2021 Vol. 27, No. 2
Article Contents

GUO Fei, REN Junjie, GUO Hui, SU Qiang, REN Jianguo, YAN Xiaobing. 2021. Using historical aerial images to accurately locate the urban 'invisible' active faults: A case study of the Shuiyu fault of the Datong Basin in Shanxi province. Journal of Geomechanics, 27(2): 254-266. doi: 10.12090/j.issn.1006-6616.2021.27.02.024
Citation: GUO Fei, REN Junjie, GUO Hui, SU Qiang, REN Jianguo, YAN Xiaobing. 2021. Using historical aerial images to accurately locate the urban "invisible" active faults: A case study of the Shuiyu fault of the Datong Basin in Shanxi province. Journal of Geomechanics, 27(2): 254-266. doi: 10.12090/j.issn.1006-6616.2021.27.02.024

Using historical aerial images to accurately locate the urban "invisible" active faults: A case study of the Shuiyu fault of the Datong Basin in Shanxi province

    Fund Project: This research is financially supported by the National Natural Science Foundation (Grant No.41572193, 41941016, U1839204), Key Research Program of Chinese Academy of Sciences (Grant No.KFZD-SW-422), Fundamental Research Funds for National Institute of Natural Hazards by Ministry of Emergency Management of China (Grant No.ZDJ2017-24), and the Research Program of Datong People's Government (Grant No.SXDT2019018)
More Information
  • Active fault is a major risk source of urban earthquake disaster. Accurately identifying the spatial geometry distribution features of active fault is the basis for urban seismic risk migration. However, due to the large-scale and deep urban renewal by human activities and urbanization, the traces of active faults are obscure and invisible on the surface, which makes it hard to identify the surface geometry of this kind of active faults. Though the northern Shuiyu fault in the central part of the Datong Basin is bounded by the eastern edge of the Mapu Mountain and characterized by linear displaced landforms, the southern section of the Shuiyu fault crossing the Yudong District of Datong City is covered by dense buildings and roads, becoming an "invisible" fault. In this study, based on the 1965 historical aerial photos of the Datong region in the 1960's and the 1∶10000 topographic maps, we reconstructed the original DEM and DOM of this region using the aerial photo stereopair and stereoscopic photography. These original data revealed the geometry distribution characteristics of the Shuiyu fault. Our results show that the piedmont fault scarps are marked by prominent linear features along the northern Shuiyu fault. We can accurately locate the fault by the images. Based on the previous Keyhole satellite images, DOM and DEM data, the geometric distribution of the fault in the southern Shuiyu fault can be accurately determined. Topographic profiles extracted from the original DEM show that the vertical offset on terrace T3 along the Shuiyu fault is about 19 meters. On this basis, the fault natural exposures and shallow seismic reflection data demonstrate that it is feasible to accurately locate the "invisible" active fault in the city by using historical aerial photos and stereoscopic photography. This study provides not only an important basis for the seismic hazard assessment in the Datong region but a useful technique for the detection of "invisible" active faults beneath a city.

  • 加载中
  • DENG Q D, 1991. Research on active fault[M]. Beijing: Seismological Press. (in Chinese)

    Google Scholar

    DENG Q D, NOBUYUKI Y, XU X W, et al., 1994. Study on the late Quaternary kinematics of the northern piedmont fault of the Liuleng Mountain[J]. Seismology and Geology, 16(4): 339-343. (in Chinese)

    Google Scholar

    DENG Q D, XU X W, ZHANG X K, et al., 2003. Methods and techniques for surveying and prospecting active faults in urban areas[J]. Earth Science Frontiers, 10(1): 93-104. (in Chinese)

    Google Scholar

    DENG Q D, CHEN L C, RAN Y K, 2004. Quantitative studies and applications of active tectonics[J]. Earth Science Frontiers, 11(4): 383-392. (in Chinese with English abstract)

    Google Scholar

    DENG Q D, LU Z X, YANG Z E, 2007. Remarks on urban active faults exploration and associated activity assessment[J]. Seismology and Geology, 29(2): 189-200. (in Chinese with English abstract)

    Google Scholar

    DENG Q D, WEN X Z, 2008. A review on the research of active tectonics-history, progress and suggestions[J]. Seismology and Geology, 30(1): 1-30. (in Chinese)

    Google Scholar

    DUAN R T, FANG Z J, 1995. Neotectonic characteristics of the northern piedmont fault of the Liuleng mountain[J]. Seismology and Geology, 17(3): 207-213. (in Chinese with English abstract)

    Google Scholar

    FANG S M, ZHANG X K, LIU B J, et al. 2002. Geophysical methods for the exporation of urban active faults[J]. Seismology and Geology, 24(4): 606-613. (in Chinese)

    Google Scholar

    FENG X Y, 1986. On seismic geomorphology[J]. North China Earthquake Sciences, 4(8): 66-71. (in Chinese)

    Google Scholar

    FENG X Y, 1991. Earthquake dislocation geomorphy[J]. Inland Earthquake, 5(1): 17-26. (in Chinese with English abstract)

    Google Scholar

    FRANKEL K L, DOLAN J F, 2007. Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data[J]. Journal of Geophysical Research: Earth Surface, 112(F2): F02025.

    Google Scholar

    GUAN Y X, LU J T, HE T J, et al., 2016. The application of CSAMT exploration to detecting buried faults in city[J]. Shanghai Land & Resources, 37(1): 90-93. (in Chinese with English abstract)

    Google Scholar

    HOOPER D M, BURSIK M I, WEBB F H, 2003. Application of high-resolution, interferometric DEMs to geomorphic studies of fault scarps, Fish Lake Valley, Nevada-California, USA[J]. Remote Sensing of Environment, 84(2): 255-267. doi: 10.1016/S0034-4257(02)00110-4

    CrossRef Google Scholar

    JIANG W L, XIE X S, WANG H Z, et al., 2003. Holocene palaeoseismic activities along the northern piedmont fault of Hengshan mountain, Datong basin, Shanxi province[J]. Earthquake Research in China, 19(1): 8-19. (in Chinese with English abstract)

    Google Scholar

    LEI Q Y, CHAI C Z, MENG G K, et al., 2011. Method of locating buried active fault by composite drilling section doubling exploration[J]. Seismology and Geology, 33(1): 45-55. (in Chinese)

    Google Scholar

    LI J H, SONG F M, LIANG X H, et al., 1998. Evaluation of active fault in the engineering site area for Datong power plant 2[J]. Journal of Engineering Geology, 6(1): 79-84. (in Chinese with English abstract)

    Google Scholar

    LI Y H, WANG Q L, CUI D X, et al., 2013. Research on fault motion and segmentation charateristic of Kouquan fault in Datong basin by numerical simulation[J]. Journal of Geodesy and Geodynamics, 33(4): 9-12. (in Chinese with English abstract)

    Google Scholar

    LIU B J, CHAI C Z, FENG S Y, et al., 2008. Seismic exploration method for buried fault and its up-breakpoint in Quaternary sediment area-an example of Yinchuan buried active fault[J]. Chinese Journal of Geophysics, 51(5): 1475-1483. (in Chinese with English abstract)

    Google Scholar

    MICHELETTI N, LANE S N, CHANDLER J H, 2015. Application of archival aerial photogrammetry to quantify climate forcing of alpine landscapes[J]. The Photogrammetric Record, 30(150): 143-165. doi: 10.1111/phor.12099

    CrossRef Google Scholar

    OSKIN M E, LE K, STRANE M D, 2007. Quantifying fault-zone activity in arid environments with high-resolution topography[J]. Geophysical Research Letters, 34(23): L23S05.

    Google Scholar

    PARSONS T, 2007. Persistent earthquake clusters and gaps from slip on irregular faults[J]. Nature Geoscience, 1(1): 59-63.

    Google Scholar

    SIEH K E, JAHNS R H, 1984. Holocene activity of the San Andreas fault at Wallace Creek, California[J]. GSA Bulletin, 95(8): 883-896. doi: 10.1130/0016-7606(1984)95<883:HAOTSA>2.0.CO;2

    CrossRef Google Scholar

    WANG S S, AI M, WU C Y, et al., 2018. Application of DEM generation technology from high resolution satellite image in quantitative active tectonics study: a case study of fault scarps in the southern margin of Kumishi basin[J]. Seismology and Geology, 40(5): 999-1017. (in Chinese with English abstract)

    Google Scholar

    WU J B, GAO P F, W J H, et al., 2019. Application of integrated geophysical methods to the detection of buried faults in Liuzhou, Guangxi[J]. Geology and Exploration, 55(4): 1026-1035. (in Chinese with English abstract)

    Google Scholar

    XIE X S, JIANG W L, WANG R, et al., 2003. Holocene paleo-seismic activities on the Kouquan fault zone, Datong basin, Shanxi province[J]. Seismology and Geology, 25(3): 359-374. (in Chinese with English abstract)

    Google Scholar

    XU W M, CHEN X, WANG L, 2012. Technology and methods of historical aerial photo data processing[J]. Urban Geotechnical Investigation & Surveying(6): 93-95, 102. (in Chinese)

    Google Scholar

    XU X W, YU G H, MA W T, et al., 2002. Evidence and methods for determining the safety distance from the potential earthquake surface rupture on active fault[J]. Seismology and Geology, 24(4): 470-483. (in Chinese with English abstract)

    Google Scholar

    XU X W, 2006. Active faults, associated earthquake disaster distribution and policy for disaster reduction[J]. Technology for Earthquake Disaster Prevention, 1(1): 7-14. (in Chinese with English abstract)

    Google Scholar

    YAN R H, LI J W, ZHU W, et al., 2004. Preliminary research on the digitalization and database construction of historical aerophotograph[J]. Remote Sensing Technology and Application, 19(2): 102-107. (in Chinese with English abstract)

    Google Scholar

    YANG H B, YANG X P, HUANG X N, et al., 2016. Data comparative analysis between SFM data and DGPS data: a case study from fault scarp in the east bank of Hongshuiba river, northern margin of the Qilian shan[J]. Seismology and Geology, 38(4): 1030-1046. (in Chinese with English abstract)

    Google Scholar

    YIN Y G, SHI W, GONG W B, et al., 2017. The application of ground penetrating radar technology in geological mapping of shallow covered active tectonics region: a case study of 1: 50000 mapping of neotectonic zone and active tectonic zone in Qing Tongxia area, Ningxia[J]. Journal of Geomechanics, 23(2): 214-223. (in Chinese with English abstract)

    Google Scholar

    ZHANG D, LI J C, WU Z H, et al., 2021. Using terrestrial LiDAR to accurately measure the microgeomorphologic geometry of active fault: A case study of fault scarp on the Maoyaba fault zone[J]. Journal of Geomechanics, 27(1): 63-72. (in Chinese with English abstract)

    Google Scholar

    ZHANG D, WU Z H, LI J C, et al, 2019. The application of multi-frequency GPR antenna for imaging the shallow subsurface features in the Yushu active fault[J]. Journal of Geomechanics, 25(6): 1138-1149. (in Chinese with English abstract)

    Google Scholar

    ZHANG L, BAI L Y, CAI X M, et al., 2014. Study on the position of north west section of Nankou-Sunhe fault in Beijing and its activity[J]. Geoscience, 28(1): 234-242. (in Chinese)

    Google Scholar

    ZHANG S M, WANG D D, LIU X D, et al., 2008. Using borehole core analysis to reveal Late Quaternary paleoearthquakes along the Nankou-Sunhe Fault, Beijing[J]. Science in China Series D: Earth Sciences, 38(7): 881-895. (in Chinese with English abstract)

    Google Scholar

    ZIELKE O, ARROWSMITH J R, LUDWIG L G, et al., 2010. Slip in the 1857 and Earlier Large Earthquakes Along the Carrizo Plain, San Andreas Fault[J]. Science, 327(5969): 1119-1122. doi: 10.1126/science.1182781

    CrossRef Google Scholar

    ZIELKE O, KLINGER Y, ARROWSMITH J R, 2015. Fault slip and earthquake recurrence along strike-slip faults: Contributions of high-resolution geomorphic data[J]. Tectonophysics, 638: 43-62. doi: 10.1016/j.tecto.2014.11.004

    CrossRef Google Scholar

    ZOU X B, YUAN D Y, SHAO Y X, et al., 2017. Using stereo-pair and differential GPS to reveal surface deformation characteristics of the Minle-Yongchang fault[J]. Seismology and Geology, 39(6): 1198-1212. (in Chinese with English abstract)

    Google Scholar

    邓起东, 1991. 活动断裂研究[M]. 北京: 地震出版社.

    Google Scholar

    邓起东, 米仓伸之, 徐锡伟, 等, 1994. 山西高原六棱山北麓断裂晚第四纪运动学特征初步研究[J]. 地震地质, 16(4): 339-343.

    Google Scholar

    邓起东, 徐锡伟, 张先康, 等, 2003. 城市活动断裂探测的方法和技术[J]. 地学前缘, 10(1): 93-104.

    Google Scholar

    邓起东, 陈立春, 冉勇康, 2004. 活动构造定量研究与应用[J]. 地学前缘, 11(4): 383-392.

    Google Scholar

    邓起东, 卢造勋, 杨主恩, 2007. 城市活动断层探测和断层活动性评价问题[J]. 地震地质, 29(2): 189-200.

    Google Scholar

    邓起东, 闻学泽, 2008. 活动构造研究: 历史、进展与建议[J]. 地震地质, 30(1): 1-30.

    Google Scholar

    段瑞涛, 方仲景, 1995. 六棱山北麓断裂新活动特征[J]. 地震地质, 17(3): 207-213.

    Google Scholar

    方盛明, 张先康, 刘保金, 等, 2002. 探测大城市活断层的地球物理方法[J]. 地震地质, 24(4): 606-613.

    Google Scholar

    冯先岳, 1986. 论地震地貌[J]. 华北地震科学, 4(8): 66-71.

    Google Scholar

    冯先岳, 1991. 地震断错地貌[J]. 内陆地震, 5(1): 17-26.

    Google Scholar

    关艺晓, 卢进添, 何泰健, 等, 2016. 可控音频大地电磁测深在城市隐伏断层探测中的应用[J]. 上海国土资源, 37(1): 90-93.

    Google Scholar

    江娃利, 谢新生, 王焕贞, 等, 2003. 山西大同盆地恒山北缘断裂全新世古地震活动[J]. 中国地震, 19(1): 8-19.

    Google Scholar

    雷启云, 柴炽章, 孟广魁, 等, 2011. 隐伏活断层钻孔联合剖面对折定位方法[J]. 地震地质, 33(1): 45-55.

    Google Scholar

    李建华, 宋方敏, 梁小华, 等, 1998. 大同二电厂扩建厂址工程区活动构造评价[J]. 工程地质学报, 6(1): 79-84.

    Google Scholar

    李煜航, 王庆良, 崔笃信, 等, 2013. 大同盆地口泉断裂的活动性及分段特征的数值模拟[J]. 大地测量与地球动力学, 33(4): 9-12.

    Google Scholar

    刘保金, 柴炽章, 酆少英, 等, 2008. 第四纪沉积区断层及其上断点探测的地震方法技术: 以银川隐伏活动断层为例[J]. 地球物理学报, 51(5): 1475-1483.

    Google Scholar

    汪思抒, 艾明, 吴传勇, 等, 2018. 高分辨率卫星影像提取DEM技术在活动构造定量研究中的应用: 以库米什盆地南缘断裂陡坎为例[J]. 地震地质, 40(5): 999-1017.

    Google Scholar

    吴教兵, 高鹏飞, 陆俊宏, 等, 2019. 综合物探方法在广西柳州隐伏断裂探测中的应用[J]. 地质与勘探, 55(4): 1026-1035.

    Google Scholar

    谢新生, 江娃利, 王瑞, 等, 2003. 山西大同盆地口泉断裂全新世古地震活动[J]. 地震地质, 25(3): 359-374.

    Google Scholar

    徐卫民, 陈香, 王琳, 2012. 历史航片数据处理技术及方法探讨[J]. 城市勘测(6): 93-95, 102.

    Google Scholar

    徐锡伟, 于贵华, 马文涛, 等, 2002. 活断层地震地表破裂"避让带"宽度确定的依据与方法[J]. 地震地质24(4): 470-483.

    Google Scholar

    徐锡伟, 2006. 活动断层、地震灾害与减灾对策问题[J]. 震灾防御技术, 1(1): 7-14.

    Google Scholar

    严荣华, 李京伟, 朱武, 等, 2004. 历史航空影像数字化与建库技术初探[J]. 遥感技术与应用, 19(2): 102-107.

    Google Scholar

    杨海波, 杨晓平, 黄雄南, 等, 2016. 移动摄影测量数据与差分GPS数据的对比分析: 以祁连山北麓洪水坝河东岸断层陡坎为例[J]. 地震地质, 38(4): 1030-1046.

    Google Scholar

    尹艳广, 施炜, 公王斌, 等, 2017. 地质雷达探测技术在浅覆盖活动构造区填图中的应用: 以宁夏青铜峡地区1: 5万新构造与活动构造区填图为例[J]. 地质力学学报, 23(2): 214-223.

    Google Scholar

    张迪, 李家存, 吴中海, 等, 2021. 利用地面LiDAR精细化测量活断层微地貌形态: 以毛垭坝断裂禾尼处断层崖为例[J]. 地质力学学报, 27(1): 63-72.

    Google Scholar

    张迪, 吴中海, 李家存, 等, 2019. 综合多频率地质雷达天线探测活断层浅层结构: 以玉树活动断裂为例[J]. 地质力学学报, 25(6): 1138-1149.

    Google Scholar

    张磊, 白凌燕, 蔡向民, 等, 2014. 北京南口-孙河断裂北西段综合物探剖面定位及其活动性研究[J]. 现代地质, 28(1): 234-242.

    Google Scholar

    张世民, 王丹丹, 刘旭东, 等, 2008. 北京南口-孙河断裂晚第四纪古地震事件的钻孔剖面对比与分析[J]. 中国科学D辑: 地球科学, 38(7): 881-895.

    Google Scholar

    邹小波, 袁道阳, 邵延秀, 等, 2017. 采用立体像对和差分GPS揭示民乐-永昌隐伏断裂地表变形特征[J]. 地震地质, 39(6): 1198-1212.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(2132) PDF downloads(130) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint