2022 Vol. 28, No. 4
Article Contents

ZHAO Di, CHEN Peng, LI Rongxi, WU Xiaoli, ZHAO Bangsheng, LIU Qi, WANG Xiaoxue. 2022. Discovery of the surface rupture zone along the southern branch of the Longshoushan Fault Zone, NW China and its significance to the deep structures of the 1954 Shandan MS 7¼ earthquake. Journal of Geomechanics, 28(4): 501-512. doi: 10.12090/j.issn.1006-6616.2022045
Citation: ZHAO Di, CHEN Peng, LI Rongxi, WU Xiaoli, ZHAO Bangsheng, LIU Qi, WANG Xiaoxue. 2022. Discovery of the surface rupture zone along the southern branch of the Longshoushan Fault Zone, NW China and its significance to the deep structures of the 1954 Shandan MS 7¼ earthquake. Journal of Geomechanics, 28(4): 501-512. doi: 10.12090/j.issn.1006-6616.2022045

Discovery of the surface rupture zone along the southern branch of the Longshoushan Fault Zone, NW China and its significance to the deep structures of the 1954 Shandan MS 7¼ earthquake

    Fund Project: This research is financially supported by the Second Tibetan Plateau Scientific Expdition and Reaearch (STEP) Program (Grant 2019QZKK0704) and the Fundamental Research Fund of the Institute of Geomechanics, Chinese Academy of Geological Sciences (Grant DZLXJK202107)
More Information
  • A detailed field-based remote sensing interpretation in this study revealed abundant recent seismic surface ruptures on the southern margin of the Longshoushan Fault, including fault scarps, mole tracks and displacements of river channels. The total length of the surface rupture zone is over 20 km. The most recent vertical and horizontal displacements of the late Quaternary geomorphic markers fall into the range of 0.35~4 m and 0.3~1.9 m, respectively. The southern Longshoushan Fault is a high-angle thrust fault, and it only exhibits left-lateral strike-slip on the west end. Revealed by profile and trench along the surface rupture, the southern branch of the Longshoushan Fault Zone has gone through several earthquake events since the Holocene, and the latest one happened around 3.96 ka. By comparing with the strongest earthquake recorded in this region, it is suggested that the 1954 MS 7¼ Shandan earthquake may have caused the newly discovered surface ruptures, which developed along both the southern and northern branches of the Longshoushan fault zone, presenting a positive flower structure at the shallow surface. This coseismic displacement distribution mostly is found in strike-slip earthquakes in previous studies, but it is found in a thrust earthquake this time. The discovery of coseismic surface rupture on the southern branch of the Longshoushan Fault Zone will throw light on the focal mechanism and rupture pattern of the 1954 Shandan MS 7¼ earthquake.

  • 加载中
  • BU RCHFIEL B C, ZHANG P Z, WANG Y P, et al., 1991. Geology of the haiyuan fault zone, ningxia-hui autonomous region, China, and its relation to the evolution of the Northeastern margin of the Tibetan Plateau[J]. Tectonics, 10(6): 1091-1110. doi: 10.1029/90TC02685

    CrossRef Google Scholar

    CHEN P, SHI W, LIU Y, et al., 2022. Slip rate deficit partitioned by fault-fold system on the active haiyuan fault zone, northeastern Tibetan Plateau[J]. Journal of Structural Geology, 155: 104516, doi: 10.1016/j.jsg.2022.104516.

    CrossRef Google Scholar

    DENG Q D, YU G H, YE W H, 1992. Relationship between earthquake magnitude and parameters of surface ruptures associated with historical earthquake[M]//Institute of Geology, SSB. Research on active fault (2). Beijing: Earthquake Publishing House: 247-264. (in Chinese)

    Google Scholar

    DONG Z P, HE W G, DAI H G, 2000. A brief introduction of rupture zone of the Shandan earthquake, 1954[J]. Northwestern Seismological Journal, 22(1): 46. (in Chinese)

    Google Scholar

    DONG Z P, HE W G, DAI H G, 2002. Preliminary research on paleoearthquakes of the Baodaihe fault[J]. Northwestern Seismological Journal, 24(3): 225-229. (in Chinese with English abstract)

    Google Scholar

    DONG Z P, CHEN Y H, WANG P, et al., 2007. Investigation on the Shandan MS 7.3 earthquake damages in 1954[J]. Earthquake Research in China, 23(2): 157-165. (in Chinese with English abstract)

    Google Scholar

    FANG X M, ZHAO Z J, LI J J, et al., 2005. Magnetostratigraphy of the late Cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implications for the northern Tibetan Plateau uplift[J]. Science in China Series D Earth Sciences, 48(7): 1040-1051. doi: 10.1360/03yd0188

    CrossRef Google Scholar

    Geology and Mineral Resource Bureal of Gansu Province, 1989. Regional geology of Gansu province[M]. Beijing: Geological Publishing House. (in Chinese)

    Google Scholar

    GUO P, HAN Z J, GAO F, et al., 2020. A new tectonic model for the 1927 M 8.0 Gulang earthquake on the NE Tibetan Plateau[J]. Tectonics, 39(9): e2020TC006064.

    Google Scholar

    HAMLING I J, HREINSDÓTTIR S, CLARK K, et al., 2017. Complex multifault rupture during the 2016 MW 7.8 Kaikōura earthquake, New Zealand[J]. Science, 356(6334): eaam7194. doi: 10.1126/science.aam7194

    CrossRef Google Scholar

    HAN S, WU Z H, GAO Y, et al., 2022. Surface rupture investigation of the 2022 Menyuan MS 6.9 earthquake, Qinghai, China: implications for the fault behavior of the Lenglongling fault and regional intense earthquake risk[J]. Journal of Geomechanics, 28(2): 155-168. (in Chinese with English abstract)

    Google Scholar

    HETZEL R, TAO M X, NIEDERMANN S, et al., 2004. Implications of the fault scaling law for the growth of topography: mountain ranges in the broken foreland of North-East Tibet[J]. Terra Nova, 16(3): 157-162. doi: 10.1111/j.1365-3121.2004.00549.x

    CrossRef Google Scholar

    HSIEH Y S, KUO L T, 1957. The Shan-Tan earthquake of February 11, 1954[J]. Acta Geophysica Sinica, 6(2): 159-179. (in Chinese with English abstract)

    Google Scholar

    LI J Y, ZHENG W J, WANG W T, et al., 2020. The northward growth of the northeastern tibetan plateau in late cenozoic: implications from apatite (U-Th)/He ages of Longshou Shan[J]. Seismology and Geology, 42(2): 472-491. (in Chinese with English abstract)

    Google Scholar

    LIU D L, LI H B, Ge C L, et al., 2021. Northward growth of the west kunlun mountains: insight from the age-elevation relationship of new apatite fission track data[J]. Frontiers in Earth Science, 9: 784812. doi: 10.3389/feart.2021.784812

    CrossRef Google Scholar

    LIU J, ZHANG Z H, WEN L, et al., 2008. The MS 8.0 Wenchuan earthquake co-seismic rupture and its tectonic implications: an out-of-sequence thrusting event with slip partitioned on multiple faults[J]. Acta Geologica Sinica, 82(12): 1707-1722. (in Chinese with English abstract)

    Google Scholar

    LIU J R, REN Z K, ZHANG H P, et al., 2022. Slip rates along the laohushan fault and spatial variation in slip rate along the haiyuan fault zone[J]. Tectonics, 41(2): e2021TC006992.

    Google Scholar

    MEYER B, TAPPONNIER P, BOURJOT L, et al., 1998. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet Plateau[J]. Geophysical Journal International, 135(1): 1-47. doi: 10.1046/j.1365-246X.1998.00567.x

    CrossRef Google Scholar

    PANG J Z, YU J X, ZHENG D W, et al., 2019. Neogene expansion of the Qilian Shan, North Tibet: implications for the dynamic evolution of the Tibetan Plateau[J]. Tectonics, 38(3): 1018-1032, doi: 10.1029/2018TC005258.

    CrossRef Google Scholar

    SHI Y J, ZHANG Z W, CUN S C, 1995. Discovery of nappe structure in Longshoushan and its geological significance[J]. Chinese Science Bulletin, 40(9): 812-813. (in Chinese) doi: 10.1360/csb1995-40-9-812

    CrossRef Google Scholar

    TAPPONNIER P, XU Z Q, ROGER F, et al., 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978

    CrossRef Google Scholar

    TIAN T T, WU Z H, GAI H L, et al., 2022. Dating of multi-period earthquake-triggered rockfalls: a method for revealing paleo-seismic events that occurred along the Yushu fault in the eastern Tibetan Plateau[J]. Landslides, 19(2): 351-371. doi: 10.1007/s10346-021-01730-5

    CrossRef Google Scholar

    WANG J B. 1987. Satellite Image Interpretation of Seismogenic Fault Characteristics and Seismogeological Background of 1954 Shandan Earthquake [J]. Northwestern Seismological Journal, (3): 119-121. (in Chinese)

    Google Scholar

    WANG W T, ZHENG D W, LI C P, et al., 2020. Cenozoic exhumation of the Qilian Shan in the northeastern Tibetan Plateau: evidence from low-temperature thermochronology[J]. Tectonics, 39(4): e2019TC005705. doi: 10.1029/2019TC005705.

    CrossRef Google Scholar

    WELLS D L, COPPERSMITH K J, 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement[J]. Bulletin of the Seismological Society of America, 84(4): 974-1002.

    Google Scholar

    XU X W, YEATS R S, YU G H, 2010. Five short historical earthquake surface ruptures near the silk road, Gansu province, China[J]. Bulletin of the Seismological Society of America, 100(2): 541-561. doi: 10.1785/0120080282.

    CrossRef Google Scholar

    YIN A, HARRISON T M, 2000. Geologic evolution of the himalayan-Tibetan Orogen[J]. Annual Review of Earth and Planetary Sciences, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211

    CrossRef Google Scholar

    YU J X, ZHENG W J, ZHANG P Z, et al., 2017. Late Quaternary strike-slip along the Taohuala Shan-Ayouqi fault zone and its tectonic implications in the Hexi Corridor and the southern Gobi Alashan, China[J]. Tectonophysics, 721: 28-44. doi: 10.1016/j.tecto.2017.09.014

    CrossRef Google Scholar

    YU J X, PANG J Z, WANG Y Z, et al., 2019. Mid-Miocene uplift of the northern Qilian Shan as a result of the northward growth of the northern Tibetan Plateau[J]. Geosphere, 15(2): 423-432. doi: 10.1130/GES01520.1.

    CrossRef Google Scholar

    YUAN D Y, GE W P, CHEN Z W, et al., 2013. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: a review of recent studies[J]. Tectonics, 32(5): 1358-1370. doi: 10.1002/tect.20081

    CrossRef Google Scholar

    ZHANG B H, ZHANG J, WANG Y N, et al., 2017. Late mesozoic-cenozoic exhumation of the northern Hexi Corridor: constrained by apatite fission track ages of the Longshoushan[J]. Acta Geologica Sinica-English Edition, 91(5): 1624-1643. doi: 10.1111/1755-6724.13402

    CrossRef Google Scholar

    ZHANG P Z, ZHENG D W, YIN G M, et al., 2006. Discussion on late cenozoic growth and rise of northeastern margin of the Tibetan Plateau[J]. Quaternary Sciences, 26(1): 5-13. (in Chinese with English abstract)

    Google Scholar

    ZHAO Z X, SHI W, YANG Y, et al., 2022. Late Cenozoic magnetostratigraphy and paleoenvironmental change in the northeastern Tibetan Plateau: evidence from a drill core in the Wuwei Basin, NW China[J]. Journal of Asian Earth Sciences, 224: 105023. doi: 10.1016/j.jseaes.2021.105023

    CrossRef Google Scholar

    ZHENG D W, WANG W T, WAN J L, et al., 2017. Progressive northward growth of the northern Qilian Shan-Hexi Corridor (northeastern Tibet) during the Cenozoic[J]. Lithosphere, 9(3): 408-416, doi: 10.1130/L587.1.

    CrossRef Google Scholar

    ZHENG W J, ZHANG P Z, YUAN D Y, et al., 2009. Discovery of surface rupture zone on the south of Helishan in Gaotai, Gansu Province[J]. Seismology and Geology, 31(2): 247-255. (in Chinese with English abstract)

    Google Scholar

    ZHENG W J, ZHANG Z Q, ZHANG P Z, et al., 2013. Seismogenic structure and mechanism of the 1954 M71/4 Shandan Earthquake, Gansu Province, Western China[J]. Chinese Journal of Geophysics, 56(3): 916-928. (in Chinese with English abstract)

    Google Scholar

    ZHENG W J, ZHANG H P, ZHANG P Z, et al., 2013a. Late Quaternary slip rates of the thrust faults in western Hexi Corridor (Northern Qilian Shan, China) and their implications for northeastward growth of the Tibetan Plateau[J]. Geosphere, 9(2): 342-354. doi: 10.1130/GES00775.1

    CrossRef Google Scholar

    ZHENG W J, ZHANG P Z, GE W P, et al., 2013b. Late Quaternary slip rate of the South Heli Shan Fault (Northern Hexi Corridor, NW China) and its implications for northeastward growth of the Tibetan Plateau[J]. Tectonics, 32(2): 271-293. doi: 10.1002/tect.20022

    CrossRef Google Scholar

    ZHENG W J, ZHANG P Z, YUAN D Y, et al., 2019. Basic characteristics of active tectonics and associated geodynamic processes in continental China[J]. Journal of Geomechanics, 25(5): 699-721. (in Chinese with English abstract)

    Google Scholar

    邓起东, 于贵华, 叶文华, 1992. 地震地表破裂参数与震级关系的研究[M]//国家地震局地质研究所. 活动断裂研究(2). 北京: 地震出版社: 247-264.

    Google Scholar

    董治平, 何文贵, 戴华光, 2000. 1954年山丹地震破裂带初步考证[J]. 西北地震学报, 22(1): 46.

    Google Scholar

    董治平, 何文贵, 戴华光, 2002. 包代河断裂古地震初步研究[J]. 西北地震学报, 24(3): 225-229.

    Google Scholar

    方小敏, 赵志军, 李吉均, 等, 2004. 祁连山北缘老君庙背斜晚新生代磁性地层与高原北部隆升[J]. 中国科学D辑地球科学, 34(2): 97-106.

    Google Scholar

    甘肃省地质矿产局, 1989. 甘肃省区域地质志[M]. 北京: 地质出版社.

    Google Scholar

    韩帅, 吴中海, 高扬, 等, 2022. 2022年1月8日青海门源MS6.9地震地表破裂考察的初步结果及对冷龙岭断裂活动行为和区域强震危险性的启示[J]. 地质力学学报, 28(2): 155-168.

    Google Scholar

    李佳昱, 郑文俊, 王伟涛, 等, 2020. 青藏高原东北部龙首山晚新生代剥露历史: 来自磷灰石(U-Th)/He的证据[J]. 地震地质, 42(2): 472-491. doi: 10.3969/j.issn.0253-4967.2020.02.014

    CrossRef Google Scholar

    刘静, 张智慧, 文力, 等, 2008. 汶川8级大地震同震破裂的特殊性及构造意义: 多条平行断裂同时活动的反序型逆冲地震事件[J]. 地质学报, 82(12): 1707-1722. doi: 10.3321/j.issn:0001-5717.2008.12.007

    CrossRef Google Scholar

    石应骏, 张朝文, 寸树苍, 1995. 龙首山推覆构造的发现及其地质意义[J]. 科学通报, 40(9): 812-813. doi: 10.3321/j.issn:0023-074X.1995.09.014

    CrossRef Google Scholar

    王进宝, 1987. 卫星影象解译1954年山丹地震发震断裂特征及地震地质背景[J]. 西北地震学报, 9(3): 119-121.

    Google Scholar

    謝毓寿, 郭履灿, 1957. 1954年2月11日甘肃省山丹县的地震[J]. 地球物理学报, 6(2): 159-179.

    Google Scholar

    张培震, 郑德文, 尹功明, 等, 2006. 有关青藏高原东北缘晚新生代扩展与隆升的讨论[J]. 第四纪研究, 26(1): 5-13. doi: 10.3321/j.issn:1001-7410.2006.01.002

    CrossRef Google Scholar

    郑文俊, 张培震, 袁道阳, 等, 2009. 甘肃高台合黎山南缘发现地震地表破裂带[J]. 地震地质, 31(2): 247-255. doi: 10.3969/j.issn.0253-4967.2009.02.005

    CrossRef Google Scholar

    郑文俊, 张竹琪, 张培震, 等, 2013. 1954年山丹71/4级地震的孕震构造和发震机制探讨[J]. 地球物理学报, 56(3): 916-928.

    Google Scholar

    郑文俊, 张培震, 袁道阳, 等, 2019. 中国大陆活动构造基本特征及其对区域动力过程的控制[J]. 地质力学学报, 25(5): 699-721.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(1)

Article Metrics

Article views(1917) PDF downloads(60) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint