2021 Vol. 27, No. 5
Article Contents

WEI Lijie. 2021. Cenozoic paleontological characteristics and paleoenvironment of King George Island, West Antarctica. Journal of Geomechanics, 27(5): 855-866. doi: 10.12090/j.issn.1006-6616.2021.27.05.069
Citation: WEI Lijie. 2021. Cenozoic paleontological characteristics and paleoenvironment of King George Island, West Antarctica. Journal of Geomechanics, 27(5): 855-866. doi: 10.12090/j.issn.1006-6616.2021.27.05.069

Cenozoic paleontological characteristics and paleoenvironment of King George Island, West Antarctica

    Fund Project: This research is financially supported by the National Natural Science Foundation of China (Grant No. 41930218), the Geological Investigation Project of the Chinese Geological Survey (Grant No. DD20160060), and the Sino-Chile International Cooperation Project (The geological mapping of South Shetland Island at 1∶250000 scale in Sino-Chile cooperation)
  • A set of high-K and low-Al tholeiites intercalated with volcanic clastic rocks developed in King George Island (Western Antarctica), belonging to the island arc volcanic rock series. Moreover, the longest record of glacial deposition in Antarctica is preserved on the island, which provides the important evidence of the Antarctic Ice Sheet evolution. Fossils of plant leaves, sporopollen, stems, invertebrate animals and bird footprints which were abundantly found in the outcropped Cenozoic continental strata of King George Island, started to decrease from the Eocene to the early Miocene, showing an obvious downward trend of plant diversity, and the surviving sparse vegetation was only the tundra species around the glacier. The studies of ice marine strata and paleontology suggest that the late Oligocene marine strata mainly correspond to high-energy environment and the early Miocene marine strata correspond to low energy environment. This paper explores the Cenozoic paleontological characteristics and paleoenvironment of King George Island, and the investigations allow us to understand the trend of paleontological diversity and provide evidence for the reconstruction of the Antarctic paleoenvironment as well.

  • 加载中
  • ANELLI L E, ROCHA-CAMPOS A C, DOS SANTOS P R, et al., 2006. Early Miocene bivalves from the cape Melville formation, king George island, west Antarctica[J]. Alcheringa, 30(1): 111-132. doi: 10.1080/03115510608619348

    CrossRef Google Scholar

    BARKER P F, DALZIEL I W D, STOREY B C, 1991. Tectonic development of the scotia arc region[M]//TINGEY R J. Antarctic geology. Oxford: Oxford University Press: 215-248.

    Google Scholar

    BARTON C M, 1965. The geology of the South Shetland Islands. Ⅲ. The stratigraphy of King George Island[M]. London: British Antarctic Survey: 1-33.

    Google Scholar

    BEU A G, 2009. Before the ice: biogeography of Antarctic Paleogene molluscan faunas[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 284(3-4): 191-226. doi: 10.1016/j.palaeo.2009.09.025

    CrossRef Google Scholar

    BIRKENMAJER K, 1982. Report on geological investigations of King George Island and Nelson Island (South Shetland Islands, West Antarctica) in 1980/81[R]. Studia Geologica Polonica, 74(3): 175-197.

    Google Scholar

    BIRKENMAJER K, GAŹDZICKI A, WRONA R, 1983. Cretaceous and Tertiary fossils in glacio-marine strata at Cape Melville, Antarctica[J]. Nature, 303(5912): 56-59. doi: 10.1038/303056a0

    CrossRef Google Scholar

    BIRKENMAJER K, 1987. Oligocene-Miocene glacio-marine sequences of King George Island (South Shetland Islands), Antarctica[J]. Palaeontologia Polonica, 49: 9-36.

    Google Scholar

    BIRKENMAJER K, ŁUCZKOWSKA E, 1987. Foraminiferal evidence for a lower Miocene age of glaciomarine and related strata, Moby Dick Group, King George Island (South Shetland Islands, Antarctica)[J]. Studia Geologica Polonica, 90: 81-123.

    Google Scholar

    BIRKENMAJER K, 1989. A guide to Tertiary geochronology of King George Island, West Antarctica[J]. Polish Polar Research, 10(4): 555-579.

    Google Scholar

    BIRKENMAJER K, ZASTAWNIAK E, 1989. Late cretaceous-early Tertiary floras of King George Island, West Antarctica: their stratigraphic distribution and palaeoclimatic significance[M]//CRAME J A. Origins and evolution of the Antarctic biota. Geological Society, London, Special Publications, 47(1): 227-240.

    Google Scholar

    BIRKENMAJER K, 1991. Report on the Polish geological investigations in West Antarctica, 1990/91[J]. Polish Polar Research, 12(3): 369-390.

    Google Scholar

    BIRKENMAJER K, GAZDZICKI A, KRAJEWSKI K P, et al., 2005. First Cenozoic glaciers in West Antarctica[J]. Polish Polar Research, 26(1): 3-12.

    Google Scholar

    BITNER M A, THOMSON M R A, 1999. Rhynchonellid brachiopods from the Oligocene of King George Island, West Antarctica[J]. Polish Polar Research, 20(2): 83-88.

    Google Scholar

    BITNER M A, CRAME J A, 2002. Brachiopods from the lower Miocene of King George Island, West Antarctica[J]. Polish Polar Research, 23(1): 75-84.

    Google Scholar

    BITNER M A, GAZDZICKI A, BLAZEJOWSKI B, 2009. Brachiopods from the Chlamys ledge member[Polonez Cove Formation, Oligocene] of King George Island, West Antarctica[J]. Polish Polar Research, 30(3): 277-290.

    Google Scholar

    CAO L, 1990. Discovery of Late Cretaceous palynoflora from Fildes Peninsula, King George Island, Antarctica and its significance[J]. Acta Palaeontologica Sinica, 29(2): 140-146. (in Chinese with English abstract)

    Google Scholar

    CAO L, 1992. Late Cretaceous and Eocene palynofloras from Fildes peninsula, King George Island (South Shetland Islands), Antarctica[M]//YOSHIDA Y, KAMINUMA K, SHIRAISHI K. Recent progress Antarctica earth science. Tokyo: Terra Scientific Publishing Company: 363-369.

    Google Scholar

    CAO L, 1994. Late Cretaceous palynoflora in King George Island of Antarctica with reference to its paleoclimatic significance[M]. Beijing: Science Press: 51-84. (in Chinese)

    Google Scholar

    CHEN T Y, XIE L Z, ZHAO Y, et al., 1995. Geological map of Antarctica (1: 5000000) (with instruction)[M]. Beijing: Geological Publishing House. (in Chinese)

    Google Scholar

    COVACEVICH V, RICH P V, 1982. New bird ichnites from Fildes Peninsula, King George Island, West Antarctica[M]. Madison: The University of Wisconsin Press: 245-254.

    Google Scholar

    CZAJKOWSKI S, RÖSLER O, 1986. Plantas fosseis da Peninsula Fildes; Ilha Rei Jorge (Shetlands do Sul); Morfografia das impressoes foliares[R]. Brazil: Anais da Academia Brasileira de Ciencias (Supplemento), 58: 99-110.

    Google Scholar

    DEL VALLE R A, DIAZ M T, ROMERO E J, 1984. Preliminary report on the sedimentites of Barton Peninsula, 25 de Mayo Island (King George Island), South Shetland Islands, Argentine Antarctica[J]. Con-tribucion del Instituto Antdrtico Argentino, 308: 121-131.

    Google Scholar

    DINGLE R V, LAVELLE M, 1998. Antarctic Peninsular cryosphere: early Oligocene (c. 30 Ma) initiation and a revised glacial chronology[J]. Journal of the Geological Society, 155(3): 433-437. doi: 10.1144/gsjgs.155.3.0433

    CrossRef Google Scholar

    DUAN W W, CAO L, 1998. Late Paleogene palynoflora from Point Hennequin of Admiralty Bay, King George Island, Antarctica and its significance in stratigraphy[J]. Chinese Journal of Polar Research, 10(2): 108-114. (in Chinese with English abstract)

    Google Scholar

    GAO L, ZHAO Y, YANG Z Y, et al., 2018. New paleomagnetic and 40Ar/39Ar geochronological results for the South Shetland Islands, West Antarctica, and their tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 123(1): 4-30. doi: 10.1002/2017JB014677

    CrossRef Google Scholar

    GAZDECKI A, 1989. Planktonic foraminifera from the Oligocene Polonez Cove Formation of King George Island, West Antarctica[J]. Polish Polar Research, 10(1): 47-55.

    Google Scholar

    HAASE K M, BEIER C, FRETZDORFF S, et al., 2012. Magmatic evolution of the South Shetland Islands, Antarctica, and implications for continental crust formation[J]. Contributions to Mineralogy and Petrology, 163(6): 1103-1119. doi: 10.1007/s00410-012-0719-7

    CrossRef Google Scholar

    HARA U, CRAME J A, 2004. A new aspidostomatid bryozoan from the cape Melville formation (Lower Miocene) of King George Island, West Antarctica[J]. Antarctic Science, 16(3): 319-327. doi: 10.1017/S0954102004002159

    CrossRef Google Scholar

    HRYNIEWICZ K, GAZDZICKI A, 2016. A new sediment-dwelling pholadid bivalve from Oligocene glaciomarine sediments of King George Island, West Antarctica[J]. Acta Palaeontologica Polonica, 61(4): 885-896.

    Google Scholar

    JESIONEK-SZYMAŃSKA W, 1987. Echinoids from the cape Melville formation (Lower Miocene) of King George Island, West Antarctica[J]. Palaeontologia Polonica, 49: 163-168.

    Google Scholar

    JONKERS H A, 1998. Stratigraphy of Antarctic late Cenozoic pectinid-bearing deposits[J]. Antarctic Science, 10(2): 161-170. doi: 10.1017/S0954102098000212

    CrossRef Google Scholar

    JONKERS H A, 2003. Late Cenozoic-recent Pectinidae (Mollusca: Bivalvia) of the Southern Ocean and neighbouring regions[M]. Leiden: Backhuys Publishers: 1-125.

    Google Scholar

    KELLNER A W A, DUTRA T L, DE ARAÚJO CARVALHO M, et al., 2007. First record of fossils leaves from the Keller Peninsula, King George Island, Antarctica[M]//DE SOUZA CARVALHO I. Paleontologia: cenários de vida. Brazil: Interciência: 627-635.

    Google Scholar

    KRAUS S, POBLETE F, ARRIAGADA C, 2010. Dike systems and their volcanic host rocks on King George Island, Antarctica: implications on the geodynamic history based on a multidisciplinary approach[J]. Tectonophysics, 495(3-4): 269-297. doi: 10.1016/j.tecto.2010.09.035

    CrossRef Google Scholar

    KROH A, 2014. Echinoids from the Chlamys Ledge Member (Polonez Cove Formation, Oligocene) of King George Island, West Antarctica[J]. Polish Polar Research, 35(3): 455-467. doi: 10.2478/popore-2014-0024

    CrossRef Google Scholar

    KYMES C M, 2015. A palynological analysis of Seymour Island and King George Island off the Antarctic Peninsula: a dating and climatic reconstruction[D]. Baton Rouge: Louisiana State University: 1-54.

    Google Scholar

    LI H M, SONG D K, 1988. Fossil remains of some angiosperms from King George Island, Antarctica[J]. Acta Palaeontologica Sinica, 27(4): 399-403. (in Chinese with English abstract)

    Google Scholar

    LI H M, SHEN Y B, 1990. A primary study of fossil hill flora from Fildes Peninsula of King George Island, Antarctica[J]. Acta Palaeontologica Sinica, 29(2): 147-153. (in Chinese with English abstract)

    Google Scholar

    LI H M, 1992. Early Tertiary palaeoclimate of King George Island, Antarctica-evidence from the Fossil Hill Flora[M]//YOSHIDA Y. Recent progress in Antarctic earth science. Tokyo: Terra Scientific Publishing Company: 371-375.

    Google Scholar

    LI H M, 1994. Early tertiary fossil hill flora from Fildes Peninsula of King George Island, Antarctica[M]. Beijing: Science Press: 133-172. (in Chinese)

    Google Scholar

    LI J J, ZHEN S N, 1994. New materials of bird ichnites from Fildes Peninsula, King George Island of Antarctica and their biogeographic significance[M]. State Beijing: Science Press: 239-250. (in Chinese)

    Google Scholar

    LUCAS R C, LACEY W S, 1981. A permineralized wood flora of probable Early Tertiary age from King George Island, South Shetland Islands[R]. British Antarctic Survey Bulletin, 53: 147-151.

    Google Scholar

    LYRA C S, 1986. Palinologia de sedimentos Terciarios da Peninsula Fildes, Ihla Rei George (Ihla Shetland do Sul Antarctica) e Algumas Concideracoes Paleoambientais[R]. Brazil: Anais da Academia Brasileria de Ciencias (Supplemento), 58: 137-147.

    Google Scholar

    MOZER A, 2012. Pre-glacial sedimentary facies of the Point Thomas Formation (Eocene) at Cytadela, Admiralty Bay, King George Island, West Antarctica[J]. Polish Polar Research, 33(1): 41-62. doi: 10.2478/v10183-012-0002-7

    CrossRef Google Scholar

    MOZER A, PECSKAY Z, KRAJEWSKI K P, 2015. Eocene age of the Baranowski Glacier Group at Red Hill, King George Island, West Antarctica[J]. Polish Polar Research, 36(4): 307-324. doi: 10.1515/popore-2015-0022

    CrossRef Google Scholar

    NAWROCKI J, PAŃCZYK M, WILLIAMS I S, 2010. Isotopic ages and palaeomagnetism of selected magmatic rocks from King George Island (Antarctic Peninsula)[J]. Journal of the Geological Society, 167(5): 1063-1079. doi: 10.1144/0016-76492009-177

    CrossRef Google Scholar

    OH C, PHILIPPE M, MCLOUGHLIN S, et al., 2020. New fossil woods from Lower Cenozoic volcano-sedimentary rocks of the Fildes Peninsula, King George Island, and the implications for the Trans-Antarctic Peninsula Eocene climatic gradient[J]. Papers in Palaeontology, 6(1): 1-29. doi: 10.1002/spp2.1256

    CrossRef Google Scholar

    PAŃCZYK M, NAWROCKI J, WILLIAMS I S, 2009. Isotope age constraint for the Blue Dyke and Jardine Peak subvertical instrusions of King George Island, West Antarctica[J]. Polish Polar Research, 30(4): 379-391. doi: 10.4202/ppres.2009.20

    CrossRef Google Scholar

    POOLE I, HUNT R J, CANTRILL D J, et al., 2001. A fossil wood flora from King George Island: ecological implications for an Antarctic Eocene vegetation[J]. Annals of Botany, 88(1): 33-54. doi: 10.1006/anbo.2001.1425

    CrossRef Google Scholar

    SHEN Y B, 1989. Palaeontological evidence for Upper Cretaceous volcano-sedimentary rocks in Fildes Peninsula of King George Island, Antarctica[J]. Antarctic Research, 1(3): 27-33. (in Chinese with English abstract)

    Google Scholar

    SHEN Y B, 1990. Progress in stratigraphy and palaeontology of Fildes Peninsula, King George Island, Antarctica[J]. Acta Palaeontologica Sinica, 29(2): 129-139. (in Chinese with English abstract)

    Google Scholar

    SHEN Y B, 1992. Discussion on stratigraphic subdivision and nomenclaturein Fildes Peninsula, King George Island, Antarctica[J]. Antarctic Research, 4(2): 18-26. (in Chinese with English abstract)

    Google Scholar

    SHEN Y B, 1994. Stratigraphy and palaeontology of Fildes Peninsula KingGeorge Island, Antarctica[M]. Beijing: Science Press, 1-348. (in Chinese)

    Google Scholar

    SMELLIE J L, PANKHURST R J, THOMSON M R A, et al., 1984. The geology of the South Shetland Islands: Ⅵ. Stratigraphy, geochemistry and evolution[J]. British Antarctic Survey Scientific Report, 87: 1-85.

    Google Scholar

    SMITH R I L, 1994. Vascular plants as bioindicators of regional warming in Antarctica[J]. Oceologia, 99: 322-328. doi: 10.1007/BF00627745

    CrossRef Google Scholar

    SONG Z C, 1997. Research on Tertiary palynoflora from the petrified forest member of King George Island, Antarctica[J]. Acta Micropalaeontologica Sinica, 14(3): 255-272. (in Chinese with English abstract)

    Google Scholar

    SONG Z C, 1998. Research on Tertiary palynoflora from the Fossil Hill Formation of King George Island, Antarctica[J]. Acta Micropalaeontologica Sinica, 15(4): 335-350. (in Chinese with English abstract)

    Google Scholar

    STUCHLIK L, 1981. Tertiary pollen spectra from the Ezcurra Inlet Group of Admiralty Bay, King George Island, (South Shetland Islands, Antarctica)[J]. Studia Geologica Polonica, 72: 109-132.

    Google Scholar

    TORRE S T, 1984. Nothofagoxylon antarcticus n. sp., madera fósil del Terciario de la Isla Rey Jorge, isles Shetland del Sur, Antártica[J]. Serie Cientıfica INACH, 31: 39-52.

    Google Scholar

    TROEDSON A L, RIDING J B, 2002. Upper Oligocene to lowermost Miocene strata of King George Island, South Shetland Islands, Antarctica: stratigraphy, facies analysis, and implications for the glacial history of the Antarctic Peninsula[J]. Journal of Sedimentary Research, 72(4): 510-523. doi: 10.1306/110601720510

    CrossRef Google Scholar

    TROEDSON A L, SMELLIE J L. 2002. The Polonez Cove Formation of King George Island, Antarctica: stratigraphy, facies and implications for mid-Cenozoic cryosphere development[J]. Sedimentology, 49(2): 277-301. doi: 10.1046/j.1365-3091.2002.00441.x

    CrossRef Google Scholar

    UCHMAN A, GAŹDZICKI A, BŁAŻEJOWSKI B, 2018. Arthropod trace fossils from Eocene cold climate continental strata of King George Island, West Antarctica[J]. Acta Palaeontologica Polonica, 63(2): 383-396.

    Google Scholar

    WANG F, ZHENG X S, LEE J I K, et al., 2009. An 40Ar/39Ar geochronology on a mid-Eocene igneous event on the Barton and Weaver Peninsulas: implications for the dynamic setting of the Antarctic Peninsula[J]. Geochemistry, Geophysics, Geosystems, 10(12): Q12006, doi:10.1029/2009GC002874.

    CrossRef Google Scholar

    WARNY S, KYMES C M, ASKIN R A, et al., 2016. Remnants of Antarctic vegetation on King George Island during the early Miocene Melville Glaciation[J]. Palynology, 40(1): 66-82, doi:10.1080/01916122.2014.999954.

    CrossRef Google Scholar

    WEI M H, 1986. Strange continent-Antarctica[M]. Beijing: Geological Publishing House, 1-175. (in Chinese)

    Google Scholar

    WHITTLE R J, QUAGLIO F, CRAME J A, et al., 2012. Nuculidae (Bivalvia) in the Cape Melville Formation, King George Island, Antarctica, with an overview of the bivalve fauna[J]. Antarctic Science, 24(6): 625-633. doi: 10.1017/S0954102012000454

    CrossRef Google Scholar

    WHITTLE R J, QUAGLIO F, GRIFFITHS H J, et al., 2014. The Early Miocene Cape Melville Formation fossil assemblage and the evolution of modern Antarctic marine communities[J]. Naturwissenschaften, 101(1): 47-59. doi: 10.1007/s00114-013-1128-0

    CrossRef Google Scholar

    WRONA R, 2004. Cambrian microfossils from glacial erratics of King George Island, Antarctica[J]. Acta Palaeontologica Polonica, 49(1): 13-56.

    Google Scholar

    WRONA R, 2009. Early Cambrian bradoriide and phosphatocopide arthropods from King George Island, West Antarctica: biogeographic implications[J]. Polish Polar Research, 30(4): 347-377. doi: 10.4202/ppres.2009.19

    CrossRef Google Scholar

    ZASTAWNIAK E, 1981. Tertiary leaf florafrom the Point Hennequin Group of King George Island (South Shetland Islands, Antarctica)[R] Warszawa: Studia Geologica Polonica: 97-112.

    Google Scholar

    ZASTAWNIAK E, WRONA R, GOZDICK A, et al., 1985. Plant remains from the top part of the Point Hennequin Group (Upper Oligocene) King George Island (South Shetland Islands, Antarctica)[J]. Studia Geologica Polonica, 81: 143-164.

    Google Scholar

    曹流, 1990. 南极乔治王岛菲尔德斯半岛晚白垩世孢粉植物群的发现及其意义[J]. 古生物学报, 29(2): 140-146.

    Google Scholar

    曹流, 1994. 南极乔治王岛晚白垩世孢粉植物群及其古气候[M]. 北京: 科学出版社: 51-84.

    Google Scholar

    陈廷愚, 谢良珍, 赵越, 等, 1995. 南极洲地质图(1: 5000000)(附说明书)[M]. 北京: 地质出版社.

    Google Scholar

    段威武, 曹流, 1998. 南极乔治王岛海军湾亨内克角早第三纪晚期孢粉化石及其地层学意义[J]. 极地研究, 10(2): 108-114.

    Google Scholar

    李浩敏, 宋德康, 1988. 南极乔治王岛的几种被子植物化石[J]. 古生物学报, 27(4): 399-403.

    Google Scholar

    李浩敏, 沈炎彬, 1990. 南极乔治王岛菲尔德斯半岛化石山植物群的初步研究[J]. 古生物学报, 29(2): 147-153.

    Google Scholar

    李浩敏, 1994. 南极乔治王岛菲尔德斯半岛早第三纪化石山植物群[M]. 北京: 科学出版社: 133-172.

    Google Scholar

    李建军, 甄朔南, 1994. 南极乔治王岛早第三纪鸟类足迹新材料及其古地理意义[M]. 北京: 科学出版社: 239-250.

    Google Scholar

    沈炎彬, 1989. 南极乔治王岛菲尔德斯半岛晚白垩世火山岩地层的古生物证据[J]. 南极研究, 1(3): 27-33.

    Google Scholar

    沈炎彬, 1990. 南极乔治王岛菲尔德斯半岛地层古生物研究新见[J]. 古生物学报, 29(2): 129-139.

    Google Scholar

    沈炎彬, 1992. 南极乔治王岛菲尔德斯半岛几个地层划分命名问题之商榷[J]. 南极研究, 4(2): 18-26.

    Google Scholar

    沈炎彬, 1994. 南极乔治王岛菲尔德斯半岛地层及古生物研究[M]. 北京: 科学出版社, 1-348.

    Google Scholar

    宋之琛, 1997. 南极乔治王岛第三纪石化林段的孢粉植物群研究[J]. 微体古生物学报, 14(3): 255-272.

    Google Scholar

    宋之琛, 1998. 南极乔治王岛第三纪化石山组的孢粉植物群[J]. 微体古生物学报, 15(4): 335-350.

    Google Scholar

    位梦华, 1986. 奇异的大陆-南极洲[M]. 北京: 地质出版社, 1-175.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Article Metrics

Article views(843) PDF downloads(13) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint