2023 Vol. 29, No. 2
Article Contents

ZHOU Hanyang, DU Jianjun, ZHANG Shuting. 2023. The advantage of the nonlinear mixed model and its application in typical seismically active areas in China. Journal of Geomechanics, 29(2): 264-275. doi: 10.12090/j.issn.1006-6616.2022038
Citation: ZHOU Hanyang, DU Jianjun, ZHANG Shuting. 2023. The advantage of the nonlinear mixed model and its application in typical seismically active areas in China. Journal of Geomechanics, 29(2): 264-275. doi: 10.12090/j.issn.1006-6616.2022038

The advantage of the nonlinear mixed model and its application in typical seismically active areas in China

    Fund Project: This research is finacially supported by the Geological Survey Project of the China Geological Survey (Grant DD20221644)
More Information
  • As an essential parameter in earthquake prediction and risk assessment research, the b-value has received extensive attention and discussion. In this study, we chose a nonlinear mixed model to fit the earthquake magnitude-frequency distribution to the China Earthquake Catalog database. The b-values calculated by this method were used to analyze and evaluate the seismic activity. This paper takes 27 seismic belts in China as the research area, collects earthquake data of magnitude 4.7 and above from 1920 to 2019 as a complete earthquake catalog, performs mixed model fitting and G-R model fitting for these 27 seismic belts, and compares the fitting effects. Taking Tibet as the test area, the earthquake catalog data from 1920 to 2019 were selected, and the nonlinear mixed model was applied to fitting the earthquake magnitude-frequency model in Tibet at 10-year intervals. Firstly, the earthquake data screened in the study area was classified and counted by magnitude and time; Secondly, the relevant variables in the nonlinear mixed model were calculated using the moment magnitude and seismic moment conversion formula. Finally, a nonlinear hybrid model was used to perform nonlinear regression analysis on the seismic data. The results show that: When low values of b occur, earthquakes occur around the corresponding periods. When b-values are low, earthquakes of large magnitude and low frequency occur. When b-values are relatively high, earthquakes of small magnitude and high frequency occur. Applying the nonlinear mixed model to the complete seismic data in China and neighboring regions enables a more comprehensive analysis of the data and overcomes the limitations of the traditional modeling method in analyzing earthquakes of high magnitude. The b-value will be calculated by rational analysis, which enhances the analysis and evaluation of seismic catalog data.

  • 加载中
  • BERRILL J B, DAVIS R O, 1980. Maximum entropy and the magnitude distribution[J]. Bulletin of the Seismological Society of America, 70(5): 1823-1831.

    Google Scholar

    CHEN S J, WANG Z C, TAO J Q, 1998. Nonlinear magnitude frequency relation and two types of seismicity systems[J]. Acta Seismologica Sinica, 11(2): 207-218. doi: 10.1007/s11589-998-0058-y

    CrossRef Google Scholar

    CHEN S J, 2004. Clustering characteristics of spatial-temporal distribution of earthquakes in different tectonic regions[D]. Beijing: Institute of Geology, China Earthquake Administration. (in Chinese with English abstract)

    Google Scholar

    CHENG Q M, AGTERBERG F P, BALLANTYNE S B, 1994. The separation of geochemical anomalies from background by fractal methods[J]. Journal of Geochemical Exploration, 51(2): 109-130. doi: 10.1016/0375-6742(94)90013-2

    CrossRef Google Scholar

    CHENG Q M, 1999. Multifractality and spatial statistics[J]. Computers & Geosciences, 25(9): 949-961. doi: 10.3321/j.issn:0254-4164.1999.09.009

    CrossRef Google Scholar

    CHENG Q M, 2008. A combined power-law and exponential model for streamflow recessions[J]. Journal of Hydrology, 352(1-2): 157-167. doi: 10.1016/j.jhydrol.2008.01.017

    CrossRef Google Scholar

    CHENG Q M, 2012. Singularity theory and methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas[J]. Journal of Geochemical Exploration, 122: 55-70. doi: 10.1016/j.gexplo.2012.07.007

    CrossRef Google Scholar

    CHENG Q M, 2014. Vertical distribution of elements in regolith over mineral deposits and implications for mapping geochemical weak anomalies in covered areas[J]. Geochemistry: Exploration, Environment, Analysis, 14(3): 277-289. doi: 10.1144/geochem2012-174

    CrossRef Google Scholar

    COSENTINO P, FICARRA V, LUZIO D, 1977. Truncated exponential frequency-magnitude relationship in earthquake statistics[J]. Bulletin of the Seismological Society of America, 67(6): 1615-1623. doi: 10.1785/BSSA0670061615

    CrossRef Google Scholar

    EVERNDEN J F, 1970. Study of regional seismicity and associated problems[J]. Bulletin of the Seismological Society of America, 60(2): 393-446. doi: 10.1785/BSSA0600020393

    CrossRef Google Scholar

    FLINN E A, ENGDAHL E R, 1965. A proposed basis for geographical and seismic regionalization[J]. Reviews of Geophysics, 3(1): 123-149. doi: 10.1029/RG003i001p00123

    CrossRef Google Scholar

    FLINN E A, ENGDAHL E R, HILL A R, 1974. Seismic and geographical regionalization[J]. Bulletin of the Seismological Society of America, 64(3-2): 771-992. doi: 10.1785/BSSA0643-20771

    CrossRef Google Scholar

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration, 2016 Seismic Parameter Zoning Map of China: GB 18306-2015 [S] Beijing: China Standards Publishing House. (in Chinese)

    Google Scholar

    GUTENBERG B, RICHTER C F, 1944. Frequency of earthquakes in California[J]. Bulletin of the Seismological Society of America, 34(4): 185-188. doi: 10.1785/BSSA0340040185

    CrossRef Google Scholar

    GUTENBERG B, RICHTER C F, 1954. Seismicity of the Earth and Related Phenomena[M]. 2nd ed. Princeton: Princeton University Press.

    Google Scholar

    GUTENBERG B, RICHTER C F, 1956a. Earthquake magnitude, intensity, energy, and acceleration: (second paper)[J]. Bulletin of the Seismological Society of America, 46(2): 105-145. doi: 10.1785/BSSA0460020105

    CrossRef Google Scholar

    GUTENBERG B, RICHTER C F, 1956b. Magnitude and energy of earthquakes[J]. Annals of Geophysics, 9(1): 1-15.

    Google Scholar

    JIANG F Y, JI L Y, ZHAO Q, 2021. Numerical simulation of the present seismic risk of the Haiyuan-Liupanshan fault zone[J]. Journal of Geomechanics, 2021, 27(2): 230-240. (in Chinese with English abstract)

    Google Scholar

    KAGAN Y Y, 1997. Seismic moment-frequency relation for shallow earthquakes: regional comparison[J]. Journal of Geophysical Research: Solid Earth, 102(B2): 2835-2852. doi: 10.1029/96JB03386

    CrossRef Google Scholar

    LIU Z X, 2020. Study on the pre-earthquake anomaly characteristics of b-value in the north-south seismic belt[D]. Lanzhou: China Earthquake Administration Lanzhou Institute of Seismology. (in Chinese with English abstract)

    Google Scholar

    LOMNITZ-ADLER J, LOMNITZ C, 1979. A modified form of the Gutenberg-Richter magnitude-frequency relation[J]. Bulletin of the Seismological Society of America, 69(4): 1209-1214.

    Google Scholar

    MA J, 2015. Seismic catalogue of east China (2300 BC-2500 AD)[Z]. A Big Earth Data Platform for Three Poles. (in Chinese)

    Google Scholar

    MAIN I G, BURTON P W, 1984. Information theory and the earthquake frequency-magnitude distribution[J]. Bulletin of the Seismological Society of America, 74(4): 1409-1426.

    Google Scholar

    MAIN I G, BURTON P W, 1986. Long-term earthquake recurrence constrained by tectonic seismic moment release rates[J]. Bulletin of the Seismological Society of America, 76(1): 297-304. doi: 10.1785/BSSA0760010297

    CrossRef Google Scholar

    MEI S R, 1960. Seismicity in China[J]. Acta Geophysica Sinica, 9(1): 1-19. (in Chinese)

    Google Scholar

    MENG Q, GAO K, CHEN Q Z, et al., 2021. Seismogenic, coseismic and postseismic deformation and stress evolution of the 2008 Wenchuan earthquake: numerical simulation analysis[J]. Journal of Geomechanics, 27(4): 614-627. (in Chinese with English abstract)

    Google Scholar

    MENG Z T, LIU J W, XIE Z J, et al., 2021. Analysis of the correlation between the temporal-spatial distribution of b-value and seismic hazard: a review[J]. Progress in Geophysics, 36(1): 30-38. (in Chinese with English abstract)

    Google Scholar

    QIN C Y, 2006. Nonlinear analysis of the frequency-magnitude relationship in the western Circum-Pacific region[J]. ZHANG R F, Li J S, trans. Translated World Seismology(4): 27-37. (in Chinese)

    Google Scholar

    SUN H Y, 2016. A combined non-linear model for earthquake magnitude-frequency distribution characterization[D]. Beijing: China University of Geosciences (Beijing). (in Chinese with English abstract)

    Google Scholar

    WANG W, DAI W L, HUANG B S, 1994. Statistical distribution of earthquake magnitude and the anomalous change of earthquake magnitude factor Mf value before mid-strong earthquakes occured in North China[J]. Earthquake Research in China, 10(S): 95-110. (in Chinese with English abstract)

    Google Scholar

    ZHANG P Z, DENG Q D, ZHANG Z Q, et al., 2013. Active faults, earthquake hazards and associated geodynamic processes in continental China[J]. Science China Earth Sciences, 43(10): 1607-1620. (in Chinese)

    Google Scholar

    ZHOU B G, CHEN G X, GAO Z W, et al., 2013. The technical highlights in identifying the potential seismic sources for the update of national seismic zoning map of China[J]. Technology for Earthquake Disaster Prevention, 8(2): 113-124. (in Chinese with English abstract)

    Google Scholar

    陈时军, 2004. 不同构造环境的地震活动丛集特征研究[D]. 北京: 中国地震局地质研究所.

    Google Scholar

    蒋锋云, 季灵运, 赵强, 2021. 海原-六盘山断裂带现今地震危险性的数值模拟分析[J]. 地质力学学报, 2021, 27(2): 230-240.

    Google Scholar

    刘子璇, 2020. 南北地震带b值震前异常特征研究[D]. 兰州: 中国地震局兰州地震研究所.

    Google Scholar

    马瑾, 2015. 中国地震目录(公元前2300年-2005年)[Z]. 时空三极环境大数据平台.

    Google Scholar

    梅世蓉, 1960. 中国的地震活动性[J]. 地球物理学报, 9(1): 1-19.

    Google Scholar

    孟秋, 高宽, 陈启志, 等, 2021. 2008年汶川大地震孕震、同震及震后变形和应力演化全过程的数值模拟[J]. 地质力学学报, 27(4): 614-627.

    Google Scholar

    孟昭彤, 刘静伟, 谢卓娟, 等, 2021. b值的时空分布特征与地震危险性的关联分析[J]. 地球物理学进展, 36(1): 30-38.

    Google Scholar

    QIN C Y, 2006. 环西太平洋地区的频度—震级关系非线性分析[J]. 张瑞芳, 李俊拴, 译. 世界地震译丛(4): 27-37.

    Google Scholar

    孙红云, 2016. 非线性混合模型在地震震级—频率分布研究中的应用[D]. 北京: 中国地质大学(北京).

    Google Scholar

    王炜, 戴维乐, 黄冰树, 1994. 地震震级的统计分布及其地震强度因子Mf值在华北中强以上地震前的异常变化[J]. 中国地震, 10(S): 95-110.

    Google Scholar

    张培震, 邓起东, 张竹琪, 等, 2013. 中国大陆的活动断裂、地震灾害及其动力过程[J]. 中国科学: 地球科学, 43(10): 1607-1620.

    Google Scholar

    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2016. 中国地震动参数区划图(GB 18306-2015)[S]. 北京: 中国标准出版社.

    Google Scholar

    周本刚, 陈国星, 高战武, 等, 2013. 新地震区划图潜在震源区划分的主要技术特色[J]. 震灾防御技术, 8(2): 113-124.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(4)

Article Metrics

Article views(1336) PDF downloads(59) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint