.0级地震对中国华北-东北大陆主要活动断裂带的影响及地震危险性初步探讨[J]. 地学前缘, 20(6): 123-140.

    Google Scholar

    高战武, 陈棋福, 黄金莉, 等, 2010. 北京地区主要活动断裂深部速度结构特征及强震构造分析[J]. 震灾防御技术, 5(3): 271-280.

    Google Scholar

    关华平, 马丽, 陈棋福, 等, 1997. 北京顺义4.0级地震和震后首都圈地震趋势分析[J]. 地震, 17(4): 411-416.

    Google Scholar

    关金环, 高明亮, 宫辉力, 2021. 首都国际机场区域差异性沉降原因探讨[J]. 测绘科学, 46(9): 67-75. doi: 10.16251/j.cnki.1009-2307.2021.09.009

    CrossRef Google Scholar

    郭良迁, 李延兴, 黄立人, 等, 2006. 北京地区近十年应变场变化特征[J]. 大地测量与地球动力学, 26(3): 46-52. doi: 10.14075/j.jgg.2006.03.008

    CrossRef Google Scholar

    胡平, 罗华春, 孟勇琦, 等, 2000. 从顺义地表破裂带分析顺义-良乡断裂北段的活动性[J]. 地震地质, 22(2): 123-128.

    Google Scholar

    黄骥超, 万永革, 2015. 利用小震与强震震源机制解反演首都圈现今构造应力场[J]. 地震, 35(1): 17-27.

    Google Scholar

    贾三满, 郭萌, 2007. 从高丽营探槽分析黄庄-高丽营断裂与地裂缝的关系[J]. 地质灾害, 2(4): 24-28. doi: 10.3969/j.issn.1003-8035.2007.04.006

    CrossRef Google Scholar

    贾三满, 刘明坤, 田芳, 等, 2011. 北京地区地裂缝分类及防治措施[J]. 城市地质, 6(2): 4-7, 24. doi: 10.3969/j.issn.1007-1903.2011.02.002

    CrossRef Google Scholar

    姜媛, 王荣, 田芳, 等, 2014. 北京地区地面沉降与地裂缝关系研究[J]. 城市地质, 9(4): 6-10.

    Google Scholar

    雷晓东, 戚帮申, 关伟, 等, 2021. 北京平原区断裂构造重力异常识别研究[J]. 地球物理学报, 64(4): 1253-1265.

    Google Scholar

    林传勇, 陈孝德, 罗华春, 等, 2006. 北京顺义-前门-良乡断裂探槽的微观分析及其启示[J]. 地震地质, 28(4): 561-578. doi: 10.3969/j.issn.0253-4967.2006.04.004

    CrossRef Google Scholar

    刘方翠, 祁生文, 彭建兵, 等, 2016. 北京市地裂缝分布与发育规律[J]. 工程地质学报, 24(6): 1269-1277. doi: 10.13544/j.cnki.jeg.2016.06.029

    CrossRef Google Scholar

    刘明坤, 贾三满, 陈柘舟, 等, 2014. 北京平原区高丽营地裂缝带活动性及灾害特征研究[J]. 上海国土资源, 35(4): 53-57. doi: 10.3969/j.issn.2095-1329.2014.04.012

    CrossRef Google Scholar

    刘渊源, 崇加军, 倪四道, 2011. 基于井下摆天然地震数据测量首都圈近地表波速结构[J]. 地震学报, 33(3): 342-350. doi: 10.3969/j.issn.0253-3782.2011.03.007

    CrossRef Google Scholar

    龙锋, 闻学泽, 徐锡伟, 2006. 华北地区地震活断层的震级-破裂长度、破裂面积的经验关系[J]. 地震地质, 28(4): 511-535. doi: 10.3969/j.issn.0253-4967.2006.04.001

    CrossRef Google Scholar

    卢全中, 彭建兵, 邓亚虹, 等, 2014. 北京北七家-高丽营地裂缝破坏特征及影响带宽度[J]. 工程勘察, 42(6): 5-11.

    Google Scholar

    吕金波, 郑桂森, 李良景, 等, 2016. 北京平原区地质剖面的初步建立-太古宙结晶基底和元古宙地层[J]. 中国地质, 43(3): 879-889.

    Google Scholar

    吕培苓, 王慧敏, 吕梅梅, 1998. 1996年顺义地震的背景及其含义[J]. 地震地磁观测与研究, 19(3): 16-21.

    Google Scholar

    马学军, 杨旭东, 贾国欣, 2015. 河北平原断层蠕滑地裂缝成因分析[J]. 中国地质调查, 2(8): 48-54. doi: 10.19388/j.zgdzdc.2015.08.008

    CrossRef Google Scholar

    彭建兵, 范文, 李喜安, 等, 2007. 汾渭盆地地裂缝成因研究中的若干关键问题[J]. 工程地质学报, 15(4): 433-440. doi: 10.3969/j.issn.1004-9665.2007.04.001

    CrossRef Google Scholar

    彭建兵, 兰恒星, 钱会, 等, 2020. 宜居黄河科学构想[J]. 工程地质学报, 28(2): 189-201. doi: 10.13544/j.cnki.jeg.2020-129

    CrossRef Google Scholar

    戚帮申, 潘智锋, 丰成君, 等, 2020. 北京顺义断裂第四纪活动性地球物理及钻孔综合探测证据[J]. 地质学报, 94(4): 1315-1329. doi: 10.3969/j.issn.0001-5717.2020.04.020

    CrossRef Google Scholar

    乔建伟, 彭建兵, 郑建国, 等, 2020. 中国地裂缝发育规律与运动特征研究[J]. 工程地质学报, 28(5): 1016-1027.

    Google Scholar

    秦向辉, 张鹏, 丰成君, 等, 2014. 北京地区地应力测量与主要断裂稳定性分析[J]. 地球物理学报, 57(7): 2165-2180.

    Google Scholar

    任俊杰, 张世民, 唐荣余, 2007. 北京顺义地裂缝带的活动特征及减灾措施[J]. 城市地质, 2(1): 33-38.

    Google Scholar

    沈伟森, 罗艳, 倪四道, 等, 2010. 天然地震频率范围内首都圈地区近地表S波速度结构[J]. 地震学报, 32(2): 137-146.

    Google Scholar

    孙玉军, 董树文, 范桃园, 等, 2013. 从同震和震后形变分析日本东北MW9.0级大地震对近场地震活动性的影响[J]. 地球物理学进展, 28(3): 1131-1139.

    Google Scholar

    谭成轩, 张鹏, 丰成君, 等, 2014. 探索首都圈地区深孔地应力测量与实时监测及其在地震地质研究中应用[J]. 地质学报, 88(8): 1436-1452.

    Google Scholar

    谭成轩, 杨为民, 张春山, 等, 2020. 京津冀协同发展区活动构造与区域地壳稳定性研究[M]. 北京: 地质出版社.

    Google Scholar

    田苗壮, 赵龙, 罗勇, 等, 2019. 顺义地裂缝(机场段)发育特征与成因分析[J]. 城市地质, 14(4): 17-21.

    Google Scholar

    万佳威, 李滨, 谭成轩, 等, 2019. 中国地裂缝的发育特征及成因机制研究: 以汾渭盆地、河北平原、苏锡常平原为例[J]. 地质论评, 65(6): 1383-1396.

    Google Scholar

    万永革, 靳志同, 崔华伟, 等, 2017. 2015年尼泊尔强震序列导致的喜马拉雅山峰位移场[J]. 地震地质, 39(4): 699-711.

    Google Scholar

    王海刚, 刘明坤, 贾三满, 等, 2013. 基于FLAC3D的北京高丽营地裂缝模拟[J]. 南水北调与水利科技, 11(5): 86-90.

    Google Scholar

    王慧敏, 吕梅梅, 吕培苓, 1998. 1996年12月16日北京顺义地震时序特征及其与邻区地震活动的关系[J]. 地震, 18(1): 41-48.

    Google Scholar

    王景明, 2000. 地裂缝及其灾害的理论与应用[M]. 西安: 陕西科学技术出版社.

    Google Scholar

    王丽凤, 刘杰, 赵金贵, 等, 2013. 2011年日本9.0级地震的同震位错以及震后应力松弛过程对中国大陆的影响[J]. 地震, 33(4): 238-247.

    Google Scholar

    王敏, 李强, 王凡, 等, 2011. 全球定位系统测定的2011年日本宫城MW9.0级地震远场同震位移[J]. 科学通报, 56(20): 1593-1596.

    Google Scholar

    王绳祖, 1990. 北京地区潜在震源区发震概率的多判据构造物理方法预测[J]. 中国地震, 6(3): 11-19.

    Google Scholar

    武敏捷, 武安绪, 徐平, 等, 2012. 首都圈地区震源机制解综合研究[J]. 中国地震, 28(4): 393-401.

    Google Scholar

    吴清, 高孟潭, 2018. 北京地区与雄安新区地震危险性相关性初探[J]. 地震地质, 40(4): 935-943.

    Google Scholar

    吴中海, 2019. 活断层的定义与分类: 历史、现状和进展[J]. 地球学报, 40(5): 661-697.

    Google Scholar

    徐昊, 孙玉军, 吴中海, 2016. 从同震和震后形变分析1668年M8.5级郯城地震对周边地震活动性的影响[J]. 地质力学学报, 22(3): 568-576. doi: 10.3969/j.issn.1006-6616.2016.03.012

    CrossRef Google Scholar

    徐锡伟, 王中根, 许冲, 等, 2021. 我国主要城市群自然灾害风险分析与防范对策[J]. 城市与减灾(6): 1-6.

    Google Scholar

    玄月, 2011. 北京市断裂活动性研究及地震危险性分析[D]. 北京: 中国地质大学(北京).

    Google Scholar

    杨峰, 黄金莉, 2013. 首都圈上地壳高精度三维P波速度模型: 基于石油地震叠加速度和人工地震测深剖面[J]. 地球物理学报, 56(5): 1487-1496.

    Google Scholar

    杨涛, 宫辉力, 赵文吉, 等, 2010. 北京顺义区地裂缝分布特征及成因分析[J]. 自然灾害学报, 19(6): 100-106.

    Google Scholar

    杨肖肖, 胡道功, 贾丽云, 等, 2023. 海南琼华-莲塘断裂带第四纪活动特征[J]. 地质力学学报, 29(1): 127-137.

    Google Scholar

    杨勇, 郑凡东, 刘立才, 等, 2013. 北京平原区地下水水位与地面沉降关系研究[J]. 工程勘察, 41(8): 44-48.

    Google Scholar

    张红艳, 谢富仁, 焦青, 等, 2007. 首都圈地区跨断层形变观测与地壳应力场[J]. 地震地质, 29(4): 706-715.

    Google Scholar

    张磊, 何付兵, 白凌燕, 等, 2015. 北京顺义断裂带北段第四纪活动的天文旋回地层学研究[J]. 中山大学学报(自然科学版), 54(5): 147-154.

    Google Scholar

    张磊, 张晓亮, 白凌燕, 等, 2017. 北京地区黄庄-高丽营断裂北段活动性研究与灾害效应分析[J]. 地质力学学报, 23(4): 548-557.

    Google Scholar

    张世民, 刘旭东, 任俊杰, 等, 2005. 顺义地裂缝成因与顺义-良乡断裂北段第四纪活动性讨论[J]. 中国地震, 21(1): 84-92.

    Google Scholar

    赵龙, 刘久荣, 王荣, 等, 2017. 北京宋庄地裂缝分布特征及成因分析[J]. 上海国土资源, 38(2): 35-38.

    Google Scholar

    赵龙, 李玉梅, 崔文君, 等, 2018. 北京宋庄地裂缝灾害特征及影响因素分析[J]. 工程地质学报, 26(6): 1600-1610.

    Google Scholar

    赵龙, 罗勇, 李玉梅, 等, 2019. 北京平原区地裂缝受灾体形态特征及影响因素[J]. 水文地质工程地质, 46(6): 156-164.

    Google Scholar

    赵忠海, 2006. 北京地区地裂缝灾害的分布特征及其成因探讨[J]. 地质灾害与环境保护, 17(3): 75-78.

    Google Scholar

    朱守彪, 蔡永恩, 2009. 强震后地表变形的动力学机制研究: 以1999年台湾集集地震为例[J]. 中国科学D辑: 地球科学, 39(9): 1209-1219.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views(1309) PDF downloads(50) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint