Citation: | YUN Long, ZHANG Jin, WANG Ju, ZHAO Zhitao, BAO Yintu, ZHUANG Haiyang, CHEN Su, ZHANG Jingjia, ZHANG Jia, ZHAO Heng, ZHANG Beihang. 2021. Discovery of active faults in the southern Beishan area, NW China: Implications for regional tectonics. Journal of Geomechanics, 27(2): 195-207. doi: 10.12090/j.issn.1006-6616.2021.27.02.019 |
On the north side of the Hexi Corridor, two active faults, which belong to two different fault systems, have been discovered on the southern margin of Beishan, namely the Jiujing-Bantan fault and the Ebomiao fault. The NE-trending (40°~50°) Jiujing-Bantan fault with a NW-trending dip angle of 60°~70° is ~28 km long and ~55 km away from Yumen City. It consists of 4 branches and presents a complex Y-shaped distribution, controlling the development of the two late Pleistocene basins on its west side. The nearly EW-trending Ebomiao fault with a NW-trending dip angle of 60°~80° is ~18 km long and ~50 km away from Jinta County. Base on results from the satellite image interpretation, offset geomorphological survey, trench excavation and optical luminescence dating, we discovered a series of ridges, gullies and terraces offset by the Jiujing-Bantan fault which has been active since ~20 ka ago mostly with normal left-lateral strike-slips. The northward thrusting of the Ebomiao fault formed a clear linear scarp and offset the gullies with left-lateral strike-slips. This fault has been active since ~30 ka ago, mainly with reverse left-lateral strike-slips. The neotectonic activities of these two faults evidences that the long-range strain transmission from the northern margin of the Tibetan Plateau has entered into the southern margin of the Beishan orogenic belt since the late Cenozoic.
AVOUAC J P, TAPPONNIER P, 1993. Kinematic model of active deformation in central Asia[J]. Geophysical Research Letters, 20(10): 895-898. doi: 10.1029/93GL00128 |
CHEN B L, WANG C Y, LIU J M, et al., 2006. The activity of the Xinminbao fault from the Late Pleistocene to Holocene[J]. Acta Geoscientica Sinica, 27(6): 515-524. (in Chinese with English abstract) |
CHEN B L, WANG C Y, GONG Y L, 2008. Late Cenozoic activity of t11e Yumen fault in the western segment of the HexiCorridor. NW China[J]. Geological Bulletin of China, 27(10): 1709-1719. (in Chinese with English abstract) |
CHEN T, LIU Y G, MIN W, et al., 2012. The activity age of Tarwan fault and genesis of the topographic scarp[J]. Seismology and Geology, 34(3): 401-414. (in Chinese with English abstract) |
CHENG F, GARZIONE C N, JOLIVET M, et al., 2019a. Initial deformation of the northern Tibetan Plateau: insights from deposition of the Lulehe Formation in the Qaidam Basin[J]. Tectonics, 38(2): 741-766. doi: 10.1029/2018TC005214 |
CHENG F, GARZIONE C N, MITRA G, et al., 2019b. The interplay between climate and tectonics during the upward and outward growth of the Qilian Shan orogenic wedge, northern Tibetan Plateau[J]. Earth-Science Reviews, 198: 102945. doi: 10.1016/j.earscirev.2019.102945 |
CUNNINGHAM D, DAVIES S, MCLEAN D, 2009. Exhumation of a Cretaceous rift complex within a Late Cenozoic restraining bend, southern Mongolia: implications for the crustal evolution of the Gobi Altai region[J]. Journal of the Geological Society of London, 166(2): 321-333. doi: 10.1144/0016-76492008-082 |
CUNNINGHAM D, 2013. Mountain building processes in intracontinental oblique deformation belts: lessons from the Gobi Corridor, Central Asia[J]. Journal of Structural Geology, 46: 255-282. doi: 10.1016/j.jsg.2012.08.010 |
CUNNINGHAM D, ZHANG J, LI Y F, 2016. Late Cenozoic transpressional mountain building directly north of the AltynTagh Fault in the Sanweishan and Nanjieshan, North Tibetan Foreland, China[J]. Tectonophysics, 687: 111-128. doi: 10.1016/j.tecto.2016.09.010 |
DAI S, FANG X M, SONG C H, et al, 2005. Early Uplift of the Northern Tibetan Plateau[J]. Chinese Science Bulletin, 50(7): 673-683. (in Chinese) doi: 10.1360/csb2005-50-7-673 |
DARBY B J, RITES B D, YUE Y J, et al., 2005. Did the AltynTagh fault extend beyond the Tibetan Plateau?[J]. Earth and Planetary Science Letters, 240(2): 425-435. doi: 10.1016/j.epsl.2005.09.011 |
FANG X M, ZHAO Z J, LI J J, et al., 2005. Magnetostratigraphy of the Late Cenozoic Laojunmiao Anticline in the Northern Qilian Mountains and Its Implications for the Northern Tibetan Plateau Uplift[J]. Science in China Series D: Earth Sciences, 48(7): 1040-1051. doi: 10.1360/03yd0188 |
GUO Z J, ZHANG Z C, ZHANG C, et al., 2008. Lateral growth of the AltynTagh strike-slip fault atthe north margin of the Qinghai-Tibet Plateau: Late Cenozoic strike-slip faults and the crustal stability in the Beishan area, Gansu, China[J]. Geological Bulletin of China, 27(10): 1678-1686. (in Chinese with English abstract) |
HU X P, ZANG A, HEIDBACHO, et al., 2017. Crustal stress pattern in China and its adjacent areas[J]. Journal of Asian Earth Sciences, 149: 20-28. doi: 10.1016/j.jseaes.2017.07.005 |
LEASE R O, BURBANK D W, ZHANG H P, et al., 2012. Cenozoic shortening budget for the northeastern edge of the Tibetan Plateau: Is lower crustal flow necessary?[J]. Tectonics, 31: TC3011. |
LEI X L, MA J, KUSEUNOSE K, et al., 1991. Spatial distribution and fractal structure of AE focuses on Inada granite under Triaxial compression[J]. Seismology and Geology, 13(2): 97-106, 114. (in Chinese with English abstract) |
LI A, WANG X X, ZHANG S M, et al., 2016. The slip rate and paleoearthquakes of the Yumen fault in the Northern Qilian Mountains since the Late Pleistocene[J]. Seismology and Geology, 38(4): 897-910. (in Chinese with English abstract) |
LIU M, YANG Y Q, SHEN Z K, et al., 2007. Active tectonics and intracontinental earthquakes in China: the kinematics and geodynamics[M]//STEIN S, MAZZOTTI S. Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues. Geological Society of America Special Paper, 425: 209-318. |
LIU X W, YUAN D Y, ZUO X B, et al., 2018. Active characteristics of the Sanweishan fault in the northern margin of the Tibetan Plateau during late Pleistocene. Seismology and Geology, 40(1): 121-132. (in Chinese with English abstract) |
MIN W, LIU Y G, CHEN T, et al., 2016. The quantative study on activity of Dengdengshan-Chijiaciwo faults since Late Quaternary[J]. Seismology and Geology, 38(3): 503-522. (in Chinese with English abstract) |
MOLNAR P, TAPPONNIER P, 1975. Cenozoic tectonics of Asia: effects of a continental collision[J]. Science, 189(4201): 419-426. doi: 10.1126/science.189.4201.419 |
MOLNAR P, ENGLAND P, MARTINOD J, 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon[J]. Reviews of Geophysics, 31(4): 357-396. doi: 10.1029/93RG02030 |
SHI Z T, YE Y G, ZHAO Z J, et al., 2001. ESR dating of late Cenozoic molassic deposits in the Jiuxi Basin[J]. Science in China Series D: Earth Sciences, 44(S1): 203-209. doi: 10.1007/BF02911988 |
SONG D F, XIAO W J, WINDLEY B F, et al., 2016. Metamorphic complexes in accretionaryorogens: Insights from the Beishan collage, southern Central Asian Orogenic Belt[J]. Tectonophysics, 688: 135-147. doi: 10.1016/j.tecto.2016.09.012 |
TAPPONNIER P, XU Z Q, ROGER F, et al., 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978 |
WANG C S, DAI J G, ZHAO X X, et al., 2014. Outward-growth of the Tibetan Plateau during the Cenozoic: a review[J]. Tectonophysics, 621: 1-43. doi: 10.1016/j.tecto.2014.01.036 |
WANG F, SU G, JIN P D, 2004. Tectonic deformation and evolution trend of Beishan region, Gansu Province since Late Quaternary[J]. Journal of Seismological Research, 27(2): 173-178. (in Chinese with English abstract) |
WANG F, WANG J, FAN H H, et al., 2015. Distribution of Late Quaternary active faults and its tectonic significance in the Beishan Region, Gansu Province, China[J]. Geological Review, 51(3): 250-256. (in Chinese with English abstract) |
WANG M, SHEN Z K, 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774. |
WU L, XIAO A C, WANG L Q, et al., 2011. Late Jurassic-Early Cretaceous northern Qaidam Basin, NW China: implications for the earliest Cretaceous intracontinentaltectonism[J]. Cretaceous Research, 32(4): 552-564. doi: 10.1016/j.cretres.2011.04.002 |
WU L, XIAO A C, YANG S F, et al., 2012. Two-stage evolution of the AltynTagh Fault during the Cenozoic: new insight from provenance analysis of a geological section in NW Qaidam Basin, NW China[J]. Terra Nova, 24(5): 387-395. doi: 10.1111/j.1365-3121.2012.01077.x |
XIAO Q B, ZHANG J, WANG J J, et al., 2012. Electrical resistivity structures between the Northern Qilian Mountains and Beishan Block, NW China, and tectonic implications[J]. Physics of the Earth and Planetary Interiors, 200-201: 92-104. doi: 10.1016/j.pepi.2012.04.008 |
XIAO Q B, SHAO G H, LIUZENG L, et al., 2015. Eastern termination of the AltynTagh Fault, western China: Constraints from a magnetotelluric survey[J]. Journal of Geophysical Research: Solid Earth, 120(5): 2838-2858. doi: 10.1002/2014JB011363 |
XIAO W J, MAO Q G, WINDLEY B F, et al., 2010. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science, 310(10): 1553-1594. doi: 10.2475/10.2010.12 |
XIE F R, CUI X F, ZHAO J T, et al., 2004. Regional division of the recent tectonic stress field in China and adjacent areas[J]. Chinese Journal of Geophysics, 47(4): 654-662. (in Chinese with English abstract) |
XU X W, WANG F, ZHENG R Z, et al., 2005. Late Quaternary sinistral slip rate along the AltynTagh fault and its structural transformation model[J]. Science in China Series D: Earth Sciences, 48(3): 384-397. doi: 10.1360/02yd0436 |
YAN D P, SUN M, GONG L X, et al., 2020. Composite structure and growth of the Longmenshan foreland thrust belt in the eastern margin of the Qinghai-Tibet Plateau[J]. Journal of Geomechanics, 26(5): 615-633. (in Chinese with English abstract) |
YANG H B, YANG X P, ZHAN Y, et al., 2019. Quaternary activity of the Beihewan Fault in the southeastern Beishan Wrench Belt, western China: Implications for crustal stability and intraplate earthquake hazards north of Tibet[J]. Journal of Geophysical Research: Solid Earth, 124(12): 13286-13309. doi: 10.1029/2018JB017209 |
YANG H B, YANG X P, CUNNINGHAM D, et al., 2020. A regionally evolving transpressional duplex along the northern margin of the AltynTagh Fault: New kinematic and timing constraints from the Sanweishan and Nanjieshan, China[J/OL]. Tectonics, 39, e2019TC005749. https://doi.org/10.1029/2019TC005749. |
YIN A, HARRISON T M, 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211 |
YIN A, 2010. Cenozoic tectonic evolution of Asia: a preliminary synthesis[J]. Tectonophysics, 488(1-4): 293-325. doi: 10.1016/j.tecto.2009.06.002 |
YU Z Y, MIN W, CHEN T, et al., 2015. Late Quaternary tectonic deformation of the eastern end of the AltynTagh fault[J]. Acta Geologica Sinica, 89(6): 1813-1834. doi: 10.1111/1755-6724.12599 |
YUE Y J, RITTS B D, GRAHAM S A, et al., 2004a. Slowing extrusion tectonics: lowered estimate of post-Early Miocene slip rate for the AltynTagh fault[J]. Earth and Planetary Science Letters, 217(1-2): 111-122. doi: 10.1016/S0012-821X(03)00544-2 |
YUE Y J, RITTS B D, HANSON A D, et al., 2004b. Sedimentary evidence against large strike-slip translation on the Northern AltynTagh fault, NW China[J]. Earth and Planetary Science Letters, 228(3-4): 311-323. doi: 10.1016/j.epsl.2004.10.008 |
YUN L, ZHANG J, XU W, et al., 2019. The active characteristics and its significance of the southern margin fault of Beishan Area in Gansu Province[J]. Geological Review, 65(4): 825-838. (in Chinese with English abstract) |
YUN L, ZHANG J, XU W, et al., 2021. Geometry, kinematics andregional tectonic significance of the Huahai fault in the western Hexi Corridor, NW China[J]. Earth Science, 46(1): 259-271. (in Chinese with English abstract) |
YUN L, ZHANG J, WANG J, et al., 2020. Active deformation to the north of the AltynTagh Fault: Constraints on the northward growth of the northern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 198: 104312. doi: 10.1016/j.jseaes.2020.104312 |
ZHANG B, HE W G, LIU B X, et al., 2020. New activity characteristics and slip rate of the ebomiao fault in the southern margin of Beishan, Gansu Province[J]. Seismology and Geology, 42(2): 455-471. (in Chinese with English abstract) |
ZHANG P Z, MOLNAR P, DOWNS W R, 2001. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates[J]. Nature, 410(6831): 891-897. doi: 10.1038/35073504 |
ZHANG P Z, MOLNAR P, XU X W, 2007. Late Quaternary and present-day rates of slip along the AltynTagh Fault, northern margin of the Tibetan Plateau[J]. Tectonics, 26(5): TC5010. |
ZHANG J, CUNNINGHAM D, 2012. Kilometer-scale refolded folds caused by strike-slip reversal and intraplate shortening in the Beishan region, China[J]. Tectonics, 31(3): TC3009. |
ZHANG N, ZHENG W J, LIU X W, et al., 2016. Kinematics characteristics of Heishan fault in the western Hexicorridor and its implications for regional tectonic transformation[J]. Journal of Earth Sciences and Environment, 38(2): 245-257. (in Chinese with English abstract) |
ZHAO G M, WU Z H, LIU J, et al., 2019. The time space distribution characteristics and migration law of large earthquakes in the Indiam-Eurasian Plate collision deformation area[J]. Journal of Geomechanics, 25(3): 324-340. (in Chinese with English abstract) |
ZHAO Z J, FANG X M, LI J J, 2001. Late Cenozoic magnetic strata in Jiudong Basin, northern margin of Qilian Mountains[J]. Science in China Series D: Earth Science, 31(S1): 195-201. (in Chinese) |
ZHENG W J, ZHANG P Z, GE W P, et al., 2013. Late Quaternary slip rate of the South Heli Shan Fault (northern Hexi Corridor, NW China) and its implications for northeastward growth of the Tibetan Plateau[J]. Tectonics, 32(2): 271-293. doi: 10.1002/tect.20022 |
ZHENG Y, ZHANG Q, WANG Y, et al., 1996. Great Jurassic thrust sheets in Beishan (North Mountains): Gobi areas of China and southern Mongolia[J]. Journal of Structural Geology, 18(9): 1111-1126. doi: 10.1016/0191-8141(96)00038-7 |
ZUZA A V, WU C, REITH R C, et al., 2018a. Tectonic evolution of the Qilian Shan: an early Paleozoic orogen reactivated in the Cenozoic[J]. GSA Bulletin, 130(5-6): 881-925. doi: 10.1130/B31721.1 |
ZUZA A V, WU C, WANG Z Z, et al., 2018b. Underthrusting and duplexing beneath the northern Tibetan Plateau and the evolution of the Himalayan-Tibetan orogen[J]. Lithosphere, 11(2): 209-231. |
陈柏林, 王春宇, 刘建民, 等, 2006. 新民堡断裂新构造活动特征[J]. 地球学报, 27(6): 515-524. doi: 10.3321/j.issn:1006-3021.2006.06.001 |
陈柏林, 王春宇, 宫玉良, 2008. 河西走廊盆地西段玉门断裂晚新生代的活动特征[J]. 地质通报, 27(10): 1709-1719. doi: 10.3969/j.issn.1671-2552.2008.10.013 |
陈涛, 刘玉刚, 闵伟, 等, 2012. 塔尔湾断裂活动时代厘定及地貌陡坎成因分析[J]. 地震地质, 34(3): 401-414. doi: 10.3969/j.issn.0253-4967.2012.03.002 |
戴霜, 方小敏, 宋春晖, 等, 2005. 青藏高原北部的早期隆升[J]. 科学通报, 50(7): 673-683. doi: 10.3321/j.issn:0023-074X.2005.07.011 |
方小敏, 赵志军, 李吉均, 等, 2004. 祁连山北缘老君庙背斜晚新生代磁性地层与高原北部隆升[J]. 中国科学D辑: 地球科学, 34(2): 97-106. |
郭召杰, 张志诚, 张臣, 等, 2008. 青藏高原北缘阿尔金走滑边界的侧向扩展: 甘肃北山晚新生代走滑构造与地壳稳定性分析[J]. 地质通报, 27(10): 1678-1686. doi: 10.3969/j.issn.1671-2552.2008.10.010 |
雷兴林, 马瑾, 楠濑勤一郎, 等, 1991. 三轴压缩下粗晶花岗闪长岩声发射三维分布及其分形特征[J]. 地震地质, 13(2): 97-106, 114. |
李安, 王晓先, 张世民, 等, 2016. 祁连山北缘玉门断裂晚更新世以来的活动速率及古地震[J]. 地震地质, 38(4): 897-910. doi: 10.3969/j.issn.0253-4967.2016.04.008 |
刘兴旺, 袁道阳, 邹小波, 等, 2018. 青藏高原北缘三危山断裂晚更新世活动特征[J]. 地震地质, 40(1): 121-132. doi: 10.3969/j.issn.0253-4967.2018.01.010 |
闵伟, 刘玉刚, 陈涛, 等, 2016. 登登山-池家刺窝断裂晚第四纪活动性定量研究[J]. 地震地质, 38(3): 503-522. doi: 10.3969/j.issn.0253-4967.2016.03.002 |
史正涛, 业渝光, 赵志军, 等, 2001. 酒西盆地晚新生代地层的ESR年代[J]. 中国科学D辑: 地球科学, 31(S1): 163-168. |
王峰, 苏刚, 晋佩东, 2004. 甘肃北山地区晚第四纪构造变形特征及演化趋势[J]. 地震研究, 27(2): 173-178. doi: 10.3969/j.issn.1000-0666.2004.02.010 |
王峰, 王驹, 范洪海, 等, 2005. 甘肃北山旧井地区晚第四纪活动断裂分布及其构造意义[J]. 地质论评, 51(3): 250-256. doi: 10.3321/j.issn:0371-5736.2005.03.004 |
谢富仁, 崔效锋, 赵建涛, 等, 2004. 中国大陆及邻区现代构造应力场分区[J]. 地球物理学报, 74(4): 654-662. doi: 10.3321/j.issn:0001-5733.2004.04.016 |
颜丹平, 孙铭, 巩凌霄, 等, 2020. 青藏高原东缘龙门山前陆逆冲带复合结构与生长[J]. 地质力学学报, 26(5): 615-633. |
云龙, 张进, 徐伟, 等, 2019. 甘肃北山南缘断裂的活动特征及其意义[J]. 地质论评, 65(4): 825-838. |
云龙, 张进, 徐伟, 等, 2021. 河西走廊西段花海断裂几何学、运动学及区域构造意义[J]. 地球科学, 46(1): 259-271. |
张波, 何文贵, 刘炳旭, 等, 2020. 甘肃北山南缘俄博庙断裂的新活动特征及活动速率[J]. 地震地质, 42(2): 455-471. doi: 10.3969/j.issn.0253-4967.2020.02.013 |
张宁, 郑文俊, 刘兴旺, 等, 2016. 河西走廊西端黑山断裂运动学特征及其在构造转换中的意义[J]. 地球科学与环境学报, 38(2): 245-257. doi: 10.3969/j.issn.1672-6561.2016.02.012 |
赵根模, 吴中海, 刘杰, 等, 2019. 印度-欧亚板块碰撞变形区的大地震时空分布特征与迁移规律[J]. 地质力学学报, 25(3): 324-340. |
赵志军, 方小敏, 李吉均, 2001. 祁连山北缘酒东盆地晚新生代磁性地层[J]. 中国科学D辑: 地球科学, 31(S1): 195-201. |
Distribution of the main faults on the northern margin of the Tibetan Plateau.JBF—Jiujing-Bantan fault, EBMF—Ebomiao fault; SWSF—Sanweishan fault; NJSF—Nanjieshan fault; ATF—AltynTagn fault; GXSF—Ganxiashan fault; TDCF—Taerwan-Dengdengshan-Chijiaciwo fault; HHF—Huahai fault; KTSF—Kuantanshan fault; HSF—Heishan fault; YWSF—Yinwashan fault; JYGF—Jiayuguan fault; XMPF—Xinminpu fault; BYHF—Baiyanghe fault; NQLSTFS—Northern Qilianshan thrust fault system; JTNSF—northern Jinta'nanshan fault
Satellite image of the Jiujing-Bantan fault and its interpretation JBF—Jiujing-Bantan fault; JBF-1, JBF-2, JBF-3 and JBF-4 are four branches of the JBF; JTC-5 and JTC-7 are the code numbers of two trenches
Offset landforms along the Jiujing-Bantan fault. (a) Fault terminal facet; (b) Fault valley; (c) Offset ridge; (d) Offset gully; (e, f) Satellite image and interpretation map of the offset terrace
Offset landforms and geological interpretation of the northern wall of the Trench JTC-5. (a) Offset landform; (b) Interpretation of the Trench JTC-5 U1-U6 are the code numbers of strata
Geological interpretation of the southern wall of the Trench JTC-7. (a, b) Trench; (c) Interpretation of the trench JTC-7 F1-F3 are faults; U1-U3 are code numbers of strata
Satellite images of the Ebomiao fault and its interpretation
Offset landforms along the Ebomiao fault (modified after Yun et al., 2019). (a) Satellite image of offset landform; (b) Fault scarp; (c) Eroded scarp; (d-g) Offset gully
Offset landforms and geological interpretation of the western wall of the Trench ETC-03 (modified after Yun et al., 2019). (a) Fault scarp; (b) Partial photo of the trench; (c) Interpretation of the Trench ETC-03 F1-F4 are faults; U1-U8 are the code numbers of strata
Distribution of the main faults on the northern margin of the Tibetan Plateau and the MT profile. (a) Satellite image and interpretation of the main active faults on the northern margin of the Tibetan Plateau. (b) The MT profile passing through the Ebomiao fault (modified after Yang et al., 2019).