2021 Vol. 27, No. 2
Article Contents

ZHANG Hao, SHI Gang, WU Hong, SHAO Lei, SONG Chunhua, YU Fei. 2021. Quaternary activity of the Luodian-Zhoupu buried fault in the Shanghai region: Integrated exploration and research. Journal of Geomechanics, 27(2): 267-279. doi: 10.12090/j.issn.1006-6616.2021.27.02.025
Citation: ZHANG Hao, SHI Gang, WU Hong, SHAO Lei, SONG Chunhua, YU Fei. 2021. Quaternary activity of the Luodian-Zhoupu buried fault in the Shanghai region: Integrated exploration and research. Journal of Geomechanics, 27(2): 267-279. doi: 10.12090/j.issn.1006-6616.2021.27.02.025

Quaternary activity of the Luodian-Zhoupu buried fault in the Shanghai region: Integrated exploration and research

    Fund Project: This research is financially supported by the Shanghai Municipal Financial Funding Project (Grant No.002021080001)
More Information
  • The Luodian-Zhoupu fault is an important NW-trending buried active fault that runs through the downtown area of Shanghai City. Its Quaternary activity significantly affects the urban geological safety. We applied a set of integrated geophysical methods to carry out high-precision gravity, shallow seismic and controlled source audio magneto telluric (CSAMT) explorations in the study area, and studied the distribution pattern and activity level of the Luodian-Zhoupu fault, combining with joint borehole profile and optically stimulated luminescence chronology. The exploration results reveal good ductility of the fault in southern Shanghai, and the fault trace is well reflected in the profiles of gravity, CSAMT and shallow artificial seismicity. Gravity area measurements show that the fault appears as a group of nearly parallel fault tracks in southern Shanghai. The buried depths of the shallowest breakpoints researched by the shallow seismic exploration and joint borehole profile method are in good agreement (~200 m). TCSAMT profile displays obvious deep fault features. The research outcomes from the profiles with geophysical exploration and joint borehole indicate no obvious trace of the fault breaking into the overlying Middle Pleistocene, and it is believed that the latest active age of the fault is the Early Pleistocene referring to the result of optically stimulated luminescence dating. Since the Luodian-Zhoupu fault is closely related to regional historical seismic events, and the regional stress state is currently NW-compressive, with the fault prone to tensile and torsional activities, its activity and seismic risk characteristics require continuous attention.

  • 加载中
  • ABBOTT R E, LOUIE J N, 2000. Depth to bedrock using gravimetry in the Reno and Carson City, Nevada, area basins[J]. GEOPHYSICS, 65(2): 340-350. doi: 10.1190/1.1444730

    CrossRef Google Scholar

    BLAKELY R J, CHRISTIANSEN R L, GUFFANTI M et al., 1997. Gravity anomalies, Quaternary vents, and Quaternary faults in the southern Cascade Range, Oregon and California: Implications for arc and backarc evolution[J]. Journal of Geophysical Research: Solid Earth, 102(B10): 22513-22527. doi: 10.1029/97JB01516

    CrossRef Google Scholar

    CAO X W, MA X M, GONG S Y et al., 2018. A study on distribution characteristics and activity of north-west faults in Shenzhen[J]. Journal of Geomechanics, 24(6): 759-767. (in Chinese with English abstract)

    Google Scholar

    CHAI C Z, MENG G K, DU P et al., 2006. Comprehensive multi-level exploration of buried active fault: an example of Yinchuan buried active fault[J]. Seismology and Geology, 28(4): 536-546. (in Chinese with English abstract)

    Google Scholar

    CHEN H Q ZHUAN S P CHEN C et al. 2020. Quaternary activity of the Fengtai-Yejituo fault in Tangshan, Hebei Province-Evidence from 14C and magnetic stratigraphy[J/OL]. Geology in China: 1-19. (2020-01-10). (in Chinese with English abstract)

    Google Scholar

    DENG Q D, CHEN L C, RAN Y K, 2004. Quantitative studies and applications of active tectonics[J]. Earth Science Frontiers, 11(4): 383-392. (in Chinese with English abstract)

    Google Scholar

    DENG Q D, XU X W, ZHANG X K et al., 2003. Methods and techniques for surveying and prospecting active faults in urban areas[J]. Earth Science Frontiers, 10(1): 93-104. (in Chinese with English abstract)

    Google Scholar

    DONG Z Y, TANG J, ZHOU Z M, 2010. Application of csamt to buried active faults investigation[J]. Seismology and Geology, 32(3): 442-452. (in Chinese with English abstract)

    Google Scholar

    GAO ZHANWU, WU HAO, et al., 2014. Late quaternary activity of the central-north segment of Taihang mountain piedmont fault zone[J]. Technology for Earthquake Disaster Prevention, 9(2): 159-170. (in Chinese with English abstract)

    Google Scholar

    GU P T, 2006. Thinking of getotectonic attribution on Jinshan group in Shanghai area[J]. Shanghai Geology, 27(4): 10-13. (in Chinese with English abstract)

    Google Scholar

    GU P T, WANG Y S, 1988. The characteristic of geologic structure in Shanghai[J]. Shanghai Geology, 9(2): 1-14. (in Chinese with English abstract)

    Google Scholar

    HE J S. 1990. Controlled Source Audio-Frequency Magneto-Telluric[M]. Changsha: Central South University of Technology Press. (in Chinese)

    Google Scholar

    HE Z Q, CHEN Y K, YE T L, et al. 2007. Application of shallow seismic exploration in detection of buried fault in coastal areas[J]. Seismology and Geology, 29(2): 363-372. (in Chinese with English abstract)

    Google Scholar

    HE Z Q, YE T L, DING Z F et al., 2001. The application of shallow seismic prospecting methods to active fault dectection in cities[J]. Recent Developments in World Seismology, 31(3): 1-6. (2020-03-21) (in Chinese with English abstract)

    Google Scholar

    HUANG L S, HOU Y J, CHEN Y R, et al. 2020. Rapid and accurate positioning concealed fault using geophysical and geochemical techniques in cities and surrounding areas-A case study of Lingui district, Guilin, Guangxi[J/OL]. Geology in China, 1-16. (in Chinese with English abstract)

    Google Scholar

    HUO E J, LIU C S, ZHANG Z Q, et al. 2004. Research on the Hidden Fault and Its Activity in Shanghai[M]. Beijing: Seismological Press. (in Chinese)

    Google Scholar

    LEI Q Y, CHAI C Z, MENG G K et al., 2008. Composite drilling section exploration of Yinchuan buried fault[J]. Seismology and Geology, 30(1): 250-263. (in Chinese with English abstract)

    Google Scholar

    LI D Q, ZHANG Y C, XUE R H, et al. 2010. Application of CSAMT to detection of active faults[J]. Progress in Geophysics, 25(4): 1387-1395. (in Chinese with English abstract)

    Google Scholar

    LI Z X, ZENG Z F, LI E Z et al., 2005. The function of geophysical method in active fault detection and discuss of combining methods[J]. Journal of Jiling University: Earth Science Edition, 35(S1): 109-114. (in Chinese with English abstract)

    Google Scholar

    LIU B J, HU P, MENG Y Q, et al. 2009. Research on fine crustal structure using deep seismic reflection profile in Beijing region[J]. Chinese Journal of Geophysics, 52(9): 2264-2272. (in Chinese with English abstract)

    Google Scholar

    LIU B J, ZHANG X K, FANG S M, et al. 2002. Acquisition technique of high-resolution shallow seismic data for surveying of urban active faults[J]. Seismology and Geology, 24(4): 524-532. (in Chinese with English abstract)

    Google Scholar

    PAN J S, LIU B J, ZHU J F et al., 2002. Comparative experiment on seismic sources in high-resolution seismic exploration for urban active faults[J]. Seismology and Geology, 24(4): 533-541. (in Chinese with English abstract)

    Google Scholar

    PAN J S, ZHANG X K, LIU B J et al., 2003. Research on detecting urban active faults by shallow seismic exploration method with anti-disturbance high resolution[J]. Earthquake Research in China, 19(2): 148-157. (in Chinese with English abstract)

    Google Scholar

    QI B S, PAN Z F, FENG C J, et al. 2020. Application of comprehensive geophysical-drilling exploration to detect the buried Shunyi active fault belt in Beijing[J]. Acta Geologica Sinic, 94(4): 1315-1329. (in Chinese with English abstract)

    Google Scholar

    QIU J B, LI X. 2007. Quaternary stratigraphy and sedimentary environment in Shanghai[M]. Shanghai: Shanghai Century Publishing Co. LTD. (in Chinese)

    Google Scholar

    SHANG S J, FENG C J, TAN C X et al., 2019. Quaternary activity study of major buried faults near Xiongan new area[J]. Acta Geoscientica Sinica, 40(6): 836-846. (in Chinese with English abstract)

    Google Scholar

    Shanghai Bureau of Geology and Mineral Resources. 1988. Shanghai Regional Geology[M]. Beijing: Geological publishing house. (in Chinese).

    Google Scholar

    Shanghai Earthquake Agency. 1992. Seismic hazard analysis and basic intensity review in Shanghai area[M]. Beijing: Seismological Press. (in Chinese)

    Google Scholar

    SHI K F. 1999. Theory and Application of controlled source Audio Magnetotelluric method[M]. Beijin: Sciencepress. (in Chinese).

    Google Scholar

    WANG A G, MA W, ZHANG X H et al., 2006. Electrical characteristics of buried fault and prospecting by superficial direct-current electrical method[J]. Northwestern Seismological Journal, 28(3): 242-247. (in Chinese with English abstract)

    Google Scholar

    WU J P, 2001. Geophysical methods of seismically active fault detection in cities[J]. Recent Developments in World Seismology, 31(8): 2-16. (in Chinese with English abstract)

    Google Scholar

    WU Z H, ZHOU C J, TAN C X et al., 2016. The active tectonics and regional crustal stability features in the area of Yangtze River economic belt[J]. Journal of Geomechanics, 22(3): 379-411, 372. (in Chinese with English abstract)

    Google Scholar

    WU Z H. 2019. The definition and classification of active faults: History, Current status and progress[J]. Acta Geoscientica Sinica, 40(5): 661-697. (in Chinese with English abstract)

    Google Scholar

    WU Z H, HU M M. 2019. Neotectonics, active tectonics and earthquake geology: terminology, applications and advances[J]. Journal of Geodynamics, 127: 1-15. doi: 10.1016/j.jog.2019.01.007

    CrossRef Google Scholar

    WU Z Q, YIN C. 2007. Application of Schlumberger transverse profiling method to detecting buried faults[J]. Chinese Journal of Geophysics, 50(2): 625-631. (in Chinese with English abstract) doi: 10.1007/s11589-001-0072-9

    CrossRef Google Scholar

    XU M C, GAO J H, LIU J X et al., 2005. Application of the seismic method to detecting active faults[J]. Earthquake Research in China, 21(1): 17-23. (in Chinese with English abstract)

    Google Scholar

    XU X W, WU W M, ZHANG X K, et al. 2002a. Recent tectonic changes and earthquakes in the crust of the Capital region[M]. Beijin: Sciencepress. (in Chinese).

    Google Scholar

    XU X W, YU G H, MA W T et al., 2002b. Evidence and methods for determining the safety distance from the potential earthquake surface rupture on active fault[J]. Seismology and Geology, 24(4): 470-483. (in Chinese with English abstract)

    Google Scholar

    XU X W, YU G H, RAN Y K, et al. 2015. An Introduction to active Faults in China: Findings of active faults in 20 cities[M]. Beijing: Seismological Press. (in Chinese)

    Google Scholar

    YAN J Q, JIA S J. 1997. Developments in research on the principles and methods potention source regious of moderate and strong earthquakes[J]. Recent Developments in World Seismology, (2): 1-8. (in Chinese with English abstract)

    Google Scholar

    YANG M G, YU Z Z, XU M G, et al. 2015. Tectonic framework of Huanan Ocean in the Jinning period[C]. The 13th East China six provinces one city geoscientific science forum collection, 14-30. (in Chinese with English abstract)

    Google Scholar

    YANG X P, ZHENG R Z, ZHANG L F et al., 2007. Some problems worth considering in the geological explanation of shallow seismic prospecting data[J]. Seismology and Geology, 29(2): 282-293. (in Chinese with English abstract)

    Google Scholar

    YI B, ZENG Z F, XUE J et al., 2008. Application of geophysical method in City active fault detection[J]. Progress in Geophysics, 23(2): 599-604. (in Chinese with English abstract)

    Google Scholar

    YU P, WU J S, WANG J L, et al. 2008. Long period magnetotelluric data-based study on deep fault structure in Shanghai and Zhejiang Area[J]. Journal of Tongji University(Natural Science), 364: 549-554. . (in Chinese with English abstract)

    Google Scholar

    YU S P. 1993. High-ResolutionSeismicSurvey[M]. Beijing: Petroleum Industry Press. (in Chinese)

    Google Scholar

    ZHANG D, WU Z H, LI J C, et al, 2019. The Application of Multi-Frequency Gpr Antenna For Imaging The Shallow Subsurface Features In The Yushu Active Fault[J]. Journal of Geomechanics, 25(6): 1138-1149. (in Chinese with English abstract)

    Google Scholar

    ZHANG H L(Chief Editor), 1999. Shanghai Geology and Minerals[M]. Shanghai: Shanghai Academy of Social Sciences Press. (in Chinese).

    Google Scholar

    ZHANG H, SHI G, WU H et al., 2020. In-situ stress measurement in the shallow basement of the Shanghai area and its structural geological significance[J]. Journal of Geomechanics, 26(4): 583-594. (in Chinese)

    Google Scholar

    ZHANG Z Q, LIU C S, WANG F, 2004. Preliminary study on relation of fault activity and seismicity in the Shanghai region[J]. Earthquake Research in China, 20(2): 143-151. (in Chinese with English abstract)

    Google Scholar

    曹新文, 马秀敏, 龚淑云, 等, 2018. 深圳北西向断裂分布特征及其活动性研究[J]. 地质力学学报, 24(6): 759-767.

    Google Scholar

    柴炽章, 孟广魁, 杜鹏, 等, 2006. 隐伏活动断层的多层次综合探测: 以银川隐伏活动断层为例[J]. 地震地质, 28(4): 536-546. doi: 10.3969/j.issn.0253-4967.2006.04.002

    CrossRef Google Scholar

    陈宏强, 专少鹏, 陈超, 等. 2020. 河北省唐山地区丰台-野鸡坨断裂第四纪活动性: 来自14C和磁性地层年代学的证据[J/OL]. 中国地质: 1-19. (2020-01-10)

    Google Scholar

    邓起东, 陈立春, 冉勇康, 2004. 活动构造定量研究与应用[J]. 地学前缘, 11(4): 383-392. doi: 10.3321/j.issn:1005-2321.2004.04.005

    CrossRef Google Scholar

    邓起东, 徐锡伟, 张先康, 等, 2003. 城市活动断裂探测的方法和技术[J]. 地学前缘, 10(1): 93-104. doi: 10.3321/j.issn:1005-2321.2003.01.012

    CrossRef Google Scholar

    董泽义, 汤吉, 周志明, 2010. 可控源音频大地电磁法在隐伏活动断裂探测中的应用[J]. 地震地质, 32(3): 442-452. doi: 10.3969/j.issn.0253-4967.2010.03.011

    CrossRef Google Scholar

    高战武, 吴昊, 李光涛, 等, 2014. 太行山山前断裂带中北段晚第四纪活动性研究[J]. 震灾防御技术, 9(2): 159-170.

    Google Scholar

    顾澎涛, 王尧舜, 1988. 上海地区地质构造特征[J]. 上海地质, 9(2): 1-14.

    Google Scholar

    顾澎涛, 2006. 关于上海地区金山群大地构造属性的思考[J]. 上海地质, 27(4): 10-13.

    Google Scholar

    何继善. 1990. 可控源音频大地电磁法[M]. 长沙: 中南工业大学出版社.

    Google Scholar

    何正勤, 陈宇坤, 叶太兰, 等, 2007. 浅层地震勘探在沿海地区隐伏断层探测中的应用[J]. 地震地质, 29(2): 363-372.

    Google Scholar

    何正勤, 叶太兰, 丁志峰, 等, 2001. 城市活断层探测中的浅层地震勘探方法[J]. 国际地震动态, 31(3): 1-6. doi: 10.3969/j.issn.0253-4975.2001.03.001

    CrossRef Google Scholar

    黄理善, 侯一俊, 陈远荣, 等. 2020. 基于物探-化探技术快速精确定位评价城市及周边隐伏断层: 以广西桂林市临桂区为例[J/OL]. 中国地质: 1-16.

    Google Scholar

    火恩杰, 刘昌森, 章振铨, 等, 2004. 上海市隐伏断裂及其活动性研究[M]. 北京: 地震出版社.

    Google Scholar

    雷启云, 柴炽章, 孟广魁, 等, 2008. 银川隐伏断层钻孔联合剖面探测[J]. 地震地质, 30(1): 250-263. doi: 10.3969/j.issn.0253-4967.2008.01.018

    CrossRef Google Scholar

    李帝铨, 张永超, 薛融晖, 等, 2010. CSAMT在某重大城市活动断层探测中的应用[J]. 地球物理学进展, 25(4): 1387-1395. doi: 10.3969/j.issn.1004-2903.2010.04.030

    CrossRef Google Scholar

    李征西, 曾昭发, 李恩泽, 等, 2005. 地球物理方法探测活动断层效果和方法最佳组合分析[J]. 吉林大学学报: 地球科学版, 35(S1): 109-114.

    Google Scholar

    刘保金, 胡平, 孟勇奇, 等, 2009. 北京地区地壳精细结构的深地震反射剖面探测研究[J]. 地球物理学报, 52(9): 2264-2272.

    Google Scholar

    刘保金, 张先康, 方盛明, 等, 2002. 城市活断层探测的高分辨率浅层地震数据采集技术[J]. 地震地质, 24(4): 524-532.

    Google Scholar

    潘纪顺, 刘保金, 朱金芳, 等, 2002. 城市活断层高分辨率地震勘探震源对比试验研究[J]. 地震地质, 24(4): 533-541.

    Google Scholar

    潘纪顺, 张先康, 刘保金, 等, 2003. 城市活断层的抗干扰高分辨率浅层地震勘探研究[J]. 中国地震, 19(2): 148-157.

    Google Scholar

    戚帮申, 潘智锋, 丰成君, 等, 2020. 北京顺义断裂第四纪活动性地球物理及钻孔综合探测证据[J]. 地质学报, 94(4): 1315-1329.

    Google Scholar

    邱金波, 李晓. 2007. 上海市第四纪地层与沉积环境[M]. 上海: 上海科学技术出版社.

    Google Scholar

    商世杰, 丰成君, 谭成轩, 等, 2019. 雄安新区附近主要隐伏断裂第四纪活动性研究[J]. 地球学报, 40(6): 836-846.

    Google Scholar

    上海地质矿产局. 1988. 上海市区域地质志[M], 北京: 地质出版社.

    Google Scholar

    上海市地震局. 上海地区地震危险性分析与基本烈度复核[M]. 北京: 地震出版社, 1992.

    Google Scholar

    石昆法. 可控源音频大地电磁法理论与应用[M]. 北京: 科学出版社, 1999.

    Google Scholar

    吴建平, 2001. 城市地震活断层探测的地球物理方法[J]. 国际地震动态, 31(8): 2-16.

    Google Scholar

    吴中海, 周春景, 谭成轩, 等, 2016. 长江经济带地区活动构造与区域地壳稳定性基本特征[J]. 地质力学学报, 22(3): 379-411, 372.

    Google Scholar

    吴中海, 2019. 活断层的定义与分类: 历史、现状和进展[J]. 地球学报, 40(5): 661-697.

    Google Scholar

    吴子泉, 尹成, 2007. 电阻率横向剖面法及其在隐伏断层探测中的应用研究[J]. 地球物理学报, 50(2): 625-631.

    Google Scholar

    徐明才, 高景华, 刘建勋, 等, 2005. 应用于城市活断层调查的地震方法技术[J]. 中国地震, 21(1): 17-23.

    Google Scholar

    徐锡伟, 吴卫民, 张先康, 等. 2002a. 首都圈地区地壳最新构造变动与地震[M]. 北京: 科学出版社.

    Google Scholar

    徐锡伟, 于贵华, 马文涛, 等, 2002b. 活断层地震地表破裂"避让带"宽度确定的依据与方法[J]. 地震地质, 24(4): 470-483.

    Google Scholar

    徐锡伟, 于贵华, 冉勇康, 等, 2015. 中国城市活动断层概论: 20个城市活动断层探测成果[M]. 北京: 地震出版社.

    Google Scholar

    鄢家全, 贾素娟, 1997. 中强地震潜在震源区划分原则和方法的研究进展[J]. 国际地震动态, (2): 1-8.

    Google Scholar

    杨明桂, 余忠珍, 徐梅桂, 等, 晋宁期华南洋的构造格局[C]//第十三届华东六省一市地学科技论坛论文集. 南昌: 江西省地质学会: 14-30.

    Google Scholar

    杨晓平, 郑荣章, 张兰凤, 等, 2007. 浅层地震勘探资料地质解释过程中值得重视的问题[J]. 地震地质, 29(2): 282-293.

    Google Scholar

    易兵, 曾昭发, 薛建, 等, 2008. 地球物理方法对城市活断层的探测与研究[J]. 地球物理学进展, 23(2): 599-604.

    Google Scholar

    于鹏, 吴健生, 王家林, 等, 2008. 利用长周期MT数据研究沪浙地区深部断裂结构[J]. 同济大学学报: 自然科学版, 36(4): 549-554.

    Google Scholar

    俞寿朋. 1993. 高分辨率地震勘探[M]. 北京: 石油工业出版社.

    Google Scholar

    张迪, 吴中海, 李家存, 等, 2019. 综合多频率地质雷达天线探测活断层浅层结构: 以玉树活动断裂为例[J]. 地质力学学报, 25(6): 1138-1149.

    Google Scholar

    张浩, 施刚, 巫虹, 等, 2020. 上海地区浅部地应力测量及其构造地质意义分析[J]. 地质力学学报, 26(4): 583-594.

    Google Scholar

    张宏良. 1999. 上海地质矿产志[M]. 上海: 上海社会科学院出版社.

    Google Scholar

    章振铨, 刘昌森, 王锋, 2004. 上海地区断裂活动性与地震关系初析[J]. 中国地震, 20(2): 143-151.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(1260) PDF downloads(123) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint