2021 Vol. 27, No. 5
Article Contents

PEI Junling, ZHAO Yue, ZHOU Zaizheng, YANG Zhenyu, LIU Xiaochun, ZHENG Guanggao, TONG Yabo, LI Jianfeng, HOU Lifu. 2021. Impact of Cenozoic Antarctic continent-ocean configuration patterns on global climate change. Journal of Geomechanics, 27(5): 867-879. doi: 10.12090/j.issn.1006-6616.2021.27.05.070
Citation: PEI Junling, ZHAO Yue, ZHOU Zaizheng, YANG Zhenyu, LIU Xiaochun, ZHENG Guanggao, TONG Yabo, LI Jianfeng, HOU Lifu. 2021. Impact of Cenozoic Antarctic continent-ocean configuration patterns on global climate change. Journal of Geomechanics, 27(5): 867-879. doi: 10.12090/j.issn.1006-6616.2021.27.05.070

Impact of Cenozoic Antarctic continent-ocean configuration patterns on global climate change

    Fund Project: This research is financially supported by the National Key Research and Development Program of China (Grant No.2018YFC1406900) and the National Natural Science Foundations of China (Grant No.41930218, 41941004, 41802066)
  • Antarctica recorded a Cenozoic geologic history of continental growth, breakup and dispersal, global cooling and the development of continental-scale Antarctic ice sheet. Despite the importance of Antarctica, there has not been an integrated view of the Cenozoic tectonic evolution of the region as a whole. In this Review, we identify the Tasmania gateway and Drake Passage, and present their overlapping and interconnected tectonic, magmatic and sedimentary history of Antarctica, South America and Australia. Antarctic Circumpolar Current (ACC), which occurred in the late Eocene to early Oligocene, was most impacted by the opening history of Drake Passage and the Tasmania gateway. Our comprehensive analysis and contrastive study show that the beginning of ACC corresponds to the transition from "warmhouse" to "coolhouse" phase at 34 Ma, indicating the development of ACC was controlled by the tectonic gateways, which in turn affected global climate. We conclude by briefly summarizing the Cenozoic geologic history of the Antarctic system as a whole, and how it provides insight into continent-ocean configuration patterns and what key topics must be addressed by future research are disscussed as well.

  • 加载中
  • AITKEN A R A, YOUNG D A, FERRACCIOLI F, et al., 2014. The subglacial geology of Wilkes Land, East Antarctica[J]. Geophysical Research Letters, 41(7): 2390-2400. doi: 10.1002/2014GL059405

    CrossRef Google Scholar

    BAKHMUTOV, V., SHPYRA, V., 2011. Palaeomagnetism of late Cretaceous-Paleocene igneousrocks from the western part of the Antarctic Peninsula (argentine IslandsArchipelago)[J]. Geological Quarterly, 55(4): 285-300.

    Google Scholar

    BALL P, EAGLES G, EBINGER C, et al., 2013. The spatial and temporal evolution of strain during the separation of Australia and Antarctica[J]. Geochemistry, Geophysics, Geosystems, 14(8): 2771-2799. doi: 10.1002/ggge.20160

    CrossRef Google Scholar

    BARKER P F, BURRELL J, 1982. The influence upon Southern Ocean circulation, sedimentation, and climate of the opening of Drake Passage[M]//CRADDOCK C. Antarctic geoscience. Madison: University of Wisconsin.

    Google Scholar

    BARKER P F, THOMAS E, 2004. Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current[J]. Earth-Science Reviews, 66(1-2): 143-162. doi: 10.1016/j.earscirev.2003.10.003

    CrossRef Google Scholar

    BIRKENMAJER K, LUCZKOWSKA E, 1987. Foraminiferal evidence for a Lower Miocene age of glaciomarine and related strata, Moby Dick Group, King George Island (South Shetland Islands, Antarctica)[J]. Bulletin of the Polish Academy of Sciences, Earth Sciences, 35(1): 1-10.

    Google Scholar

    BRONSELAER B, WINTON, M, GRIFFIES, S M, et al., 2018. Change in future climate due to Antarctic meltwater[J]. Nature, 564(7734): 53-58. doi: 10.1038/s41586-018-0712-z

    CrossRef Google Scholar

    CAMPS P, HENRY B, NICOLAYSEN K, et al., 2007. Statistical properties of paleomagnetic directions in Kerguelen lava flows: Implications for the late Oligocene paleomagnetic field[J]. Journal of Geophysical Research, 112(B6): 1-14.

    Google Scholar

    CHEN T Y, SHEN Y B, ZHAO Y, et al., 2008. Geological development of Antarctica and evolution of Gondwanaland[M]. Beijing: The Commercial Press. (in Chinese)

    Google Scholar

    COOK A J, HOLLAND P R, MEREDITH M P, et al., 2016. Ocean forcing of glacier retreat in the western Antarctic Peninsula[J]. Science, 353(6296): 283-286. doi: 10.1126/science.aae0017

    CrossRef Google Scholar

    CRAMWINCKEL M J, HUBER M, KOCKEN I J, et al., 2018. Synchronous tropical and polar temperature evolution in the Eocene[J]. Nature, 559(7714): 382-386. doi: 10.1038/s41586-018-0272-2

    CrossRef Google Scholar

    DALZIEL I W D, 2014. Drake Passage and the Scotia arc: A tortuous space-time gateway for the Antarctic Circumpolar Current[J]. Geology, 42(4): 367-368. doi: 10.1130/focus042014.1

    CrossRef Google Scholar

    DOUBROVINE P V, STEINBERGER B, TORSVIK T H, 2012. Absolute plate motions in a reference frame defined by moving hot spots in the Pacific, Atlantic, and Indian oceans[J]. Journal of Geophysical Research: Solid Earth, 117(B9): 1-30.

    Google Scholar

    DUAN W W, CAO L, 1998. Late Paleogene palynoflora from Point Hennequin of Admiralty Bay, King George Island, Antarctica and its significance instratigraphy[J]. Chinese Journal of Polar Research, 10(2): 29-35. (in Chinese with English abstract)

    Google Scholar

    EAGLES G, GOHL K, LARTER R D, 2004. High-resolution animated tectonic reconstruction of the South Pacific and West Antarctic Margin[J]. Geochemistry, Geophysics, Geosystems, 5(7): Q07002.

    Google Scholar

    EAGLES G, LIVERMORE R, MORRIS P, 2006. Small basins in the Scotia Sea: The Eocene Drake Passage gateway[J]. Earth andPlanetary Science Letters, 242(3-4): 343-353. doi: 10.1016/j.epsl.2005.11.060

    CrossRef Google Scholar

    EAGLES G, JOKAT W, 2014. Tectonic reconstructions for paleobathymetry in Drake Passage[J]. Tectonophysics, 611: 28-50. doi: 10.1016/j.tecto.2013.11.021

    CrossRef Google Scholar

    Earth Science Development Strategy Research Group, 2021-2030, 2021. Earth science development strategy 2021-2030: habitable Earth's past, present and future[M]. Beiing: Science Press. (in Chinese)

    Google Scholar

    ENGLAND M R, POLVANI, L M, SUN L T, et al., 2020. Tropical climate responses to projected Arctic and Antarctic sea-ice loss[J]. Nature Geoscience, 13(4): 275-281. doi: 10.1038/s41561-020-0546-9

    CrossRef Google Scholar

    FRETZDORFF S, WORTHINGTON T J, HAASE K M, et al., 2004. Magmatism in the Bransfield Basin: Rifting of the South Shetland Arc?[J]. Journal of Geophysical Research: Solid Earth, 109(B12): B12208, . doi:10.1029/2004JB003046.

    CrossRef Google Scholar

    GALEOTTI S, DECONTO R, NAISH T, et al., 2016. Antarctic Ice Sheet variability across the Eocene-Oligocene boundary climate transition[J]. Science, 352(6281): 76-80. doi: 10.1126/science.aab0669

    CrossRef Google Scholar

    GAO L, ZHAO Y, YANG Z Y, et al., 2015. Recent progress of late Cretaceous: Miocene volcanic-sedimentary strata on King George Island, West Antarctic[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 34 (6): 1109-1122. (in Chinese with English abstract)

    Google Scholar

    GAO L, ZHAO Y, YANG Z Y, et al., 2018. New paleomagneticand 40Ar/39Ar geochronological results for the South Shetland Islands, WestAntarctica, and their tectonic implications. Journal of Geophysical Research: Solid Earth, 123(1): 4-30. doi: 10.1002/2017JB014677

    CrossRef Google Scholar

    GEE J S, KENT D V, 2007. Source of Oceanic Magnetic Anomalies and the Geomagnetic Polarity Timescale[J]. Treatise on Geophysics, 5: 455-507. doi: 10.1016/B978-044452748-6/00097-3

    CrossRef Google Scholar

    GILLARD M, AUTIN J, MANATSCHAL G, et al., 2015. Tectonomagmatic evolution of the final stages of rifting along the deep conjugate Australian-Antarctic magma-poor rifted margins: Constraints from seismic observations[J]. Tectonics, 34(4): 753-783. doi: 10.1002/2015TC003850

    CrossRef Google Scholar

    GRUNOW, A M., 1993. New paleomagnetic data from the Antarctic Peninsula and theirtectonic implications[J]. Journal of Geophysical Research: Solid Earth, 98(B8): 13815-13833. doi: 10.1029/93JB01089

    CrossRef Google Scholar

    GUO Z F, WILSON M, DINGWELL D B, et al., 2021. India-Asia collision as a driver of atmospheric CO2 in the Cenozoic[J]. Nature Communications, 12: 3891. doi: 10.1038/s41467-021-23772-y

    CrossRef Google Scholar

    HAMBREY M J, MCKELVEY B, 2000. Neogene fjordal sedimentation on the western margin of the Lambert Graben, East Antarctica[J]. Sedimentology, 47(3): 577-607. doi: 10.1046/j.1365-3091.2000.00308.x

    CrossRef Google Scholar

    HATHWAY B, LOMAS S A, 1998. The Jurassic-Lower Cretaceous Byers Group, South Shetland Islands, Antarctica: revised stratigraphy and regional correlations[J]. Cretaceous Research: 19(1): 43-67. doi: 10.1006/cres.1997.0095

    CrossRef Google Scholar

    HILL D J, HAYWOOD A M, VALDES P J, et al., 2013. Paleogeographic controls on the onset of the Antarctic circumpolar current[J]. Geophysical Research Letters, 40(19): 5199-5204.

    Google Scholar

    HOGG C J, LEA M A, SOLER M G, et al., 2020. Protect the Antarctic Peninsula-before it's too late[J]. Nature, 586(7830): 496-499. doi: 10.1038/d41586-020-02939-5

    CrossRef Google Scholar

    HOUBEN A J, BIJL P K, SLUIJS A, et al., 2019. Late Eocene Southern Ocean cooling and invigoration of circulation preconditioned Antarctica for full-scale glaciation[J]. Geochemistry, Geophysics, Geosystems, 20(5): 2214-2234.

    Google Scholar

    HU S L, ZHENG X S, DAI C M, et al., 1995. 40Ar/39Ar isochron dating on a microscope scale of A635 basalt from the northern coast of King George Island, Antarctica by using a continuous laser system and a mass-spectrometer[J]. Chinese Science Bulletin, 40(16): 1495-1496. (in Chinese) doi: 10.1360/csb1995-40-16-1495

    CrossRef Google Scholar

    JOVANE L, FLORINDO F, ACTON G, et al., 2019. Miocene Glacial Dynamics Recorded by Variations in Magnetic Properties in the ANDRILL-2A Drill Core[J]. Journal of Geophysical Research: Solid Earth, 124(3): 2297-2312. doi: 10.1029/2018JB016865

    CrossRef Google Scholar

    KATZ M E, CRAMER B S, TOGGWEILER J R, et al., 2011. Impact of Antarctic Circumpolar Current Development on Late Paleogene Ocean Structure[J]. Science, 332(6033): 1076-1079. doi: 10.1126/science.1202122

    CrossRef Google Scholar

    KELLOGG K, REYNOLDS R L, 1978. Paleomagnetic results from the Lassiter Coast, Antarctica, and a test for oroclinal bending of the Antarctic Peninsula[J]. Journal of Geophysical Research: Solid Earth, 83(B5): 2293-2299. doi: 10.1029/JB083iB05p02293

    CrossRef Google Scholar

    KELLOG K, 1980. Paleomagnetic evidence for oroclinal bending of the southern Antarctic Peninsula[J]. Geological Society of America Bulletin, 91(7): 414-420. doi: 10.1130/0016-7606(1980)91<414:PEFOBO>2.0.CO;2

    CrossRef Google Scholar

    KENNETT J P, 1977. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography[J]. Journal of Geophysical Research, 82(27): 3843-3860. doi: 10.1029/JC082i027p03843

    CrossRef Google Scholar

    KRISTJANSSON L, GUDMUNDSSON M T, SMELLIE J L, et al., 2005. Palaeomagnetic, 40Ar/39Ar, and stratigraphical correlation of Miocene-Pliocene basalts in the Brandy Bay area, James Ross Island, Antarctica[J]. Antarctic Science, 17(3): 409-417. doi: 10.1017/S0954102005002853

    CrossRef Google Scholar

    KUMP L R, BRANTLEY S L, ARTHUR M A, 2000. Chemical weathering, atmospheric CO2, and climate[J]. Annual Review of Earth and Planetary Sciences, 28(1): 611-667. doi: 10.1146/annurev.earth.28.1.611

    CrossRef Google Scholar

    LAGABRIELLE Y, GODDÉRIS Y, DONNADIEU Y, et al., 2009. The tectonic history of Drake Passage and its possible impacts on global climate[J]. Earth and Planetary Science Letters, 279(3-4): 197-211. doi: 10.1016/j.epsl.2008.12.037

    CrossRef Google Scholar

    LARTER R D, BARKER P F, 1991. Effects of ridge crest-trench interaction on Antarctic-Phoenix Spreading: Forces on a young subducting plate[J]. Journal of Geophysical Research Atmospheres: Solid Earth, 96(B12): 19583-19607. doi: 10.1029/91JB02053

    CrossRef Google Scholar

    LATIMER J C, FILIPPELLI G M, 2002. Eocene to Miocene terrigenous inputs and export production: geochemical evidence from ODP Leg177, Site 1090[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 182(3-4): 151-164. doi: 10.1016/S0031-0182(01)00493-X

    CrossRef Google Scholar

    LAWVER L A, GAHAGAN L M, 2003. Evolution of Cenozoic seaways in the circum-Antarctic region[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 198(1-2): 11-37. doi: 10.1016/S0031-0182(03)00392-4

    CrossRef Google Scholar

    LI F, GAO Y Q, WAN X, et al., 2021. Earth's 'three-poles' climate change under global warming[J]. Transactions of Atmospheric Sciences, 44(1): 1-11. (in Chinese with English abstract)

    Google Scholar

    LI S Z, SUO Y H, WANG G Z, et al., 2019. Tripole on seafloor and tripole on Earth surface: dynamic connections[J]. Marine Geology & Quaternary Geology, 39(5): 1-22. (in Chinese with English abstract)

    Google Scholar

    LIU X H, ZHENG X S, 1988. Geology of volcanic rocks on Fildes Peninsula, King George Island, West Antarctica[J]. Antarctic Research, 1(1): 25-35. (in Chinese with English abstract)

    Google Scholar

    LIVERMORE R, EAGLES G, MORRIS P, et al., 2004. Shackleton Fracture Zone: No barrier to early circumpolar ocean circulation[J]. GEOLOGY, 32(9): 797-800. doi: 10.1130/G20537.1

    CrossRef Google Scholar

    LIVERMORE R, HILLENBRAND C D, MEREDITH M, et al., 2007. Drake Passage and Cenozoic climate: An open and shut case?[J]. Geochemistry Geophysics Geosystems, 8(1): Q01005.

    Google Scholar

    LODOLO E, DONDA F, TASSONE A, 2006. Western Scotia Sea margins: Improved constraints on the opening of the Drake Passage[J]. Journal of Geophysical Research: Solid Earth, 111(B6): B06101.

    Google Scholar

    LYLE M, BARRON J, BRALOWER T J, et al., 2008. Pacific Ocean and Cenozoic evolution of climate[J]. Reviews of Geophysics, 46(2): RG2002.

    Google Scholar

    MA L, XING J, 2020. Structure inversion and its tectonic interpretation in bransfield strait and the adjacent area, Antarctic[J]. Oceanologia et Limnologia Sinica, 51(2): 265-273. (in Chinese with English abstract)

    Google Scholar

    MCCARRON J J, MILLAR I L, 1997. The age and statigraphy of fore-arc magmatism on Alexander Island, Antarctica[J]. Geological Magazine, 134(4): 507-522. doi: 10.1017/S0016756897007437

    CrossRef Google Scholar

    MCKENNA M C, 1973. Sweepstakes, filters, corridors, Noah's Arks, and beached viking funeral ships in palaeogeography[M]//TARLING DH, RUNCORN SK. Implications of continental drift to the earth sciences. New York: Academic Press: 295-308.

    Google Scholar

    MILANESEF, RAPALINIA, SLOTZNICKSP, et al., 2019. Late cretaceouspaleogeography of the Antarctic Peninsula: New paleomagnetic pole from the James Ross Basin[J]. Journal of South American Earth Sciences, 91: 131-143. doi: 10.1016/j.jsames.2019.01.012

    CrossRef Google Scholar

    MILANESE F N, OLIVERO E B, KIRSCHVINK J L, et al., 2017. Magnetostratigraphy of the Rabot formation, upper cretaceous, James Ross Basin, Antarctic Peninsula[J]. Cretaceous Research, 72: 172-187. doi: 10.1016/j.cretres.2016.12.016

    CrossRef Google Scholar

    MILANESE F N, OLIVERO E B, SLOTZNICK S P, et al., 2020. Coniacian-Campanian magnetostratigraphy of the Marambio Group: The Santonian-Campanian boundary in the Antarctic Peninsula and the complete Upper Cretaceous-Lowermost Paleogene chronostratigraphical framework for the James Ross Basin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 555: 109871. doi:10.1016/j.palaeo.2020.109871.

    CrossRef Google Scholar

    MÜLLER R D, SETON M, ZAHIROVIC S, et al., 2016. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup[J]. Annual Review of Earth and Planetary Sciences, 44: 107-138. doi: 10.1146/annurev-earth-060115-012211

    CrossRef Google Scholar

    MÜLLER R D, CANNON J, QIN X D, et al., 2018. GPlates: Building a Virtual Earth Through Deep Time[J]. Geochemistry, Geophysics, Geosystems, 19(7): 2243-2261. doi: 10.1029/2018GC007584

    CrossRef Google Scholar

    MÜLLER R D, ZAHIROVIC S, WILLIAMS S E, et al., 2019. A Global Plate Model Including Lithospheric Deformation Along Major Rifts and Orogens Since the Triassic[J]. Tectonics, 38(6): 1884-1907. doi: 10.1029/2018TC005462

    CrossRef Google Scholar

    MUNDAY D R, JOHNSON H L, MARSHALL D P, 2015. The role of ocean gateways in the dynamics and sensitivity to wind stress of the early Antarctic Circumpolar Current[J]. Paleoceanography, 30(3): 284-302. doi: 10.1002/2014PA002675

    CrossRef Google Scholar

    PAGANI M, ZACHOS J C, FREEMAN K H, et al., 2005. Marked decline in atmospheric carbon dioxide concentrations during the paleogene[J]. Science, 309(5734): 600-603. doi: 10.1126/science.1110063

    CrossRef Google Scholar

    PATERSON S R, DUCEA M N, 2015. Arc magmatic tempos: gathering the evidence[J]. Elements, 11(2): 91-98. doi: 10.2113/gselements.11.2.91

    CrossRef Google Scholar

    PEDRO J B, JOCHUMM, BUIZERT C, et al., 2018. Beyond the bipolar seesaw: Toward a process understanding of interhemispheric coupling[J]. Quaternary Science Reviews, 192: 27-46. doi: 10.1016/j.quascirev.2018.05.005

    CrossRef Google Scholar

    PFUHL H A, MCCAVE I N, 2005. Evidence for late Oligocene establishment of the Antarctic Circumpolar Current[J]. Earth and Planetary Science Letters, 235(3-4): 715-728. doi: 10.1016/j.epsl.2005.04.025

    CrossRef Google Scholar

    POBLETE F, ARRIAGADA C, ROPERCH P, et al., 2011. Paleomagnetism and tectonics of the South Shetland Islands and the northern Antarctic Peninsula[J]. Earth Planetary Science Letters, 302 (3-4): 299-313. doi: 10.1016/j.epsl.2010.12.019

    CrossRef Google Scholar

    RIGNOT E, MOUGINOT J, SCHEUCHL B, et al., 2019. Four decades of Antarctic Ice Sheet mass balance from 1979-2017[J]. Proceedings of the National Academy of Sciencesof the United States of America, 116(4): 1095-1103. doi: 10.1073/pnas.1812883116

    CrossRef Google Scholar

    RILEY T R, BURTON-JOHNSON A, FLOWERDEW M J, et al., 2018. Episodicity within a mid-Cretaceous magmatic flare-up in West Antarctica: U-Pb ages of the Lassiter Coast intrusive suite, Antarctic Peninsula, and correlations along the Gondwana margin[J]. GSA Bulletin, 130(7-8): 1177-1196. doi: 10.1130/B31800.1

    CrossRef Google Scholar

    ROBINSON S A, KLEKOCIUK A R, KING D H, et al., 2020. The 2019/2020 summer of Antarctic heatwaves[J]. Global Change Biology, 26(6): 3178-3180. doi: 10.1111/gcb.15083

    CrossRef Google Scholar

    RYE C D, MARSHALL J, KELLEY M, et al., 2020. Antarctic glacial melt as a driver of recent Southern Ocean climate trends[J]. Geophysical Research Letters, 47(11): e2019GL086892.

    Google Scholar

    SCHER H D, MARTIN E E, 2006. Timing and climatic consequences of the opening of Drake Passage[J]. Science, 312(5772): 428-430. doi: 10.1126/science.1120044

    CrossRef Google Scholar

    SCHER H D, WHITTAKER J M, WILLIAMS S E, et al., 2015. Onset of Antarctic circumpolar current 30 million years ago as Tasmanian Gateway aligned with westerlies[J]. Nature, 523(7562): 580-583. doi: 10.1038/nature14598

    CrossRef Google Scholar

    SCHER H D, 2017. Carbon-ocean gateway links[J]. Nature Geoscience, 10(3): 164-165. doi: 10.1038/ngeo2895

    CrossRef Google Scholar

    SCHREIDER A A, SCHREIDER A A, EVSENKO E I, 2014. The stages of the development of the basin of the Bransfield Strait[J]. Oceanology, 54(3): 365-373. doi: 10.1134/S0001437014020234

    CrossRef Google Scholar

    SETON M, Müller R D, Zahirovic S, et al., 2012. Global continental and ocean basin reconstructions since 200 Ma[J]. Earth-Science Reviews, 113(3-4): 212-270. doi: 10.1016/j.earscirev.2012.03.002

    CrossRef Google Scholar

    SHEN Y B. 1990. Progress in Stratigraphy and Palaeontology of FildesPeninsula, King GeorgeIsl and, Antarctica[J]. Acta PalaeontologicaSinica, 29(2): 129-139. (in Chinese with English abstract)

    Google Scholar

    SMELLIE J L, JOHNSON J S, MCINTOSH W C, et al., 2008. Six million years of glacial history recorded in volcanic lithofacies of the James Ross Island Volcanic Group, Antarctic Peninsula[J]. Palaeogeography Palaeoclimatology Palaeoecology, 260(1-2): 122-148. doi: 10.1016/j.palaeo.2007.08.011

    CrossRef Google Scholar

    SONG Z S, 1997. Research on Tertiary palynoflora from the petrified forest member of King George Island, Antarctica[J]. Acta Micropalaeontologica Sinica, 14(3): 255-272. (in Chinese with English abstract)

    Google Scholar

    STAGG H M J, COLWEL J B, DIREEN N G, et al., 2004. Geology of the Continental Margin of Enderby and Mac. Robertson Lands, East Antarctica: Insights from a Regional Data Set[J]. Marine Geophysical Researches, 25(3): 183-219.

    Google Scholar

    SIJP W P, ANNA S, DIJKSTRA H A, et al., 2014. The role of ocean gateways on cooling climate on long time scales[J]. Global and Planetary Change, 119: 1-22. doi: 10.1016/j.gloplacha.2014.04.004

    CrossRef Google Scholar

    TIKKU A A, CANDES C, 1999. The oldest magnetic anomalies in the Australian-Antarctic Basin: Are they isochrons?[J]. Journal of Geophysical Research: Solid Earth, 104(B1): 661-677. doi: 10.1029/1998JB900034

    CrossRef Google Scholar

    TIKKU A A, DIREEN N G, 2008. Comment on "Major Australian-Antarctic Plate Reorganization at Hawaiian-Emperor Bend Time"[J]. Science, 321(5888): 490.

    Google Scholar

    TORSVIK T H, DOUBROVINE P V, STEINBERGER B, et al., 2017. Pacific plate motion change caused the Hawaiian-Emperor Bend[J]. Nature Communications, 8(1): 1-12. doi: 10.1038/s41467-016-0009-6

    CrossRef Google Scholar

    VAN DE LAGEMAAT S H A, SWART M L A, VAES B, et al., 2021. Subduction initiation in the Scotia Sea region and opening of the Drake Passage: When and why?[J]. Earth-Science Reviews, 215: 103551, doi:10.1016/j.earscirev.2021.103551.

    CrossRef Google Scholar

    VAES B, VAN HINSBERGEN D J, BOSCHMAN L M, 2019. Reconstruction of subduction and back-arc spreading in the NW Pacific and Aleutian Basin: Clues to causes of Cretaceous and Eocene plate reorganizations[J]. Tectonics, 38(4): 1367-1413. doi: 10.1029/2018TC005164

    CrossRef Google Scholar

    VEEVERS J J, 1986. Breakup of Australia and Antarctica estimated as mid-Cretaceous (95±5 Ma) from magnetic and seismic data at the continental margin[J]. Earth and Planetary Science Letters, 77(1): 91-99. doi: 10.1016/0012-821X(86)90135-4

    CrossRef Google Scholar

    VÉRARD C, FLORES K, STAMPFLIG, 2012. Geodynamic reconstructions of the South America-Antarctica plate system[J]. Journal of Geodynamics, 53, 43-60. doi: 10.1016/j.jog.2011.07.007

    CrossRef Google Scholar

    WANG Z P, 1998. Ecology features of coastal saline lakes related to environmental evolution in the area of Antarctic continental ice edge[J]. Chinese Journal of Polar Research, 10(1): 17-25. (in Chinese with English abstract)

    Google Scholar

    WATTSDR, WATTSGC, BRAMALLA, 1984. Cretaceous and early Tertiary paleomagnetic results from the Antarctic Peninsula[J]. Tectonics, 3(3): 333-346. doi: 10.1029/TC003i003p00333

    CrossRef Google Scholar

    WESSEL P, LUIS J F, UIEDA L, et al., 2019. The generic mapping tools version 6[J]. Geochemistry, Geophysics, Geosystems, 20(11): 5556-5564. doi: 10.1029/2019GC008515

    CrossRef Google Scholar

    WESTERHOLD T, MARWAN N, DRURY A D, et al., 2020. An astronomically dated record of Earth's climate and its predictability over the last 66 million years[J]. Science, 369(6509): 1383-1387. doi: 10.1126/science.aba6853

    CrossRef Google Scholar

    WHITTAKER J M, GONCHAROV A, WILLIAMS S E, et al., 2013. Global sediment thickness data set updated for the Australian-Antarctic Southern Ocean[J]. Geochemistry, Geophysics, Geosystems, 14(8): 3297-3305. doi: 10.1002/ggge.20181

    CrossRef Google Scholar

    WHITTAKER R J, TRIANTIS K A, LADLE R J, 2008. ORIGINAL ARTICLE: A general dynamic theory of oceanic island biogeography[J]. Journal of Biogeography, 35(6): 977-994. doi: 10.1111/j.1365-2699.2008.01892.x

    CrossRef Google Scholar

    WILSON D S, POLLARD D, DECONTO R M, et al., 2013. Initiation of the West Antarctic Ice Sheet and estimates of total Antarctic ice volume in the earliest Oligocene[J]. Geophysical Research Letters, 40(16): 4305-4309. doi: 10.1002/grl.50797

    CrossRef Google Scholar

    WISE S W J, BREZA J R, HARWOOD D M, et al., 1992. Paleogene glacial history of Antarctica in light of leg 120 drilling results[M]//WISE S W JR, SCHLISH R, PALMER A A. Proceedings of the ocean drilling program, scientific results. Texas: College Station, 120: 1001-1029.

    Google Scholar

    XUE Y S, SHEN Y B, ZHUO E J, 1996. Petrological characteristics of the sedimentary volcaniclastic rocks of the Fossil Hill Formation (Eocene) in King George Island, West Antarctica[J]. Antarctic Research, 8(4): 31-40, 42-46. (in Chinese with English abstract)

    Google Scholar

    ZACHOS J, PAGANI M, SLOAN L, et al., 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 292(5517): 686-693. doi: 10.1126/science.1059412

    CrossRef Google Scholar

    ZHAO Y, LIU J M, 2008. New progress of oil and gas geology in arctic: sidelights of the 33rd International Geological Congress[J]. Journal of Geomechanics, 14(3): 292. (in Chinese)

    Google Scholar

    ZHENG G G, LIU X C, ZHAO Y, 2015. Mesozoic-Cenozoic tectonom-agmatic evolution of the Antarctic Peninsula and its correlation with Patagonia of southernmost South America[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 34(6): 1090-1102. (in Chinese with English abstract)

    Google Scholar

    ZHENG X S, LIU X H, YANG R Y, 1988. The petrological characteristics of Tertiary volcanic rocks near the Chinese Great Wall Station, west Antarctica[J]. Acta Petrologica Sinica, 4(1): 34-47. (in Chinese with English abstract)

    Google Scholar

    2021-2030地球科学发展战略研究组, 2021. 2021-2030地球科学发展战略: 宜居地球的过去、现在与未来[M]. 北京: 科学出版社.

    Google Scholar

    陈廷愚, 沈炎彬, 赵越, 等, 2008. 南极洲地质发展与冈瓦纳古陆演化[M]. 北京: 商务印书馆.

    Google Scholar

    段威武, 曹流, 1998. 南极乔治王岛海军湾亨内克角早第三纪晚期孢粉化石及其地层学意义[J]. 极地研究, 10(2): 29-35.

    Google Scholar

    高亮, 赵越, 杨振宇, 等. 2015. 西南极乔治王岛白垩纪末-中新世火山-沉积地层研究新进展[J]. 矿物岩石地球化学通报, 34(6): 1109-1122. doi: 10.3969/j.issn.1007-2802.2015.06.004

    CrossRef Google Scholar

    胡世玲, 郑祥身, 戴憧谟, 等, 1995. 南极乔治王岛北海岸A635玄武岩激光质谱微区40Ar/39Ar等时年龄[J]. 科学通报, 40(16): 1495-1496. doi: 10.3321/j.issn:0023-074X.1995.16.017

    CrossRef Google Scholar

    李菲, 郜永祺, 万欣, 等, 2021. 全球变暖与地球"三极"气候变化[J]. 大气科学学报, 44(1): 1-11.

    Google Scholar

    李三忠, 索艳慧, 王光增, 等, 2019. 海底"三极"与地表"三极": 动力学关联[J]. 海洋地质与第四纪地质, 39(5): 1-22.

    Google Scholar

    刘小汉, 郑祥身, 1988. 西南极乔治王岛菲尔德斯半岛火山岩地质初步研究[J]. 南极研究, 1(1): 25-35.

    Google Scholar

    马龙, 邢健, 2020. 南极布兰斯菲尔德海峡及邻区地壳结构反演及构造解析[J]. 海洋与湖沼, 51(2): 265-273.

    Google Scholar

    沈炎彬, 1990. 南极乔治王岛菲尔德斯半岛地层、古生物研究新见[J]. 古生物学报, 29(2): 129-139.

    Google Scholar

    宋之深, 1997. 南极乔治王岛第三纪石化林段孢粉植物群研究[J]. 微体古生物学报, 14(3): 255-272.

    Google Scholar

    王自磐, 1998. 南极大陆冰缘环境变迁与沿海盐湖生态特征[J]. 极地研究, 10(1): 17-25.

    Google Scholar

    薛耀松, 沈炎彬, 卓二军, 1996. 南极乔治王岛始新统化石山组沉积火山碎屑岩特征[J]. 南极研究, 8(4): 31-40, 42-46.

    Google Scholar

    赵越, 刘建民, 2008. 北极油气地质的新进展: 第33届国际地质大会侧记[J]. 地质力学学报, 14(3): 292. doi: 10.3969/j.issn.1006-6616.2008.03.012

    CrossRef Google Scholar

    郑光高, 刘晓春, 赵越, 2015. 南极半岛中新生代构造岩浆演化及与南美巴塔哥尼亚对比[J]. 矿物岩石地球化学通报, 34(6): 1090-1102. doi: 10.3969/j.issn.1007-2802.2015.06.002

    CrossRef Google Scholar

    郑祥身, 刘小汉, 杨瑞英, 1988. 西南极长城站地区第三系火山岩岩石学特征[J]. 岩石学报, 4(1): 34-47. doi: 10.3321/j.issn:1000-0569.1988.01.004

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(3825) PDF downloads(43) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint