2021 Vol. 27, No. 5
Article Contents

CUI Yingchun, MA Lijie, LIU Chenguang, WANG Qingchao, LÄUFER Andreas. 2021. Petrogenesis of the Hughes Bluff granitic pluton in the Transantarctic Mountains, Antarctica. Journal of Geomechanics, 27(5): 783-795. doi: 10.12090/j.issn.1006-6616.2021.27.05.064
Citation: CUI Yingchun, MA Lijie, LIU Chenguang, WANG Qingchao, LÄUFER Andreas. 2021. Petrogenesis of the Hughes Bluff granitic pluton in the Transantarctic Mountains, Antarctica. Journal of Geomechanics, 27(5): 783-795. doi: 10.12090/j.issn.1006-6616.2021.27.05.064

Petrogenesis of the Hughes Bluff granitic pluton in the Transantarctic Mountains, Antarctica

    Fund Project: This research is financially supported by the National Natural Science Foundation of China (Grant No.91958216, 41876227), and the projects of Polar Operation and Scientific Research(Grant No. JD0620010, JD0620020)
  • In order to elucidate the petrogenesis of the Hughes Bluff granitic pluton, the petrological and geochemical studies were conducted, and the results show that the Hughes Bluff granitic pluton is composed of monzogranite, intruded by fine-grained monzogranite dikes in the later period. They both are characterized by high abundance of silicon, alkali and potassium, enriched in Rb, Th, U and K and depleted in Nb, Ta, Nd and Ti relative to those of the primitive mantle, with the Rittmann Indexes less than 3 and the A/CNK values less than 1. They both also have a low total amount of rare earth elements and an abundance of light rare earth, showing weakly negative Eu anomaly and slightly positive Eu anomaly in the chondrite-normalized REE pattern for the monzogranite and granitic monzogranite dike respectively. All the data show that the rocks from the Hughes Bluff granitic pluton belong to the I-type granites, and the source region is probably the lower continental crust, but the contribution of mantle material cannot be ruled out. The magma in the source region underwent varying degrees of fractional crystallization of plagioclase, ilmenite, rutile and apatite, and was derived from a volcanic island arc environment related to subduction.

  • 加载中
  • ALLIBONE A H, COX S C, GRAHAM I J, et al., 1993. Granitoids of the Dry Valleys area, southern Victoria Land, Antarctica: plutons, field relationships, and isotopic dating[J]. New Zealand Journal of Geology and Geophysics, 36(3): 281-297. doi: 10.1080/00288306.1993.9514576

    CrossRef Google Scholar

    ANTONINI P, PICCIRILLO E M, PETRINI R, et al., 1999. Enriched mantle-dupal signature in the genesis of the Jurassic Ferrar tholeiites from Prince Albert Mountains (Victoria Land, Antarctica)[J]. Contributions to Mineralogy and Petrology, 136(1-2): 1-19. doi: 10.1007/s004100050520

    CrossRef Google Scholar

    ARMIENTI P, GHEZZO C, INNOCENTI F, et al., 1990. Isotope geochemistry and petrology of granitoid suites from Granite Harbour Intrusives of the Wilson Terrane, North Victoria Land, Antarctica[J]. European Journal of Mineralogy, 2(1): 103-124. doi: 10.1127/ejm/2/1/0103

    CrossRef Google Scholar

    BARRETT P J, 1981. History of the Ross Sea region during the deposition of the Beacon Supergroup 400~180 million years ago[J]. Journal of the Royal Society of New Zealand, 11(4): 447-458. doi: 10.1080/03036758.1981.10423334

    CrossRef Google Scholar

    BORG S G, STUMP E, CHAPPELL B W, et al., 1987. Granitoids of northern Victoria Land, Antarctica; Implications of chemical and isotopic variations to regional crustal structure and tectonics[J]. American Journal of Science, 287(2): 127-169. doi: 10.2475/ajs.287.2.127

    CrossRef Google Scholar

    CAPPONI G, CRISPINI L, MECCHERI M, 1999. Structural history and tectonic evolution of the boundary between the Wilson and Bowers terranes, Lanterman Range, northern Victoria Land, Antarctica[J]. Tectonophysics, 312(2-4): 249-266. doi: 10.1016/S0040-1951(99)00174-2

    CrossRef Google Scholar

    CAPPONI G, MONTOMOLI C, CASALE S, et al., 2020. Geology of the northern Convoy Range, Victoria Land, Antarctica[J]. Journal of Maps, 16(2): 702-709. doi: 10.1080/17445647.2020.1822218

    CrossRef Google Scholar

    CHAPPELL B W, WHITE A J R, 2001. Two contrasting granite types: 25 years later[J]. Australian Journal of Earth Sciences, 48(4): 489-499. doi: 10.1046/j.1440-0952.2001.00882.x

    CrossRef Google Scholar

    COOPER A K, RAYMOND C, DIGGLES M, et al., 2007. Guidelines for extended abstracts in the 10th ISAES X online proceedings[C]//COOPER A K, RAYMOND C R. Antarctica: a keystone in a changing world-online proceedings of the 10th ISAES X. USGS Open-File Report 2007-1047.

    Google Scholar

    COTTLE J M, COOPER A F, 2006. Geology, geochemistry, and geochronology of an A-type granite in the Mulock Glacier area, southern Victoria Land, Antarctica[J]. New Zealand Journal of Geology and Geophysics, 49(2): 191-202. doi: 10.1080/00288306.2006.9515159

    CrossRef Google Scholar

    DALLAI L, GHEZZO C, TURI B, et al., 2002. Oxygen isotope geochemistry of the Granite Harbour Intrusives, Wilson Terrane, Northern Victoria Land, Antarctica[J]. Mineralogy and Petrology, 75(3-4): 223-241. doi: 10.1007/s007100200025

    CrossRef Google Scholar

    DALLAI L, GHEZZO C, SHARP Z D, 2003. Oxygen isotope evidence for crustal assimilation and magma mixing in the Granite Harbour Intrusives, Northern Victoria Land, Antarctica[J]. Lithos, 67(1-2): 135-151. doi: 10.1016/S0024-4937(02)00267-0

    CrossRef Google Scholar

    DI VINCENZO G, PALMERI R, TALARICO F, et al., 1997. Petrology and geochronology of eclogites from the Lanterman Range, Antarctica[J]. Journal of Petrology, 38(10): 1391-1417. doi: 10.1093/petroj/38.10.1391

    CrossRef Google Scholar

    DI VINCENZO G, ROCCHI S, ROSSETTI F, et al., 2004. 40Ar-39Ar dating of pseudotachylytes: the effect of clast-hosted extraneous argon in Cenozoic fault-generated friction melts from the West Antarctic Rift system[J]. Earth and Planetary Science Letters, 223(3-4): 349-364. doi: 10.1016/j.epsl.2004.04.042

    CrossRef Google Scholar

    ENCARNACIÓN J, GRUNOW A, 1996. Changing magmatic and tectonic styles along the paleo-Pacific margin of Gondwana and the onset of early Paleozoic magmatism in Antarctica[J]. Tectonics, 15(6): 1325-1341. doi: 10.1029/96TC01484

    CrossRef Google Scholar

    ENCARNACIÓN J, ROWELL A J, GRUNOW A M, 1999. A U-Pb age for the Cambrian Taylor Formation, Antarctica: Implications for the Cambrian time scale[J]. The Journal of Geology 107(4): 497-504. doi: 10.1086/314361

    CrossRef Google Scholar

    ESTRADA S, LÄUFER A, ECKELMANN K, et al., 2016. Continuous Neoproterozoic to Ordovician sedimentation at the East Gondwana margin-implications from detrital zircons of the Ross Orogen in northern Victoria Land, Antarctica[J]. Gondwana Research, 37: 426-448. doi: 10.1016/j.gr.2015.10.006

    CrossRef Google Scholar

    FAURE G, MENSING T M, 2011. The transantarctic mountains: rocks, ice, meteorites and water[M]. Dordrecht: Springer: 1-804.

    Google Scholar

    FEDERICO L, CRISPINI L, CAPPONI G, 2010. Fault-slip analysis and transpressional tectonics: a study of Paleozoic structures in northern Victoria Land, Antarctica[J]. Journal of Structural Geology, 32(5): 667-684. doi: 10.1016/j.jsg.2010.04.001

    CrossRef Google Scholar

    FERRACCIOLI F, BOZZO E, 1999. Inherited crustal features and tectonic blocks of the Transantarctic Mountains: an aeromagnetic perspective (Victoria Land, Antarctica)[J]. Journal of Geophysical Research: Solid Earth, 104(B11): 25297-25319. doi: 10.1029/1998JB900041

    CrossRef Google Scholar

    FERRACCIOLI F, BOZZO E, 2003. Cenozoic strike-slip faulting from the eastern margin of the Wilkes Subglacial Basin to the western margin of the Ross Sea Rift: an aeromagnetic connection[J]. Geological Society, London, Special Publications, 210(1): 109-133. doi: 10.1144/GSL.SP.2003.210.01.07

    CrossRef Google Scholar

    FERRACCIOLI F, ARMADILLO E, ZUNINO A, et al., 2009. Magmatic and tectonic patterns over the Northern Victoria Land sector of the Transantarctic Mountains from new aeromagnetic imaging[J]. Tectonophysics, 478(1-2): 43-61. doi: 10.1016/j.tecto.2008.11.028

    CrossRef Google Scholar

    GOODGE J W, WALKER N W, HANSEN V L, 1993. Neoproterozoic-Cambrian basement-involved orogenesis within the Antarctic margin of Gondwana[J]. Geology, 21(1): 37-40. doi: 10.1130/0091-7613(1993)021<0037:NCBIOW>2.3.CO;2

    CrossRef Google Scholar

    GOODGE J W, 2007. Metamorphism in the Ross Orogen and its bearing on Gondwana margin tectonics[M]//CLOOS M, CARLSON W D, GILBERT M C, et al. Convergent Margin Terranes and Associated Regions: A Tribute to W.G. Ernst. Boulder, CO, USA: Geological Society of America: 185-203.

    Google Scholar

    GOODGE J W, FANNING C M, NORMAN M D, et al., 2012. Temporal, Isotopic and Spatial Relations of Early Paleozoic Gondwana-Margin Arc Magmatism, Central Transantarctic Mountains, Antarctica[J]. Journal of Petrology, 53(10): 2027-2065. doi: 10.1093/petrology/egs043

    CrossRef Google Scholar

    GOODGE J W, FANNING C M, 2016. Mesoarchean and Paleoproterozoic history of the nimrod complex, central Transantarctic mountains, Antarctica: Stratigraphic revisions and relation to the Mawson Continent in East Gondwana[J]. Precambrian Research, 285: 242-271. doi: 10.1016/j.precamres.2016.09.001

    CrossRef Google Scholar

    GOODGE J W, 2020. Geological and tectonic evolution of the Transantarctic Mountains, from ancient craton to recent enigma[J]. Gondwana Research, 80: 50-122. doi: 10.1016/j.gr.2019.11.001

    CrossRef Google Scholar

    GREEN T H, 1995. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system[J]. Chemical Geology, 120(3-4): 347-359. doi: 10.1016/0009-2541(94)00145-X

    CrossRef Google Scholar

    GUNN B M, WARREN G, 1962. Geology of Victoria Land between Mawson and Mullock Glaciers, Antarctica[J]. New Zealand Geological Survey Bulletin, 71: 1-157.

    Google Scholar

    GUO X Z, JIA Q Z, LI J C, et al., 2019. The forming age and geochemistry characteristics of the granodiorites in Harizha, East Kunlun and its tectonic significance[J]. Journal of Geomechanics, 25(2): 286-300. (in Chinese with English abstract)

    Google Scholar

    HE P, LU X Z, YANG R N, et al., 2020. Petrogeochemistry, zircon U-Pb chronology of I type granite from Yaolesayi estuary, Northern Altun[J]. Mineral Exploration, 11(9): 1822-1830. (in Chinese with English abstract)

    Google Scholar

    HOFMANN A W, 1988. Chemical differentiation of the earth: The relationship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters, 90(3): 297-314. doi: 10.1016/0012-821X(88)90132-X

    CrossRef Google Scholar

    ISBELL J L, 1999. The Kukri Erosion Surface; a reassessment of its relationship to rocks of the Beacon Supergroup in the central Transantarctic Mountains, Antarctica[J]. Antarctic Science, 11(2): 228-238. doi: 10.1017/S0954102099000292

    CrossRef Google Scholar

    LÄUFER A L, KLEINSCHMIDT G, HENJES-KUNST F, et al., 2005. Geological map of the cape Adare Quadrangle Victoria Land, Antarctica, 1: 250000[R]. PERTUSATI P C, ROLAND N W. German-Italian Geological Antarctic Map Programme (GIGAMAP), Hannover: BGR.

    Google Scholar

    LI J Y, Gao L M, SUN G H, et al., 2007. Shuangjingzi midge Triassic syn-collisional crust derived granite in the east Inner Mongolia and its constraint on the timing of collision between Siberian and Sino-Korean paleo-plates[J]. Acta Petrologica Sinica, 23(3): 565-582. (in Chinese with English abstract)

    Google Scholar

    LIU H, ZHANG H, LI G M, et al., 2016. Petrogenesis of the Early Cretaceous Qingcaoshan strongly peraluminous S-type granitic pluton, Southern Qiangtang, Northern Tibet: Constraints from whole-rock geochemistry and zircon U-Pb geochronology[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 52(5): 848-860. (in Chinese with English abstract)

    Google Scholar

    MA C Q, LI Z C, EHLERS C, et al., 1998. A post-collisional magmatic plumbing system: Mesozoic granitoid plutons from the Dabieshan high-pressure and ultrahigh-pressure metamorphic zone, east-central China[J]. Lithos, 45(1-4): 431-456. doi: 10.1016/S0024-4937(98)00043-7

    CrossRef Google Scholar

    MENG Y K, XU Z Q, GAO C S, et al., 2018. The identification of the Eocene magmatism and tectonic significance in the middle Gangdese magmatic belt, southern Tibet[J]. Acta Petrologica Sinica, 34(3): 513-546. (in Chinese with English abstract)

    Google Scholar

    PEARCE J, 1996. Sources and settings of granitic rocks[J]. Episodes, 19(4): 120-125. doi: 10.18814/epiiugs/1996/v19i4/005

    CrossRef Google Scholar

    PEARCE J A, HARRIS N B W, TINDLE A G, 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    CrossRef Google Scholar

    RAPP R P, WATSON E B, 1995. Dehydration melting of metabasalt at 8~32 kbar: implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 36(4): 891-931. doi: 10.1093/petrology/36.4.891

    CrossRef Google Scholar

    READ S E, COOPER A F, WALKER N W, 2002. Geochemistry and U-Pb geochronology of the Neoproterozoic-Cambrian Koettlitz Glacier Alkaline province, Royal Society range, Transantarctic mountains, Antarctica[J]. Royal Society of New Zealand Bulletin, 35: 143-151.

    Google Scholar

    ROCCHI S, DI VINCENZO G, GHEZZO C, et al., 2009. Granite-lamprophyre connection in the latest stages of the Early Paleozoic Ross Orogeny (Victoria Land, Antarctica)[J]. Geological Society of America Bulletin, 121(5-6): 801-819. doi: 10.1130/B26342.1

    CrossRef Google Scholar

    ROCCHI S, BRACCIALI L, DI VINCENZO G, et al., 2011. Arc accretion to the early Paleozoic Antarctic margin of Gondwana in Victoria Land[J]. Gondwana Research, 19(3): 594-607. doi: 10.1016/j.gr.2010.08.001

    CrossRef Google Scholar

    ROSSETTI F, STORTI F, SALVINI F, 2000. Cenozoic noncoaxial transtension along the western shoulder of the Ross Sea, Antarctica, and the emplacement of McMurdo dyke arrays[J]. Terra Nova, 12(2): 60-66. doi: 10.1111/j.1365-3121.2000.00270.x

    CrossRef Google Scholar

    SALVINI F, BRANCOLINI G, BUSETTI M, et al., 1997. Cenozoic geodynamics of the Ross Sea region, Antarctica: crustal extension, intraplate strike-slip faulting, and tectonic inheritance[J]. Journal of Geophysical Research: Solid Earth, 102(B11): 24669-24696. doi: 10.1029/97JB01643

    CrossRef Google Scholar

    STUMP E, 1995. The ross orogen of the transantarctic mountains[M]. Cambridge, UK: Cambridge University Press: 1-284.

    Google Scholar

    SUN S S, MCDONOUGH W F, 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[M]//SAUNDERS A D, NORRY M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 313-345.

    Google Scholar

    TAYLOR S R, MCLENNAN S M, 1985. The continental crust: its composition and evolution[M]. Palo Alto, California: Blackwell Scientific: 1-312.

    Google Scholar

    VETTER U, TESSENSOHN F, 1987. S-and I-type granitoids of North Victoria Land, Antarctica, and their inferred geotectonic setting[J]. Geologische Rundschau, 76(1): 233-243. doi: 10.1007/BF01820585

    CrossRef Google Scholar

    WANG J F, LI Y J, LI H Y, et al., 2018. Zircon U-Pb dating of the Shijiangshan Late Jurassic-early cretaceous a-type granite in Xi Ujimqin Banner of Inner Mongolia and its tectonic setting[J]. Geological Bulletin of China, 37(2-3): 382-396. (in Chinese with English abstract)

    Google Scholar

    WAREHAM C D, STUMP E, STOREY B C, et al., 2001. Petrogenesis of the Cambrian Liv Group, a bimodal volcanic rock suite from the Ross orogen, Transantarctic Mountains[J]. GSA Bulletin, 113(3): 360-372. doi: 10.1130/0016-7606(2001)113<0360:POTCLG>2.0.CO;2

    CrossRef Google Scholar

    WEAVER S D, BRADSHAW J D, LAIRD M G, 1984. Geochemistry of Cambrian volcanics of the Bowers Supergroup and implications for the early Palaeozoic tectonic evolution of northern Victoria Land, Antarctica[J]. Earth and Planetary Science Letters, 68(1): 128-140. doi: 10.1016/0012-821X(84)90145-6

    CrossRef Google Scholar

    WHALEN J B, CURRIE K L, CHAPPELL B W. 1987. A-Type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 95(4): 407-419. doi: 10.1007/BF00402202

    CrossRef Google Scholar

    WU F Y, LI X H, YANG J H, et al., 2007. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 23(6): 1217-1238. (in Chinese with English abstract)

    Google Scholar

    WU F Y, LIU X C, JI W Q, et al., 2017. Highly fractionated granites: Recognition and research[J]. Science China Earth Sciences, 60(7): 1201-1219. doi: 10.1007/s11430-016-5139-1

    CrossRef Google Scholar

    ZHANG Y F, LIN X W, GUO Q M, et al., 2015. LA-ICP-MS Zircon U-Pb Dating and Geochemistry of Aral Granitic Plutons in Koktokay Area in the Southern Altay Margin and Their Source Significance[J]. Acta Geologica Sinica, 89(2): 339-354. (in Chinese with English abstract)

    Google Scholar

    国显正, 贾群子, 李金超, 等, 2019. 东昆仑哈日扎花岗闪长岩形成时代、地球化学特征及其构造意义[J]. 地质力学学报, 25(2): 286-300.

    Google Scholar

    何鹏, 芦西战, 杨睿娜, 等, 2020. 阿尔金北缘尧勒萨依河口I型花岗岩岩石地球化学、锆石U-Pb年代学研究[J]. 矿产勘查, 11(9): 1822-1830. doi: 10.3969/j.issn.1674-7801.2020.09.003

    CrossRef Google Scholar

    李锦轶, 高立明, 孙桂华, 等, 2007. 内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束[J]. 岩石学报, 23(3): 565-582.

    Google Scholar

    刘洪, 张晖, 李光明, 等, 2016. 藏北羌塘南缘早白垩世青草山强过铝质S型花岗岩的成因: 来自地球化学和锆石U-Pb年代学的约束[J]. 北京大学学报(自然科学版), 52(5): 848-860.

    Google Scholar

    孟元库, 许志琴, 高存山, 等, 2018. 藏南冈底斯带中段始新世岩浆作用的厘定及其大地构造意义[J]. 岩石学报. 34(3): 513-546.

    Google Scholar

    王金芳, 李英杰, 李红阳, 等, 2018. 内蒙古西乌旗石匠山晚侏罗世-早白垩世A型花岗岩锆石U-Pb年龄及构造环境[J]. 地质通报, 37(2-3): 382-396.

    Google Scholar

    吴福元, 李献华, 杨进辉, 等, 2007. 花岗岩成因研究的若干问题[J]. 岩石学报, 23(6): 1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001

    CrossRef Google Scholar

    吴福元, 刘小驰, 纪伟强, 等, 2017. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 47(7): 745-765.

    Google Scholar

    张亚峰, 蔺新望, 郭岐明, 等, 2015. 阿尔泰南缘可可托海地区阿拉尔花岗岩体LA-ICP-MS锆石U-Pb定年、岩石地球化学特征及其源区意义[J]. 地质学报, 89(2): 339-354.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(3)

Article Metrics

Article views(2072) PDF downloads(39) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint