2023 Vol. 29, No. 4
Article Contents

FAN Ruyi, YANG Mengmeng, ZHOU Junpeng, ZHAO Jianxin. 2023. The spore-pollen assemblages of the Miocene Baode Formation from Borehole ZK301 in the Yuncheng Basin and its geological significance. Journal of Geomechanics, 29(4): 543-554. doi: 10.12090/j.issn.1006-6616.2023053
Citation: FAN Ruyi, YANG Mengmeng, ZHOU Junpeng, ZHAO Jianxin. 2023. The spore-pollen assemblages of the Miocene Baode Formation from Borehole ZK301 in the Yuncheng Basin and its geological significance. Journal of Geomechanics, 29(4): 543-554. doi: 10.12090/j.issn.1006-6616.2023053

The spore-pollen assemblages of the Miocene Baode Formation from Borehole ZK301 in the Yuncheng Basin and its geological significance

    Fund Project: This research is financially supported by the Geological Exploration Project of the Shanxi Provincial Department of Natural Resources (Grant 2020-00160 G151-C51/9).
More Information
  • The deposition period of the Baode Formation in the Miocene was crucial when the uplift and expansion of the Tibetan Plateau in the NE direction affected the Cenozoic basins around the Ordos Plateau. Previous research has mainly focused on tectonic and sedimentary aspects, with relatively few results on climate and environmental responses. We conducted a systematic sporopollen study on the Borehole ZK301 from the late Miocene Baode Formation in the E’mei tableland, Yuncheng Basin, characterized the deposited and redeposited spore-pollen and discussed the paleoclimate and paleotectonic background of the Baode Formation during its deposition. From bottom to top, the Miocene Baode Formation in the Yuncheng Basin can be divided into two spore-pollen assemblages, which are Ephedraceae–Chenopodiaceae–Gramineae zone and Artemisia–Chenopodiaceae–Humulus zone, indicating that the desert steppe dominated by Chenopodiaceae, Gramineae, and Ephedraceae developed into the desert steppe dominated by Artemisia and Chenopodiaceae in the late Miocene. Accordingly, the climate transitioned from relatively cold and dry to cold and dry, which was related to the influence of the remote effect of the uplift and expansion of the Tibetan Plateau on the climate in the late Miocene. The redeposited spore-pollen assemblages are mainly concentrated in the lower part of the Baode Formation, with the highest content of Ephedraceae, followed by Pinus, Picea, Cupressaceae, Chenopodiaceae, Juglandaceae and Pteridophyte, and a small amount of Classopollis and Elaeagnaceae, reflecting a warm and humid climate. The redeposited spore-pollens were mainly from the Paleogene strata on the northern margin of the Zhongtiaoshan Mountains, which indicates that there was a rapid uplift and denudation of the Zhongtiaoshan Mountains in the early stage of the Baode Formation deposition. The Baode Formation underwent the Paleogene strata’s denudation, transportation, and redeposited process. The research results can provide evidence for the late Miocene paleoclimate in the Yuncheng Basin and new evidence for the uplift of the Zhongtiaoshan Mountains in this period.

  • 加载中
  • [1] CHEN X Q, 2017. Sedimentary and tectonic evolution of the Cenozoic Weihe-Shanxi Graben and the mechanism [D]. Doctor's thesis. Beijing: Peking University. (in Chinese with English abstract)

    Google Scholar

    [2] CHEN X Q, DONG S W, SHI W, et al. , 2021. Magnetostratigraphic ages of the Cenozoic Weihe and Shanxi Grabens in North China and their tectonic implications[J]. Tectonophysics, 813: 228914. doi: 10.1016/j.tecto.2021.228914

    CrossRef Google Scholar

    [3] China Vegetation Editing Committee, 1980. China vegetation[M]. Beijing: Science Press. (in Chinese)

    Google Scholar

    [4] DENG T, WANG W M, YUE L P, et al. , 2004. New advances in the establishment of the Neogene Baode stage[J]. Journal of Stratigraphy, 28(1): 41-47. (in Chinese with English abstract)

    Google Scholar

    [5] DENG T, WANG W M, YUE L P, 2008. A comprehensive study report on the Shanwang and Baode stages of the Neogene in China[M]. In: Third National Stratigraphic Commission, ed. Research Report on the Stratigraphic Formation of Major Faults in China (2001~2005). Beijing: Geology Press, 13-31. (in Chinese)

    Google Scholar

    [6] FANG X M, 2017. Phased uplift of the Tibetan Plateau[J]. Science & Technology Review, 35(6): 42-50. (in Chinese with English abstract)

    Google Scholar

    [7] GRUBOV V I, 2001. Key to the vascular plants of Mongolia (with an Atlas)[M]. Science Publishers.

    Google Scholar

    [8] HAN X M, LIU F, ZHANG W T, et al. , 2015. Analyzing the variation characteristics of stress field in Hetao seismic belt using focal mechanism data[J]. Seismology and Geology, 37(4): 1030-1042. (in Chinese with English abstract)

    Google Scholar

    [9] KOU L L, LI Z H, DONG X P, et al. , 2021. The age sequence of the detrital zircons from the Guanyindian section in Longde, the northeastern margin of the Tibetan Plateau, and its geological significance[J]. Journal of Geomechanics, 27(6): 1051-1064. (in Chinese with English abstract)

    Google Scholar

    [10] LI S Z, CAO X Z, WANG G Z, et al. , 2019. Meso-Cenozoic tectonic evolution and plate reconstruction of the Pacific Plate[J]. Journal of Geomechanics, 25(5): 642-677. (in Chinese with English abstract)

    Google Scholar

    [11] LI W Y, 1998. Quaternary vegetation and environment of China[M]. Beijing: Science Press. (in Chinese)

    Google Scholar

    [12] LI X R, FANG X M, WU F L, et al. , 2011. Pollen evidence from Baode of the northern Loess Plateau of China and strong East Asian summer monsoons during the Early Pliocene[J]. Chinese Science Bulletin, 56(1): 64-69. doi: 10.1007/s11434-010-4235-8

    CrossRef Google Scholar

    [13] LI Y W, XU Q H, ZHANG S R, et al. , 2019. Significance of pollen assemblages for the vegetationcomposition of alpine shrub meadow in the Qinghai-Tibetan Plateau, China[J]. Chinese Science Bulletin, 64(20): 2141-2150. (in Chinese with English abstract) doi: 10.1360/N972019-00126

    CrossRef Google Scholar

    [14] LI Z H, JIANG B Y, DONG X P, et al. , 2020. Collapses of loess at the front of the Emei tableland in the Yuncheng basin and their major geological controlling factors[J]. Coal Geology & Exploration, 48(2): 171-178. (in Chinese with English abstract)

    Google Scholar

    [15] LIN X D, YUAN H Y, XU P, et al. , 2017. Zonational characteristics of earthquake focal mechanism solutions in North China[J]. Chinese Journal of Geophysics, 60(12): 4589-4622. (in Chinese with English abstract)

    Google Scholar

    [16] LIU Z S, 2000. Early cretaceous sporopollen assemblage from the Hanxia of Yumen in Gansu, NW China[J]. Acta Micropalaeontologica Sinica, 17(3): 73-84. (in Chinese with English abstract)

    Google Scholar

    [17] LUO C X, PAN A D, ZHENG Z, 2006. Progresses about the studies on the relationship between topsoil spore-pollen and vegetation in arid areas of northwest China[J]. Arid Zone Research, 23(2): 314-319. (in Chinese with English abstract)

    Google Scholar

    [18] MINCKLEY T, WHITLOCK C, 2000. Spatial variation of modern pollen in Oregon and southern Washington, USA[J]. Review of Palaeobotany and Palynology, 112(1-3): 97-123. doi: 10.1016/S0034-6667(00)00037-3

    CrossRef Google Scholar

    [19] MOLNAR P, 2005. Mio-Pliocene growth of the Tibetan Plateau and evolution of East Asian climate[J]. Palaeontologia Electronica, 8(1): 1-23.

    Google Scholar

    [20] National Stratigraphic Committee, 1963. Cenozoic erathem of China[M]. Beijing: Science Press. (in Chinese)

    Google Scholar

    [21] Palynological Section, Morphological Department, Institute of Botany, Chinese Academy of Sciences, 1960. Pollen morphology of Chinese plants[M]. Beijing: Science Press. (in Chinese)

    Google Scholar

    [22] POKROVSKAYA, GESHIDEKOVA, GRICHUK, et al. , 1956. Pollen analysis[M]. WANG F X, ZHANG J T, MA Y Q, et al, trans. Beijing: Science Press. (in Chinese)

    Google Scholar

    [23] QI Y, XU H B, ZHANG J X, et al. , 2011. Geochemistry, geochronology and geological significance of Gufengshan granodiorite in Linfen Grabben Basin[J]. Geological Review, 57(4): 565-573. (in Chinese with English abstract)

    Google Scholar

    [24] QI Y, LUO J H, WU J D, et al. , 2016. Geochemical and Sr-Nd-Pb isotopic composition of the Canfang and Gufengshan granodiorite plutons in central-southern North China[J]. Acta Petrologica Sinica, 32(7): 2015-2028. (in Chinese with English abstract)

    Google Scholar

    [25] QIN B C, FANG W X, ZHANG J G, et al. , 2021. Quaternary sedimentary sequence and sedimentary environment restoration in the Jinzhong Basin, Fenhe Rift Valley[J]. Journal of Geomechanics, 27 (6): 1035-1050. (in Chinese with English abstract)

    Google Scholar

    [26] QIU D W, GONG W B, YAN J Y, et al. , 2021. Geological environment changes during the late Pleistocene-Holocene on the E'mei tableland in the northern Yuncheng basin, Shanxi Province: implications for the distribution of human settlements[J]. Journal of Geomechanics, 27(2): 326-338. (in Chinese with English abstract)

    Google Scholar

    [27] SCHÄBITZ F, 1994. Holocene climatic variations in northern Patagonia, Argentina[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 109(2-4): 287-294. doi: 10.1016/0031-0182(94)90180-5

    CrossRef Google Scholar

    [28] Shanxi Provincial Geological Bureau 214 Geological Team, 1982. Instructions for 1: 100000 Geological Map of Yuncheng District, Shanxi Province[M]. Yuncheng: Water Resources Bureau of Yuncheng District Administration. (in Chinese)

    Google Scholar

    [29] Shanxi Provincial Geological Prospecting Bureau, 1989. Regional geology of Shanxi province[M]. Beijing: Geology Press. (in Chinese)

    Google Scholar

    [30] SHI W, DONG S W, HU J M, 2020. Neotectonics around the Ordos Block, North China: a review and new insights[J]. Earth-Science Reviews, 200: 102969. doi: 10.1016/j.earscirev.2019.102969

    CrossRef Google Scholar

    [31] SONG Z C, 1999. Fossil spores and pollen of China (Vol. 1)[M]. Beijing: Science Press. (in Chinese)

    Google Scholar

    [32] Sporopollen Group, Paleobotany Research Office, Beijing Institute of Botany, Chinese Academy of Sciences, 1976. Spore morphology of ferns in China[M]. Beijing: Science Press. (in Chinese)

    Google Scholar

    [33] SU P, HE H L, TAN X B, et al, 2021. Initiation and evolution of the Shanxi rift system in North China: evidence from low-temperature thermochronology in a plate reconstruction framework[J]. Tectonics, 40(3): e2020TC006298.

    Google Scholar

    [34] SUO Y H, LI S Z, CAO X Z, et al. , 2017. Mesozoic-Cenozoic inversion tectonics of East China and its implications for the subduction process of the oceanic plate[J]. Earth Science Frontiers, 24(4): 249-267. (in Chinese with English abstract)

    Google Scholar

    [35] TONG Y S, ZHENG S H, QIU Z D, 1995. Cenozoic mammals ages of China[J]. Vertebrata Palasiatica, 33(4): 290-314. (in Chinese with English abstract)

    Google Scholar

    [36] XU Q H, LI Y C, YANG X L, et al. , 2005. A study of some typical pollen types taphonomy and relationships with vegetation in the northeast of Qinghai-Tibet Plateau[J]. Advances in Earth Science, 20(1): 89-98. (in Chinese with English abstract)

    Google Scholar

    [37] XU Q H, LI Y C, YANG X L, et al. , 2007. Quantitative relationship between pollen and vegetation in northern China[J]. Science in China Series D: Earth Sciences, 50(4): 582-599. doi: 10.1007/s11430-007-2044-y

    CrossRef Google Scholar

    [38] XU Z L, 2015. Oligocene-Miocene pollen records in Xunhua Basin, northeastern Tibetan Plateau and its implications for evolution of the East Asian monsoon[D]. Wuhan: China University of Geosciences. (in Chinese with English abstract)

    Google Scholar

    [39] YAN J Y, 2021. Late Cenozoic tectonic-sedimenatary, uplifting and denudational process of the Yuncheng Basin and northern Gushan Mountain[D]. Beijing: Chinese Academy of Geological Sciences. (in Chinese with English abstract)

    Google Scholar

    [40] YAN S, 1991. The characteristics of Quaternary sporo-pollen assemblage and the vegetation succesion in Xinjiang[J]. Arid Land Geography, 14(2): 1-9. (in Chinese with English abstract)

    Google Scholar

    [41] ZDANSKY O, 1923. Fundorte der Hipparion-Fauna um Pao-Te-Hsien in NW-Shansi[J]. Bulletin of the Geological Survey, China, 5: 69-81.

    Google Scholar

    [42] ZHANG Y X, YUE L P, CHEN D L, et al. , 1997. Petrographic marks for stratigraphic division of the Neogene Red Clay in North China and their significance[J]. Journal of Stratigraphy, 21(1): 63-67. (in Chinese with English abstract)

    Google Scholar

    [43] ZHONG Q M, SHAO B, HOU G T, 2022. Numerical simulation and analysis of lithospheric stress field in Fenwei graben[J]. Progress in Geophysics, 37(1): 152-163. (in Chinese with English abstract)

    Google Scholar

    [44] 陈兴强, 2017. 汾渭地堑系新生代沉积-构造演化及其形成机制[D].博士学位论文.北京: 北京大学.

    Google Scholar

    [45] 邓涛, 王伟铭, 岳乐平, 等, 2004. 新近系保德阶建阶研究新进展[J]. 地层学杂志, 28(1): 41-47.

    Google Scholar

    [46] 邓涛, 王伟铭, 岳乐平, 2008. 中国陆相新近系山旺阶和保德阶综合研究报告[M]. 见: 第三届全国地层委员会编. 中国主要断代地层建阶研究报告(2001~2005). 北京: 地质出版社, 13-31.

    Google Scholar

    [47] 方小敏, 2017. 青藏高原隆升阶段性[J]. 科技导报, 35(6): 42-50.

    Google Scholar

    [48] 韩晓明, 刘芳, 张文韬, 等, 2015. 基于震源机制资料分析河套地震带的应力场变化特征[J]. 地震地质, 37(4): 1030-1042.

    Google Scholar

    [49] 寇琳琳, 李振宏, 董晓朋, 等, 2021. 青藏高原东北缘隆德观音店剖面碎屑锆石年龄序列及地质意义[J]. 地质力学学报, 27(6): 1051-1064.

    Google Scholar

    [50] 李三忠, 曹现志, 王光增, 等, 2019. 太平洋板块中-新生代构造演化及板块重建[J]. 地质力学学报, 25(5): 642-677.

    Google Scholar

    [51] 李文漪, 1998. 中国第四纪植被与环境[M]. 北京: 科学出版社.

    Google Scholar

    [52] 李怡雯, 徐海清, 张生瑞, 等, 2019. 青藏高原高寒灌丛草甸花粉组合的植被指示性[J]. 科学通报, 64: 2141-2150.

    Google Scholar

    [53] 李振宏, 姜博宇, 董晓朋, 等, 2020. 运城盆地峨眉台地前缘黄土塌陷现状及地质主控因素[J]. 煤田地质与勘探, 48(2): 171-178.

    Google Scholar

    [54] 林向东, 袁怀玉, 徐平, 等, 2017. 华北地区地震震源机制分区特征[J]. 地球物理学报, 60(12): 4589-4622.

    Google Scholar

    [55] 刘兆生, 2000. 甘肃玉门旱峡早白垩世孢粉组合[J]. 微体古生物学报, 17(3): 73-84.

    Google Scholar

    [56] 罗传秀, 潘安定, 郑卓, 2006. 西北干旱地区表土孢粉与植被关系研究进展[J]. 干旱区研究, 23(2): 314-319.

    Google Scholar

    [57] 坡克罗夫斯卡娅, 格刺德科娃, 格里丘克, 等, 1956. 花粉分析[M]. 王伏雄, 张金谈, 马毓泉, 等译. 北京: 科学出版社.

    Google Scholar

    [58] 齐玥, 徐鸿博, 张竞雄, 等, 2011. 临汾断陷盆地孤峰山花岗闪长岩的地球化学和年代学及其地质意义[J]. 地质论评, 57(4): 565-573.

    Google Scholar

    [59] 齐玥, 罗金海, 巫嘉德, 等, 2016. 华北中南部蚕坊和孤峰山花岗闪长岩体的地球化学特征和Sr-Nd-Pb同位素组成[J]. 岩石学报, 32(7): 2015-2028.

    Google Scholar

    [60] 秦帮策, 方维萱, 张建国, 等, 2021. 汾河裂谷晋中盆地内第四纪沉积序列与沉积环境恢复[J]. 地质力学学报, 27 (6): 1035-1050.

    Google Scholar

    [61] 仇度伟, 公王斌, 闫纪元, 等, 2021. 山西运城盆地北部峨嵋台地晚更新世: 全新世地质环境变化及其对人类聚落分布的影响[J]. 地质力学学报, 27(2): 326-338.

    Google Scholar

    [62] 全国地层委员会, 1963. 全国地层会议学术报告汇编: 中国的新生界[M]. 北京: 科学出版社.

    Google Scholar

    [63] 山西省地质局二一四地质队, 1982. 山西省运城地区地质图系说明书[M]. 运城: 运城地区行署水利局.

    Google Scholar

    [64] 山西省地质矿产局, 1989. 山西省区域地质志[M]. 北京: 地质出版社.

    Google Scholar

    [65] 宋之琛, 1999. 中国孢粉化石(第一卷): 晚白垩世和第三纪孢粉[M]. 北京: 科学出版社.

    Google Scholar

    [66] 索艳慧, 李三忠, 曹现志, 等, 2017. 中国东部中新生代反转构造及其记录的大洋板块俯冲过程[J]. 地学前缘, 24(4): 249-267.

    Google Scholar

    [67] 童永生, 郑绍华, 邱铸鼎, 1995. 中国新生代哺乳动物分期[J]. 古脊椎动物学报, 33(4): 290-314.

    Google Scholar

    [68] 许清海, 李月丛, 阳小兰, 等, 2005. 青藏高原东北部典型花粉类型埋藏特征及其与植被关系的研究[J]. 地球科学进展, 20(1): 89-98.

    Google Scholar

    [69] 徐增连, 2015. 青藏高原东北缘循化盆地渐新世-中新世孢粉记录与东亚季风演化[D]. 武汉: 中国地质大学.

    Google Scholar

    [70] 闫纪元, 2021. 运城盆地及北侧孤山晚新生代构造-沉积与隆升-剥蚀过程研究[D]. 北京: 中国地质科学院.

    Google Scholar

    [71] 闫顺, 1991. 新疆第四纪孢粉组合特征及植被演替[J]. 干旱区地理, 14(2): 1-9.

    Google Scholar

    [72] 张云翔, 岳乐平, 陈丹玲, 等, 1997. 中国北部新第三纪红层划分的岩石学标志及其意义[J]. 地层学杂志, 21(1): 63-67.

    Google Scholar

    [73] 中国科学院北京植物研究所古植物研究室孢粉组, 1976. 中国蕨类植物孢子形态[M]. 北京: 科学出版社.

    Google Scholar

    [74] 中国科学院植物研究所形态室孢粉组, 1960. 中国植物花粉形态[M]. 北京: 科学出版社.

    Google Scholar

    [75] 中国植被编辑委员会, 1980. 中国植被[M]. 北京: 科学出版社.

    Google Scholar

    [76] 仲启蒙, 邵博, 侯贵廷, 2022. 汾渭地堑岩石圈的应力场数值模拟与分析[J]. 地球物理学进展, 37(1): 152-163.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(967) PDF downloads(19) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint