2021 Vol. 27, No. 5
Article Contents

CHEN Hong, WANG Honghui, BAO Guodong. 2021. Detrital zircon age from the glacial and littoral deposit, Northern Victoria Land, Antarctica: Implications for the timing of magmatic activity of the Ross Orogeny on the Gondwana continental margin. Journal of Geomechanics, 27(5): 796-808. doi: 10.12090/j.issn.1006-6616.2021.27.05.065
Citation: CHEN Hong, WANG Honghui, BAO Guodong. 2021. Detrital zircon age from the glacial and littoral deposit, Northern Victoria Land, Antarctica: Implications for the timing of magmatic activity of the Ross Orogeny on the Gondwana continental margin. Journal of Geomechanics, 27(5): 796-808. doi: 10.12090/j.issn.1006-6616.2021.27.05.065

Detrital zircon age from the glacial and littoral deposit, Northern Victoria Land, Antarctica: Implications for the timing of magmatic activity of the Ross Orogeny on the Gondwana continental margin

    Fund Project: This research is financially supported by the National Natural Science Foundation of China (Grant No. 41941004), the Chinese Polar Environment Comprehensive Investigation # Assessment Programs (Grant No. CHINARE 2016-02-05), and the Geological Investigation Project of China Geological Survey (Grant No. DD20160060)
  • The Transantarctic Mountains across the central Antarctic continent are the Ross orogenic belt formed by westward subduction of the Paleo-Pacific underneath the East Gondwana active continent margin in the early Paleozoic. The sedimentary, deformation and metamorphism, and granitic magmatic intrusion in this stage represent the process of the Ross Orogeny. Due to the significant difference in age among the three elements mentioned above, there is no precise time defined on the Ross Orogeny. In this paper, detrital zircon U-Pb dating of gravel and sand samples from moraines and coastal sediments in the Inexpressible Island of Northern Victoria Land was carried out. The ages of four samples with different gravel diameters range from 2443 to 323 Ma and are mainly concentrated between 530~450 Ma, with a peak age of~485 Ma. Most of the zircons show oscillatory zoning in CL images and have Th/U ratios great than 0.1 (mainly>0.4), with REE characteristics indicating a magmatic origin. Therefore, these ages reflect the timing of magmatic activity in the provenance of the loose sediment samples. The age composition of detrital zircons is consistent with the age of magmatic intrusion, intracontinental deformation and depositional stratigraphy in the surrounding areas, suggesting that the magmatic activity in the Northern Victoria Land and its surrounding areas might have lasted up to 450 Ma in the intracontinental deformation stage, which may represent the end time of the Ross Orogeny. These results provide a new constraint for the tectonic evolution of the Ross Orogeny on the Gondwana continental margin.

  • 加载中
  • ANDERSEN T, 2002. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 192(1-2): 59-79. doi: 10.1016/S0009-2541(02)00195-X

    CrossRef Google Scholar

    BLACK L P, SHERATON J W, 1990. The influence of Precambrian source components on the U-Pb zircon age of a Palaeozoic granite from Northern Victoria Land, Antarctica[J]. Precambrian Research, 46(4): 275-293. doi: 10.1016/0301-9268(90)90016-J

    CrossRef Google Scholar

    BOGER S D, MILLER J M, 2004. Terminal suturing of Gondwana and the onset of the Ross-Delamerian Orogeny: the cause and effect of an Early Cambrian reconfiguration of plate motions[J]. Earth and Planetary Science Letters, 219(1-2): 35-48. doi: 10.1016/S0012-821X(03)00692-7

    CrossRef Google Scholar

    BOGER S D, 2011. Antarctica-Before and after Gondwana[J]. Gondwana Research, 19(2): 335-371. doi: 10.1016/j.gr.2010.09.003

    CrossRef Google Scholar

    BORSI L, PETRINI R, TALARICO F, et al., 1995. Geochemistry and Sr-Nd isotopes of amphibolite dykes of northern Victoria Land, Antarctica[J]. Lithos, 35(3-4): 245-259. doi: 10.1016/0024-4937(95)99070-D

    CrossRef Google Scholar

    BRACCIALI L, DI VINCENZO G, ROCCHIS, et al., 2009. The Tiger Gabbro from northern Victoria Land, Antarctica: the roots of an island arc within the early Palaeozoic margin of Gondwana[J]. Journal of the Geological Society, 166(4): 711-724. doi: 10.1144/0016-76492008-098

    CrossRef Google Scholar

    CAPPONI G, CRISPINI L, MECCHERI M, 1999. Structural history and tectonic evolution of the boundary between the Wilson and Bowers terranes, Lanterman Range, northern Victoria Land, Antarctica[J]. Tectonophysics, 312(2-4): 249-266. doi: 10.1016/S0040-1951(99)00174-2

    CrossRef Google Scholar

    CHEN H, WANG W, ZHAO Y, 2019. Constraints on early Paleozoic magmatic processes and tectonic setting of Inexpressible Island, Northern Victoria Land, Antarctica[J]. Advances in Polar Science, 30(1): 52-69.

    Google Scholar

    CHEN T Y, SHEN Y B, ZHAO Y, et al., 2008. Geological development of Antarctica and evolution of Gondwanaland[M]. Beijing: Business Printing House: 1-372. (in Chinese)

    Google Scholar

    CRADDOCK C, 1970. Geologic Map of Antarctica (1: 5000000). American Geographical Society, Antarctic map folio series, 12: Pl. XXIII.

    Google Scholar

    DI VINCENZO G, PALMERI R, TALARICO F, et al., 1997. Petrology and geochronology of eclogites from the Lanterman Range, Antarctica[J]. Journal of Petrology, 38(10): 1391-1417. doi: 10.1093/petroj/38.10.1391

    CrossRef Google Scholar

    DI VINCENZO G, ROCCHI S, 1999. Origin and interaction of mafic and felsic magmas in an evolving late orogenic setting: the Early Paleozoic Terra Nova Intrusive Complex, Antarctica[J]. Contributions to Mineralogy and Petrology, 137(1-2): 15-35. doi: 10.1007/s004100050579

    CrossRef Google Scholar

    DI VINCENZO G, GHIRIBELLI B, GIORGETTI G, et al., 2001. Evidence of a close link between petrology and isotope records: constraints from SEM, EMP, TEM and in situ 40Ar-39Ar laser analyses on multiple generations of white micas (Lanterman Range, Antarctica)[J]. Earth and Planetary Science Letters, 192(3): 389-405. doi: 10.1016/S0012-821X(01)00454-X

    CrossRef Google Scholar

    DI VINCENZO G, CAROSI R, PALMERI R, et al., 2007. A comparative U-Th-Pb (zircon-monazite) and 40Ar-39Ar (muscovite-biotite) study of shear zones in northern Victoria Land (Antarctica): Implications for geochronology and localized reworking of the Ross Orogen[J]. Journal of Metamorphic Geology, 25(6): 605-630. doi: 10.1111/j.1525-1314.2007.00717.x

    CrossRef Google Scholar

    DI VINCENZO G, ROSSETTI F, VITI C, et al., 2013. Constraining the timing of fault reactivation: Eocene coseismic slip along a Late Ordovician ductile shear zone (northern Victoria Land, Antarctica)[J]. GSA Bulletin, 125(3-4): 609-624. doi: 10.1130/B30670.1

    CrossRef Google Scholar

    DI VINCENZO G, GRANDE A, ROSSETTI F, 2014. Paleozoic Siliciclastic rocks from northern Victoria Land (Antarctica): provenance, timing of deformation, and implications for the Antarctica-Australia connection[J]. GSA Bulletin, 126(11-12): 1416-1438. doi: 10.1130/B31034.1

    CrossRef Google Scholar

    DI VINCENZO G, HORTON F, PALMERI R, 2016. Protracted (~30 Ma) eclogite-facies metamorphism in northern Victoria Land (Antarctica): implications for the geodynamics of the Ross/Delamerian Orogen[J]. Gondwana Research, 40: 91-106. doi: 10.1016/j.gr.2016.08.005

    CrossRef Google Scholar

    ELLIOT D H, FANNING C M, 2008. Detrital zircons from upper Permian and lower Triassic Victoria Group sandstones, Shackleton Glacier region, Antarctica: evidence for multiple sources along the Gondwana plate margin[J]. Gondwana Research, 13(2): 259-274. doi: 10.1016/j.gr.2007.05.003

    CrossRef Google Scholar

    ESTRADA S, LÄUFER A, ECKELMANN K, et al., 2016. Continuous Neoproterozoic to Ordovician sedimentation at the East Gondwana margin-implications from detrital zircons of the Ross Orogen in northern Victoria Land, Antarctica[J]. Gondwana Research, 37: 426-448. doi: 10.1016/j.gr.2015.10.006

    CrossRef Google Scholar

    FARABEE M J, TAYLOR E L, TAYLOR T N, 1990. Correlation of Permian and Triassic palynomorph assemblages from the central Transantarctic Mountains, Antarctica[J]. Review of Palaeobotany and Palynology, 65(1-4): 257-265. doi: 10.1016/0034-6667(90)90075-T

    CrossRef Google Scholar

    FEDERICO L, CRISPINI L, CAPPONI G, et al., 2009. The Cambrian ross orogeny in northernVictoria Land (Antarctica) and New Zealand: a synthesis[J]. Gondwana Research, 15(2): 188-196. doi: 10.1016/j.gr.2008.10.004

    CrossRef Google Scholar

    FEDERICO L, CRISPINI L, CAPPONI G, 2010. Fault-slip analysis and transpressional tectonics: A study of Paleozoic structures in northern Victoria Land, Antarctica[J]. Journal of Structural Geology, 32(5): 667-684. doi: 10.1016/j.jsg.2010.04.001

    CrossRef Google Scholar

    GIACOMINI F, TIEPOLO M, DALLAI L, et al., 2007. On the onset and evolution of the Ross-orogeny magmatism in North Victoria Land-Antarctica[J]. Chemical Geology, 240(1-2): 103-128. doi: 10.1016/j.chemgeo.2007.02.005

    CrossRef Google Scholar

    GLEN R A, COOPER R A, 2021. Evolution of the East Gondwana convergent margin in Antarctica, southern Australia and New Zealand from the Neoproterozoic to latest Devonian[J]. Earth-Science Reviews, 220: 103687. doi: 10.1016/j.earscirev.2021.103687

    CrossRef Google Scholar

    GOODGE J W, FANNING C M, BENNETT V C, 2001. U-Pb evidence of~1.7 Ga crustal tectonism during the Nimrod Orogeny in the Transantarctic Mountains, Antarctica: implications for Proterozoic plate reconstructions[J]. Precambrian Research, 112(3-4): 261-288. doi: 10.1016/S0301-9268(01)00193-0

    CrossRef Google Scholar

    GUNN B M, WARREN G, 1962. Geology of victoria land between the Mawson and Mullock glaciers, ross Dependency, Antarctica[R]. New Zealand Geological Survey Bulletin, New Series, No. 71, 1-157.

    Google Scholar

    HAGEN-PETER G, COTTLE J M, 2016. Synchronous alkaline and subalkaline magmatism during the late Neoproterozoic-early Paleozoic Ross orogeny, Antarctica: insights into magmatic sources and processes within a continental arc[J]. Lithos, 262: 677-698. doi: 10.1016/j.lithos.2016.07.032

    CrossRef Google Scholar

    HOSKIN P W O, 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 69(3): 637-648. doi: 10.1016/j.gca.2004.07.006

    CrossRef Google Scholar

    LIU Y S, HU Z C, GAO S, et al., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internalstandard[J]. Chemical Geology, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    LIU Y S, GAO S, HU Z C, et al., 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082

    CrossRef Google Scholar

    LUDWIG K R, 2003. ISOPLOT 3.00: A geochronological toolkit for Microsoft excel[M]. Berkeley: Berkeley Geochronology Center: 70.

    Google Scholar

    PALMERI R, SANDRONI S, GODARD G, et al., 2012. Boninite-derived amphibolites from the Lanterman-Mariner suture (northern Victoria Land, Antarctica): New geochemical and petrological data[J]. Lithos, 140-141: 200-223. doi: 10.1016/j.lithos.2012.02.001

    CrossRef Google Scholar

    PAULSEN T S, ENCARNACIÓN J, GRUNOW A M, et al., 2007. New age constraints for a short pulse in Ross orogen deformation triggered by East-West Gondwana suturing[J]. Gondwana Research, 12(4): 417-427. doi: 10.1016/j.gr.2007.05.011

    CrossRef Google Scholar

    PAULSEN T S, ENCARNACIÓN J, GRUNOW A M, et al., 2013. Age and significance of 'outboard' high-grade metamorphics and intrusives of the Ross orogen, Antarctica[J]. Gondwana Research, 24(1): 349-358. doi: 10.1016/j.gr.2012.10.004

    CrossRef Google Scholar

    PAULSEN T S, ENCARNACIÓN J, GRUNOW A M, et al., 2015. Detrital mineral ages from the Ross Supergroup, Antarctica: Implications for the Queen Maud terrane and outboard sediment provenance on the Gondwana margin[J]. Gondwana Research, 27(1): 377-391. doi: 10.1016/j.gr.2013.10.006

    CrossRef Google Scholar

    PAULSEN T S, DEERING C, SLIWINSKI J, et al., 2016. Detrital zircon ages from the Ross Supergroup, north Victoria Land, Antarctica: Implications for the tectonostratigraphic evolution of the Pacific-Gondwana margin[J]. Gondwana Research, 35: 79-96. doi: 10.1016/j.gr.2016.04.001

    CrossRef Google Scholar

    PERUGINI D, POLI G, ROCCHI S, 2005. Development of viscous fingering between mafic and felsic magmas: evidence from the Terra Nova Intrusive Complex (Antarctica)[J]. Mineralogy and Petrology, 83(3-4): 151-166. doi: 10.1007/s00710-004-0064-2

    CrossRef Google Scholar

    ROCCHI S, TONARINI S, ARMIENTI P, et al., 1998. Geochemical and isotopic structure of the early Palaeozoic active margin of Gondwana in northern Victoria Land, Antarctica[J]. Tectonophysics, 284(3-4): 261-281. doi: 10.1016/S0040-1951(97)00178-9

    CrossRef Google Scholar

    ROCCHI S, BRACCIALI L, DI VINCENZO G, et al., 2011. Arc accretion to the early Paleozoic Antarctic margin of Gondwana in Victoria Land[J]. Gondwana Research, 19(3): 594-607. doi: 10.1016/j.gr.2010.08.001

    CrossRef Google Scholar

    ROCCHI S, DI VINCENZO G, DINI A, et al., 2015. Time-space focused intrusion of genetically unrelated arc magmas in the early Paleozoic Ross-Delamerian Orogen (Morozumi Range, Antarctica)[J]. Lithos, 232: 84-99. doi: 10.1016/j.lithos.2015.06.006

    CrossRef Google Scholar

    ROSSETTI F, VIGNAROLI G, DI VINCENZO G, et al., 2011. Long-lived orogenic construction along the paleo-Pacific margin of Gondwana (deep freeze range, North Victoria Land, Antarctica)[J]. Tectonics, 30(4): TC4008.

    Google Scholar

    SHERATON J W, BABCOCK R S, BLACK L P, et al., 1987. Petrogenesis of granitic rocks of the Daniels Range, northern Victoria Land, Antarctica[J]. Precambrian Research, 37(4): 267-286. doi: 10.1016/0301-9268(87)90078-7

    CrossRef Google Scholar

    STUMP E, FITZGERALD P G, 1992. Episodic uplift of the transantarctic mountains[J]. Geology, 20(2): 161-164. doi: 10.1130/0091-7613(1992)020<0161:EUOTTM>2.3.CO;2

    CrossRef Google Scholar

    STUMP E, 1995. Ross orogen of the transantarctic mountains[M]. Cambridge: Cambridge University Press: 1-284.

    Google Scholar

    SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of Oceanic Basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    TALARICO F, BORSI L, LOMBARDO B, 1995. Relict granulites in the Ross Orogen of northern Victoria Land (Antarctica), Ⅱ. Geochemistry and palaeo-tectonic implications[J]. Precambrian Research, 75(3-4): 157-174. doi: 10.1016/0301-9268(95)80004-2

    CrossRef Google Scholar

    TALARICO F, CASTELLI D, 1995. Relict granulites in the Ross orogen of northern Victoria Land (Antarctica), Ⅰ. Field occurrence, petrography and metamorphic evolution[J]. Precambrian Research, 75(3-4): 141-156. doi: 10.1016/0301-9268(95)80003-Z

    CrossRef Google Scholar

    WANG W, HU J M, CHEN H, et al., 2014. LA-ICP-MS zircon U-Pb ages and geological constraint of intrusive rocks from the Inexpressible Island, Northern Victoria Land, Antarctica[J]. Geological Bulletin of China, 33(12): 2023-2031. (in Chinese with English abstract)

    Google Scholar

    WEAVER S D, BRADSHAW J D, LAIRD M G, 1984. Geochemistry of Cambrian volcanics of the Bowers Supergroup and implications for the Early Palaeozoic tectonic evolution of northern Victoria Land, Antarctica[J]. Earth and Planetary Science Letters, 68(1): 128-140. doi: 10.1016/0012-821X(84)90145-6

    CrossRef Google Scholar

    WU Y B, ZHENG Y F, 2004. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 49(16): 1589-1604. (in Chinese) doi: 10.1360/csb2004-49-16-1589

    CrossRef Google Scholar

    陈廷愚, 沈炎彬, 赵越, 等, 2008. 南极洲地质发展与冈瓦纳古陆演化[M]. 北京: 商务印书馆: 1-372.

    Google Scholar

    王伟, 胡健民, 陈虹, 等, 2014. 南极北维多利亚地难言岛侵入岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 33(12): 2023-2031. doi: 10.3969/j.issn.1671-2552.2014.12.024

    CrossRef Google Scholar

    吴元保, 郑永飞, 2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 49(16): 1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(1315) PDF downloads(22) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint