2023 Vol. 29, No. 5
Article Contents

HUANG Shaohua, WAN Yongge, FENG Gan, LI Xiao, GUAN Zhaoxuan. 2023. Trigger mechanism and dynamic causes of the Taiwan earthquake sequence on September 17, 2022. Journal of Geomechanics, 29(5): 674-684. doi: 10.12090/j.issn.1006-6616.2023056
Citation: HUANG Shaohua, WAN Yongge, FENG Gan, LI Xiao, GUAN Zhaoxuan. 2023. Trigger mechanism and dynamic causes of the Taiwan earthquake sequence on September 17, 2022. Journal of Geomechanics, 29(5): 674-684. doi: 10.12090/j.issn.1006-6616.2023056

Trigger mechanism and dynamic causes of the Taiwan earthquake sequence on September 17, 2022

    Fund Project: This research is financially supported by the fund of the National Natural Science Foundation of China(Grants No.42174074, 41674055), the Special Fund for Scientific Research of Central Universities(Grant No.ZY20215117), and the Open Fund Project of the Hebei Key Laboratory of Earthquake Dynamics(Grant No.FZ212105)
More Information
  • On September 17th and 18th, 2022, two earthquakes struck Taiwan Province of China in Taitung County and Hualien County, respectively, measuring MS6.5 and MS6.9 in magnitude, followed by multiple aftershocks. Both seismic events were situated along the Longitudinal Valley Fault and exhibited a reverse strike-slip mechanism. The geological setting in this area is intricate, as the Longitudinal Valley Fault zone represents a subduction zone where the late Mesozoic Paleo-Pacific plate converges with the East Asian continental margin, resulting in a predominant thrust-type tectonic stress background. However, historical earthquake data in this region have indicated a prevalence of reverse-faulting earthquakes. To address the causes of these reverse strike-slip fault earthquakes and their relationship with the tectonic stress field in the area, we first reconstructed the tectonic stress field by analyzing the focal mechanisms of past earthquakes within the study area. The resulting stress field was characterized by compressive stress oriented with an azimuth of NWW. Subsequently, this stress field was projected onto fault planes with various strike and dip angles. This analysis revealed that certain fault joints experienced more significant relative shear stress and lower relative normal stress, suggesting that these joints were more prone to dislocation, leading to earthquakes of the reverse fault type, reverse strike-slip type, and strike-slip type. Furthermore, the proximity and timing of the two earthquakes within a two-day span prompted an examination of their potential triggering relationship. Researchers calculated the Coulomb rupture stress changes caused by the MS6.5 earthquake on the rupture plane of the MS6.9 earthquake and its sliding direction. Their analysis indicated an increase of approximately 0.02 MPa in Coulomb rupture stress, suggesting that the Taitung MS6.5 earthquake may have triggered the Hualien MS6.9 earthquake. This study holds significant importance for understanding the seismogenic mechanism of the Longitudinal Valley Fault and gaining insights into the geodynamics of the study region.

  • 加载中
  • DAI Y L, WAN Y G, KONG X X, et al., 2022. Central focal mechanism of the Dengta, Liaoning M5.1 earthquake in 2013 and the analysis of its surrounding tectonic stress field[J]. Journal of Seismological Research, 45(4): 570-580. (in Chinese with English abstract)

    Google Scholar

    DENG Z H, 2021. Study on coseismic displacement identification based on near-fault strong motion data[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese with English abstract)

    Google Scholar

    FENG C J, LI B, LI H, et al., 2022. Estimation of in-situ stress field surrounding the Namcha Barwa region and discussion on the tectonic stability[J]. Journal of Geomechanics, 28(6): 919-937. (in Chinese with English abstract)

    Google Scholar

    FENG G, WAN Y G, XU X, et al., 2021. Static stress influence of the 2021 MS7.4 Madoi, Qinghai earthquake on neighboring areas[J]. Chinese Journal of Geophysics, 64(12): 4562-4571. (in Chinese with English abstract) doi: 10.6038/cjg2021P0454

    CrossRef Google Scholar

    HAN S, WU Z H, GAO Y, et al., 2022. Surface rupture investigation of the 2022 Menyuan MS6.9 earthquake, Qinghai, China: implications for the fault behavior of the Lenglongling fault and regional intense earthquake risk[J]. Journal of Geomechanics, 28(2): 155-168. (in Chinese with English abstract)

    Google Scholar

    HUANG J C, 2015. Research on the method and application of tectonic stress field inversion based on the seismic observations[D]. Lanzhou: China Earthquake Administration Lanzhou Institute of Seismology. (in Chinese with English abstract)

    Google Scholar

    KING G C P, STEIN R S, LIN J, 1994. Static stress changes and the triggering of earthquakes[J]. Bulletin of the Seismological Society of America, 84(3): 935-953.

    Google Scholar

    KONG H, WAN Y G, LV Y, 2023. Seismogenic structure and slip property of the Aketao MW6.6 earthquake[J]. Science Technology and Engineering, 23(7): 2734-2742. (in Chinese with English abstract)

    Google Scholar

    LI X D, 1986. Crustal stress analysis and the effects of arc-continent collision on north part of Taiwan region[D]. Taipei, China: Institute of Geosciences, National Taiwan University. (in Chinese)

    Google Scholar

    OKADA Y, 1992. Internal deformation due to shear and tensile faults in a half-space[J]. Bulletin of the Seismological Society of America, 82(2): 1018-1040. doi: 10.1785/BSSA0820021018

    CrossRef Google Scholar

    RAU R J, WU F T, 1998. Active tectonics of Taiwan orogeny from focal mechanisms of small-to-moderate-sized earthquakes[J]. TAO, 9(4): 755-778. doi: 10.3319/TAO.1998.9.4.755(TAICRUST)

    CrossRef Google Scholar

    SELLA G F, DIXON T H, MAO A L, 2002. REVEL: A model for Recent plate velocities from space geodesy[J]. Journal of Geophysical Research: Solid Earth, 107(B4): 2081.

    Google Scholar

    SHEN Z K, JACKSON D D, GE B X, 1996. Crustal deformation across and beyond the Los Angeles basin from geodetic measurements[J]. Journal of Geophysical Research: Solid Earth, 101(B12): 27957-27980. doi: 10.1029/96JB02544

    CrossRef Google Scholar

    STEIN R S, KING G C P, LIN J, 1992. Change in failure stress on the southern San Andreas fault system caused by the 1992 magnitude=7.4 Landers earthquake[J]. Science, 258(5086): 1328-1332. doi: 10.1126/science.258.5086.1328

    CrossRef Google Scholar

    WAN Y G, SHEN Z K, SHENG S Z, et al., 2010. The mechanical effects of the 2008 MS7.3 Yutian, Xinjiang earthquake on the neighboring faults and its tectonic origin of normal faulting mechanism[J]. Chinese Journal of Geophysics, 53(2): 280-289. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5733.2010.02.006

    CrossRef Google Scholar

    WAN Y G, WU Y M, SHENG S Z, et al., 2011. Preliminary result of Taiwan 3-D stress field from P wave polarity data[J]. Chinese Journal of Geophysics, 54(11): 2809-2818. (in Chinese with English abstract) doi: 10.3969/j.issn.0001-5733.2011.11.011

    CrossRef Google Scholar

    WAN Y G, SHENG S Z, HUANG J C, et al., 2016. The grid search algorithm of tectonic stress tensor based on focal mechanism data and its application in the boundary zone of China, Vietnam and Laos[J]. Journal of Earth Science, 27(5): 777-785. doi: 10.1007/s12583-015-0649-1

    CrossRef Google Scholar

    WAN Y G, JIN Z T, CUI H W, et al., 2017. The displacement and stress field generated by the collapse in Pingyi county, Shangdong province, on December 25, 2015[J]. Seismology and Geology, 39(1): 81-91. (in Chinese with English abstract)

    Google Scholar

    WAN Y G, 2019. Determination of center of several focal mechanisms of the same earthquake[J]. Chinese Journal of Geophysics, 62(12): 4718-4728. (in Chinese with English abstract) doi: 10.6038/cjg2019M0553

    CrossRef Google Scholar

    WAN Y G, 2020. Simulation on relationship between stress regimes and focal mechanisms of earthquakes[J]. Chinese Journal of Geophysics, 63(6): 2281-2296. (in Chinese with English abstract)

    Google Scholar

    WAN Y G, 2022. Focal mechanism classification based on areal strain of the horizontal strain rosette of focal mechanism and characteristic analysis of overall focal mechanism of the earthquake sequence[J/OL]. Earth Science, 1-16[2022-09-05]. http://kns.cnki.net/kcms/detail/42.1874.p.20220715.1532.014.html. (in Chinese with English abstract)

    Google Scholar

    WAN Y G, XU X, HUANG S H, et al., 2022. Focal mechanisms and stress field of the 2022 Menyuan, Qinghai MS6.9 earthquake sequence determined by P-wave polarity data[J]. China Earthquake Engineering Journal, 44(3): 670-679, 690. (in Chinese with English abstract)

    Google Scholar

    WELLS D L, COPPERSMITH K J, 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 974-1002. doi: 10.1785/BSSA0840040974

    CrossRef Google Scholar

    WU X L, YANG Z Q, GONG Y, 2019. Present-day crustal deformation in arc-continent collision zone of the southeastern Eurasia plate[J]. Geomatics and Information Science of Wuhan University, 44(2): 240-245, 253. (in Chinese with English abstract)

    Google Scholar

    WU Y M, CHANG C H, ZHAO L, et al., 2008. A comprehensive relocation of earthquakes in Taiwan from 1991 to 2005[J]. Bulletin of the Seismological Society of America, 98(3): 1471-1481. doi: 10.1785/0120070166

    CrossRef Google Scholar

    WU Z H, 2019. The definition and classification of active faults: history, current status and progress[J]. Acta Geoscientica Sinica, 40(5): 661-697. (in Chinese with English abstract)

    Google Scholar

    XU X, WAN Y G, FENG G, et al., 2022. Study on three seismic fault segments and their sliding properties revealed by clustered seismic events in Huoshan area, Anhui province[J]. Chinese Journal of Geophysics, 65(5): 1688-1700. (in Chinese with English abstract)

    Google Scholar

    YANG Y M, HUANG S Y, DAI Y, 2021. Quick fault-plane identification and seismogenic structure of the 2020 Yutian MS6.4 earthquake, Xinjiang[J]. Earthquake, 41(2): 29-46. (in Chinese with English abstract)

    Google Scholar

    YEH Y H, BARRIER E, LIN C H, et al., 1991. Stress tensor analysis in the Taiwan area from focal mechanisms of earthquakes[J]. Tectonophysics, 200(1-3): 267-280.

    Google Scholar

    YONG Q, 2017. Research on characteristics of inversion for earthquake fault slip constrained by InSAR and GPS geodetic deformation data[D]. Chengdu: Southwest Jiaotong University. (in Chinese with English abstract)

    Google Scholar

    YU H L, WAN Y G, HUANG S H, et al., 2021. Study on focal mechanism solution and stress field of the 2021 Yangbi, Yunnan MS6.4 earthquake sequence using P-wave first motion data[J]. Journal of Seismological Research, 44(3): 338-347. (in Chinese with English abstract)

    Google Scholar

    YU S B, CHEN H Y, KUO L C, 1997. Velocity field of GPS stations in the Taiwan area[J]. Tectonophysics, 274(1-3): 41-59.

    Google Scholar

    ZHANG Q Y, 2019. Research and application of key technologies for InSAR coseismic deformation extraction[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration. (in Chinese with English abstract)

    Google Scholar

    戴盈磊, 万永革, 孔祥雪, 等, 2022. 2013年辽宁灯塔M5.1地震震源机制中心解及震源区构造应力场特征分析[J]. 地震研究, 45(4): 570-580.

    Google Scholar

    邓志辉, 2021. 基于近断层强震动数据的同震位移识别研究[D]. 哈尔滨: 中国地震局工程力学研究所.

    Google Scholar

    丰成君, 李滨, 李惠, 等, 2022. 南迦巴瓦地区地应力场估算与构造稳定性探讨[J]. 地质力学学报, 28(6): 919-937.

    Google Scholar

    冯淦, 万永革, 许鑫, 等, 2021. 2021年青海玛多MS7.4地震对周围地区的应力影响[J]. 地球物理学报, 64(12): 4562-4571.

    Google Scholar

    韩帅, 吴中海, 高扬, 等, 2022. 2022年1月8日青海门源MS6.9地震地表破裂考察的初步结果及对冷龙岭断裂活动行为和区域强震危险性的启示[J]. 地质力学学报, 28(2): 155-168.

    Google Scholar

    黄骥超, 2015. 基于地震观测资料的构造应力场反演方法与应用研究[D]. 兰州: 中国地震局兰州地震研究所.

    Google Scholar

    孔华, 万永革, 吕彦, 2023. 阿克陶MW6.6地震的发震构造及滑动特征[J]. 科学技术与工程, 23(7): 2734-2742.

    Google Scholar

    李锡堤, 1986. 大地应力分析与弧陆碰撞对于台湾北部古应力场变迁之影响[D]. 台北: 国立台湾大学地质研究所.

    Google Scholar

    万永革, 沈正康, 盛书中, 等, 2010. 2008年新疆于田7.3级地震对周围断层的影响及其正断层机制的区域构造解释[J]. 地球物理学报, 53(2): 280-289.

    Google Scholar

    万永革, 吴逸民, 盛书中, 等, 2011. P波极性数据所揭示的台湾地区三维应力结构的初步结果[J]. 地球物理学报, 54(11): 2809-2818.

    Google Scholar

    万永革, 靳志同, 崔华伟, 等, 2017. 2015年12月25日山东平邑塌陷事件产生的位移场与应力场[J]. 地震地质, 39(1): 81-91.

    Google Scholar

    万永革, 2019. 同一地震多个震源机制中心解的确定[J]. 地球物理学报, 62(12): 4718-4728.

    Google Scholar

    万永革, 2020. 震源机制与应力体系关系模拟研究[J]. 地球物理学报, 63(6): 2281-2296.

    Google Scholar

    万永革, 2022. 震源机制水平应变花面应变的地震震源机制分类方法及序列震源机制总体特征分析[J/OL]. 地球科学, 1-16[2022-09-05]. http://kns.cnki.net/kcms/detail/42.1874.p.20220715.1532.014.html.

    Google Scholar

    万永革, 许鑫, 黄少华, 等, 2022. P波极性资料确定的2022青海门源MS6.9地震序列震源机制及应力场[J]. 地震工程学报, 44(3): 670-679, 690.

    Google Scholar

    吴啸龙, 杨志强, 龚云, 2019. 欧亚大陆东南缘弧-陆碰撞带现今地壳水平变形特征研究[J]. 武汉大学学报·信息科学版, 44(2): 240-245, 253.

    Google Scholar

    吴中海, 2019. 活断层的定义与分类: 历史、现状和进展[J]. 地球学报, 40(5): 661-697.

    Google Scholar

    许鑫, 万永革, 冯淦, 等, 2022. 安徽霍山地区丛集地震事件揭示的三条地震断面及其滑动性质研究[J]. 地球物理学报, 65(5): 1688-1700.

    Google Scholar

    杨彦明, 黄世源, 戴勇, 等, 2021. 2020年新疆于田MS6.4地震断层面快速测定及发震构造研究[J]. 地震, 41(2): 29-46.

    Google Scholar

    雍琦, 2017. InSAR和GPS大地测量形变数据反演地震断层滑动的影响特征研究[D]. 成都: 西南交通大学.

    Google Scholar

    余海琳, 万永革, 黄少华, 等, 2021. 利用P波初动数据研究2021年云南漾濞MS6.4地震序列震源机制解及应力场[J]. 地震研究, 44(3): 338-347.

    Google Scholar

    张庆云, 2019. InSAR同震形变提取关键技术研究及其应用[D]. 哈尔滨: 中国地震局工程力学研究所.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(4)

Article Metrics

Article views(912) PDF downloads(34) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint