2021 Vol. 27, No. 2
Article Contents

YUN Long, ZHANG Jin, WANG Ju, ZHAO Zhitao, BAO Yintu, ZHUANG Haiyang, CHEN Su, ZHANG Jingjia, ZHANG Jia, ZHAO Heng, ZHANG Beihang. 2021. Discovery of active faults in the southern Beishan area, NW China: Implications for regional tectonics. Journal of Geomechanics, 27(2): 195-207. doi: 10.12090/j.issn.1006-6616.2021.27.02.019
Citation: YUN Long, ZHANG Jin, WANG Ju, ZHAO Zhitao, BAO Yintu, ZHUANG Haiyang, CHEN Su, ZHANG Jingjia, ZHANG Jia, ZHAO Heng, ZHANG Beihang. 2021. Discovery of active faults in the southern Beishan area, NW China: Implications for regional tectonics. Journal of Geomechanics, 27(2): 195-207. doi: 10.12090/j.issn.1006-6616.2021.27.02.019

Discovery of active faults in the southern Beishan area, NW China: Implications for regional tectonics

    Fund Project: This research is financially supported by the National Natural Science Foundation of China (Grant No.41972224), Geological Disposal Program on China Atomic Energy Authority (Grant No.FZ1805), Basic Geological Survey Project of China Geological Survey (Grant No.DD20190004, DD20189616), and Technology Innovation Foundation for Youth of Beijing Research Institute of Uranium Geology (Grant No.QJ1801)
  • On the north side of the Hexi Corridor, two active faults, which belong to two different fault systems, have been discovered on the southern margin of Beishan, namely the Jiujing-Bantan fault and the Ebomiao fault. The NE-trending (40°~50°) Jiujing-Bantan fault with a NW-trending dip angle of 60°~70° is ~28 km long and ~55 km away from Yumen City. It consists of 4 branches and presents a complex Y-shaped distribution, controlling the development of the two late Pleistocene basins on its west side. The nearly EW-trending Ebomiao fault with a NW-trending dip angle of 60°~80° is ~18 km long and ~50 km away from Jinta County. Base on results from the satellite image interpretation, offset geomorphological survey, trench excavation and optical luminescence dating, we discovered a series of ridges, gullies and terraces offset by the Jiujing-Bantan fault which has been active since ~20 ka ago mostly with normal left-lateral strike-slips. The northward thrusting of the Ebomiao fault formed a clear linear scarp and offset the gullies with left-lateral strike-slips. This fault has been active since ~30 ka ago, mainly with reverse left-lateral strike-slips. The neotectonic activities of these two faults evidences that the long-range strain transmission from the northern margin of the Tibetan Plateau has entered into the southern margin of the Beishan orogenic belt since the late Cenozoic.

  • 加载中
  • AVOUAC J P, TAPPONNIER P, 1993. Kinematic model of active deformation in central Asia[J]. Geophysical Research Letters, 20(10): 895-898. doi: 10.1029/93GL00128

    CrossRef Google Scholar

    CHEN B L, WANG C Y, LIU J M, et al., 2006. The activity of the Xinminbao fault from the Late Pleistocene to Holocene[J]. Acta Geoscientica Sinica, 27(6): 515-524. (in Chinese with English abstract)

    Google Scholar

    CHEN B L, WANG C Y, GONG Y L, 2008. Late Cenozoic activity of t11e Yumen fault in the western segment of the HexiCorridor. NW China[J]. Geological Bulletin of China, 27(10): 1709-1719. (in Chinese with English abstract)

    Google Scholar

    CHEN T, LIU Y G, MIN W, et al., 2012. The activity age of Tarwan fault and genesis of the topographic scarp[J]. Seismology and Geology, 34(3): 401-414. (in Chinese with English abstract)

    Google Scholar

    CHENG F, GARZIONE C N, JOLIVET M, et al., 2019a. Initial deformation of the northern Tibetan Plateau: insights from deposition of the Lulehe Formation in the Qaidam Basin[J]. Tectonics, 38(2): 741-766. doi: 10.1029/2018TC005214

    CrossRef Google Scholar

    CHENG F, GARZIONE C N, MITRA G, et al., 2019b. The interplay between climate and tectonics during the upward and outward growth of the Qilian Shan orogenic wedge, northern Tibetan Plateau[J]. Earth-Science Reviews, 198: 102945. doi: 10.1016/j.earscirev.2019.102945

    CrossRef Google Scholar

    CUNNINGHAM D, DAVIES S, MCLEAN D, 2009. Exhumation of a Cretaceous rift complex within a Late Cenozoic restraining bend, southern Mongolia: implications for the crustal evolution of the Gobi Altai region[J]. Journal of the Geological Society of London, 166(2): 321-333. doi: 10.1144/0016-76492008-082

    CrossRef Google Scholar

    CUNNINGHAM D, 2013. Mountain building processes in intracontinental oblique deformation belts: lessons from the Gobi Corridor, Central Asia[J]. Journal of Structural Geology, 46: 255-282. doi: 10.1016/j.jsg.2012.08.010

    CrossRef Google Scholar

    CUNNINGHAM D, ZHANG J, LI Y F, 2016. Late Cenozoic transpressional mountain building directly north of the AltynTagh Fault in the Sanweishan and Nanjieshan, North Tibetan Foreland, China[J]. Tectonophysics, 687: 111-128. doi: 10.1016/j.tecto.2016.09.010

    CrossRef Google Scholar

    DAI S, FANG X M, SONG C H, et al, 2005. Early Uplift of the Northern Tibetan Plateau[J]. Chinese Science Bulletin, 50(7): 673-683. (in Chinese) doi: 10.1360/csb2005-50-7-673

    CrossRef Google Scholar

    DARBY B J, RITES B D, YUE Y J, et al., 2005. Did the AltynTagh fault extend beyond the Tibetan Plateau?[J]. Earth and Planetary Science Letters, 240(2): 425-435. doi: 10.1016/j.epsl.2005.09.011

    CrossRef Google Scholar

    FANG X M, ZHAO Z J, LI J J, et al., 2005. Magnetostratigraphy of the Late Cenozoic Laojunmiao Anticline in the Northern Qilian Mountains and Its Implications for the Northern Tibetan Plateau Uplift[J]. Science in China Series D: Earth Sciences, 48(7): 1040-1051. doi: 10.1360/03yd0188

    CrossRef Google Scholar

    GUO Z J, ZHANG Z C, ZHANG C, et al., 2008. Lateral growth of the AltynTagh strike-slip fault atthe north margin of the Qinghai-Tibet Plateau: Late Cenozoic strike-slip faults and the crustal stability in the Beishan area, Gansu, China[J]. Geological Bulletin of China, 27(10): 1678-1686. (in Chinese with English abstract)

    Google Scholar

    HU X P, ZANG A, HEIDBACHO, et al., 2017. Crustal stress pattern in China and its adjacent areas[J]. Journal of Asian Earth Sciences, 149: 20-28. doi: 10.1016/j.jseaes.2017.07.005

    CrossRef Google Scholar

    LEASE R O, BURBANK D W, ZHANG H P, et al., 2012. Cenozoic shortening budget for the northeastern edge of the Tibetan Plateau: Is lower crustal flow necessary?[J]. Tectonics, 31: TC3011.

    Google Scholar

    LEI X L, MA J, KUSEUNOSE K, et al., 1991. Spatial distribution and fractal structure of AE focuses on Inada granite under Triaxial compression[J]. Seismology and Geology, 13(2): 97-106, 114. (in Chinese with English abstract)

    Google Scholar

    LI A, WANG X X, ZHANG S M, et al., 2016. The slip rate and paleoearthquakes of the Yumen fault in the Northern Qilian Mountains since the Late Pleistocene[J]. Seismology and Geology, 38(4): 897-910. (in Chinese with English abstract)

    Google Scholar

    LIU M, YANG Y Q, SHEN Z K, et al., 2007. Active tectonics and intracontinental earthquakes in China: the kinematics and geodynamics[M]//STEIN S, MAZZOTTI S. Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues. Geological Society of America Special Paper, 425: 209-318.

    Google Scholar

    LIU X W, YUAN D Y, ZUO X B, et al., 2018. Active characteristics of the Sanweishan fault in the northern margin of the Tibetan Plateau during late Pleistocene. Seismology and Geology, 40(1): 121-132. (in Chinese with English abstract)

    Google Scholar

    MIN W, LIU Y G, CHEN T, et al., 2016. The quantative study on activity of Dengdengshan-Chijiaciwo faults since Late Quaternary[J]. Seismology and Geology, 38(3): 503-522. (in Chinese with English abstract)

    Google Scholar

    MOLNAR P, TAPPONNIER P, 1975. Cenozoic tectonics of Asia: effects of a continental collision[J]. Science, 189(4201): 419-426. doi: 10.1126/science.189.4201.419

    CrossRef Google Scholar

    MOLNAR P, ENGLAND P, MARTINOD J, 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon[J]. Reviews of Geophysics, 31(4): 357-396. doi: 10.1029/93RG02030

    CrossRef Google Scholar

    SHI Z T, YE Y G, ZHAO Z J, et al., 2001. ESR dating of late Cenozoic molassic deposits in the Jiuxi Basin[J]. Science in China Series D: Earth Sciences, 44(S1): 203-209. doi: 10.1007/BF02911988

    CrossRef Google Scholar

    SONG D F, XIAO W J, WINDLEY B F, et al., 2016. Metamorphic complexes in accretionaryorogens: Insights from the Beishan collage, southern Central Asian Orogenic Belt[J]. Tectonophysics, 688: 135-147. doi: 10.1016/j.tecto.2016.09.012

    CrossRef Google Scholar

    TAPPONNIER P, XU Z Q, ROGER F, et al., 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978

    CrossRef Google Scholar

    WANG C S, DAI J G, ZHAO X X, et al., 2014. Outward-growth of the Tibetan Plateau during the Cenozoic: a review[J]. Tectonophysics, 621: 1-43. doi: 10.1016/j.tecto.2014.01.036

    CrossRef Google Scholar

    WANG F, SU G, JIN P D, 2004. Tectonic deformation and evolution trend of Beishan region, Gansu Province since Late Quaternary[J]. Journal of Seismological Research, 27(2): 173-178. (in Chinese with English abstract)

    Google Scholar

    WANG F, WANG J, FAN H H, et al., 2015. Distribution of Late Quaternary active faults and its tectonic significance in the Beishan Region, Gansu Province, China[J]. Geological Review, 51(3): 250-256. (in Chinese with English abstract)

    Google Scholar

    WANG M, SHEN Z K, 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 125(2): e2019JB018774.

    Google Scholar

    WU L, XIAO A C, WANG L Q, et al., 2011. Late Jurassic-Early Cretaceous northern Qaidam Basin, NW China: implications for the earliest Cretaceous intracontinentaltectonism[J]. Cretaceous Research, 32(4): 552-564. doi: 10.1016/j.cretres.2011.04.002

    CrossRef Google Scholar

    WU L, XIAO A C, YANG S F, et al., 2012. Two-stage evolution of the AltynTagh Fault during the Cenozoic: new insight from provenance analysis of a geological section in NW Qaidam Basin, NW China[J]. Terra Nova, 24(5): 387-395. doi: 10.1111/j.1365-3121.2012.01077.x

    CrossRef Google Scholar

    XIAO Q B, ZHANG J, WANG J J, et al., 2012. Electrical resistivity structures between the Northern Qilian Mountains and Beishan Block, NW China, and tectonic implications[J]. Physics of the Earth and Planetary Interiors, 200-201: 92-104. doi: 10.1016/j.pepi.2012.04.008

    CrossRef Google Scholar

    XIAO Q B, SHAO G H, LIUZENG L, et al., 2015. Eastern termination of the AltynTagh Fault, western China: Constraints from a magnetotelluric survey[J]. Journal of Geophysical Research: Solid Earth, 120(5): 2838-2858. doi: 10.1002/2014JB011363

    CrossRef Google Scholar

    XIAO W J, MAO Q G, WINDLEY B F, et al., 2010. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science, 310(10): 1553-1594. doi: 10.2475/10.2010.12

    CrossRef Google Scholar

    XIE F R, CUI X F, ZHAO J T, et al., 2004. Regional division of the recent tectonic stress field in China and adjacent areas[J]. Chinese Journal of Geophysics, 47(4): 654-662. (in Chinese with English abstract)

    Google Scholar

    XU X W, WANG F, ZHENG R Z, et al., 2005. Late Quaternary sinistral slip rate along the AltynTagh fault and its structural transformation model[J]. Science in China Series D: Earth Sciences, 48(3): 384-397. doi: 10.1360/02yd0436

    CrossRef Google Scholar

    YAN D P, SUN M, GONG L X, et al., 2020. Composite structure and growth of the Longmenshan foreland thrust belt in the eastern margin of the Qinghai-Tibet Plateau[J]. Journal of Geomechanics, 26(5): 615-633. (in Chinese with English abstract)

    Google Scholar

    YANG H B, YANG X P, ZHAN Y, et al., 2019. Quaternary activity of the Beihewan Fault in the southeastern Beishan Wrench Belt, western China: Implications for crustal stability and intraplate earthquake hazards north of Tibet[J]. Journal of Geophysical Research: Solid Earth, 124(12): 13286-13309. doi: 10.1029/2018JB017209

    CrossRef Google Scholar

    YANG H B, YANG X P, CUNNINGHAM D, et al., 2020. A regionally evolving transpressional duplex along the northern margin of the AltynTagh Fault: New kinematic and timing constraints from the Sanweishan and Nanjieshan, China[J/OL]. Tectonics, 39, e2019TC005749. https://doi.org/10.1029/2019TC005749.

    Google Scholar

    YIN A, HARRISON T M, 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211

    CrossRef Google Scholar

    YIN A, 2010. Cenozoic tectonic evolution of Asia: a preliminary synthesis[J]. Tectonophysics, 488(1-4): 293-325. doi: 10.1016/j.tecto.2009.06.002

    CrossRef Google Scholar

    YU Z Y, MIN W, CHEN T, et al., 2015. Late Quaternary tectonic deformation of the eastern end of the AltynTagh fault[J]. Acta Geologica Sinica, 89(6): 1813-1834. doi: 10.1111/1755-6724.12599

    CrossRef Google Scholar

    YUE Y J, RITTS B D, GRAHAM S A, et al., 2004a. Slowing extrusion tectonics: lowered estimate of post-Early Miocene slip rate for the AltynTagh fault[J]. Earth and Planetary Science Letters, 217(1-2): 111-122. doi: 10.1016/S0012-821X(03)00544-2

    CrossRef Google Scholar

    YUE Y J, RITTS B D, HANSON A D, et al., 2004b. Sedimentary evidence against large strike-slip translation on the Northern AltynTagh fault, NW China[J]. Earth and Planetary Science Letters, 228(3-4): 311-323. doi: 10.1016/j.epsl.2004.10.008

    CrossRef Google Scholar

    YUN L, ZHANG J, XU W, et al., 2019. The active characteristics and its significance of the southern margin fault of Beishan Area in Gansu Province[J]. Geological Review, 65(4): 825-838. (in Chinese with English abstract)

    Google Scholar

    YUN L, ZHANG J, XU W, et al., 2021. Geometry, kinematics andregional tectonic significance of the Huahai fault in the western Hexi Corridor, NW China[J]. Earth Science, 46(1): 259-271. (in Chinese with English abstract)

    Google Scholar

    YUN L, ZHANG J, WANG J, et al., 2020. Active deformation to the north of the AltynTagh Fault: Constraints on the northward growth of the northern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 198: 104312. doi: 10.1016/j.jseaes.2020.104312

    CrossRef Google Scholar

    ZHANG B, HE W G, LIU B X, et al., 2020. New activity characteristics and slip rate of the ebomiao fault in the southern margin of Beishan, Gansu Province[J]. Seismology and Geology, 42(2): 455-471. (in Chinese with English abstract)

    Google Scholar

    ZHANG P Z, MOLNAR P, DOWNS W R, 2001. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates[J]. Nature, 410(6831): 891-897. doi: 10.1038/35073504

    CrossRef Google Scholar

    ZHANG P Z, MOLNAR P, XU X W, 2007. Late Quaternary and present-day rates of slip along the AltynTagh Fault, northern margin of the Tibetan Plateau[J]. Tectonics, 26(5): TC5010.

    Google Scholar

    ZHANG J, CUNNINGHAM D, 2012. Kilometer-scale refolded folds caused by strike-slip reversal and intraplate shortening in the Beishan region, China[J]. Tectonics, 31(3): TC3009.

    Google Scholar

    ZHANG N, ZHENG W J, LIU X W, et al., 2016. Kinematics characteristics of Heishan fault in the western Hexicorridor and its implications for regional tectonic transformation[J]. Journal of Earth Sciences and Environment, 38(2): 245-257. (in Chinese with English abstract)

    Google Scholar

    ZHAO G M, WU Z H, LIU J, et al., 2019. The time space distribution characteristics and migration law of large earthquakes in the Indiam-Eurasian Plate collision deformation area[J]. Journal of Geomechanics, 25(3): 324-340. (in Chinese with English abstract)

    Google Scholar

    ZHAO Z J, FANG X M, LI J J, 2001. Late Cenozoic magnetic strata in Jiudong Basin, northern margin of Qilian Mountains[J]. Science in China Series D: Earth Science, 31(S1): 195-201. (in Chinese)

    Google Scholar

    ZHENG W J, ZHANG P Z, GE W P, et al., 2013. Late Quaternary slip rate of the South Heli Shan Fault (northern Hexi Corridor, NW China) and its implications for northeastward growth of the Tibetan Plateau[J]. Tectonics, 32(2): 271-293. doi: 10.1002/tect.20022

    CrossRef Google Scholar

    ZHENG Y, ZHANG Q, WANG Y, et al., 1996. Great Jurassic thrust sheets in Beishan (North Mountains): Gobi areas of China and southern Mongolia[J]. Journal of Structural Geology, 18(9): 1111-1126. doi: 10.1016/0191-8141(96)00038-7

    CrossRef Google Scholar

    ZUZA A V, WU C, REITH R C, et al., 2018a. Tectonic evolution of the Qilian Shan: an early Paleozoic orogen reactivated in the Cenozoic[J]. GSA Bulletin, 130(5-6): 881-925. doi: 10.1130/B31721.1

    CrossRef Google Scholar

    ZUZA A V, WU C, WANG Z Z, et al., 2018b. Underthrusting and duplexing beneath the northern Tibetan Plateau and the evolution of the Himalayan-Tibetan orogen[J]. Lithosphere, 11(2): 209-231.

    Google Scholar

    陈柏林, 王春宇, 刘建民, 等, 2006. 新民堡断裂新构造活动特征[J]. 地球学报, 27(6): 515-524. doi: 10.3321/j.issn:1006-3021.2006.06.001

    CrossRef Google Scholar

    陈柏林, 王春宇, 宫玉良, 2008. 河西走廊盆地西段玉门断裂晚新生代的活动特征[J]. 地质通报, 27(10): 1709-1719. doi: 10.3969/j.issn.1671-2552.2008.10.013

    CrossRef Google Scholar

    陈涛, 刘玉刚, 闵伟, 等, 2012. 塔尔湾断裂活动时代厘定及地貌陡坎成因分析[J]. 地震地质, 34(3): 401-414. doi: 10.3969/j.issn.0253-4967.2012.03.002

    CrossRef Google Scholar

    戴霜, 方小敏, 宋春晖, 等, 2005. 青藏高原北部的早期隆升[J]. 科学通报, 50(7): 673-683. doi: 10.3321/j.issn:0023-074X.2005.07.011

    CrossRef Google Scholar

    方小敏, 赵志军, 李吉均, 等, 2004. 祁连山北缘老君庙背斜晚新生代磁性地层与高原北部隆升[J]. 中国科学D辑: 地球科学, 34(2): 97-106.

    Google Scholar

    郭召杰, 张志诚, 张臣, 等, 2008. 青藏高原北缘阿尔金走滑边界的侧向扩展: 甘肃北山晚新生代走滑构造与地壳稳定性分析[J]. 地质通报, 27(10): 1678-1686. doi: 10.3969/j.issn.1671-2552.2008.10.010

    CrossRef Google Scholar

    雷兴林, 马瑾, 楠濑勤一郎, 等, 1991. 三轴压缩下粗晶花岗闪长岩声发射三维分布及其分形特征[J]. 地震地质, 13(2): 97-106, 114.

    Google Scholar

    李安, 王晓先, 张世民, 等, 2016. 祁连山北缘玉门断裂晚更新世以来的活动速率及古地震[J]. 地震地质, 38(4): 897-910. doi: 10.3969/j.issn.0253-4967.2016.04.008

    CrossRef Google Scholar

    刘兴旺, 袁道阳, 邹小波, 等, 2018. 青藏高原北缘三危山断裂晚更新世活动特征[J]. 地震地质, 40(1): 121-132. doi: 10.3969/j.issn.0253-4967.2018.01.010

    CrossRef Google Scholar

    闵伟, 刘玉刚, 陈涛, 等, 2016. 登登山-池家刺窝断裂晚第四纪活动性定量研究[J]. 地震地质, 38(3): 503-522. doi: 10.3969/j.issn.0253-4967.2016.03.002

    CrossRef Google Scholar

    史正涛, 业渝光, 赵志军, 等, 2001. 酒西盆地晚新生代地层的ESR年代[J]. 中国科学D辑: 地球科学, 31(S1): 163-168.

    Google Scholar

    王峰, 苏刚, 晋佩东, 2004. 甘肃北山地区晚第四纪构造变形特征及演化趋势[J]. 地震研究, 27(2): 173-178. doi: 10.3969/j.issn.1000-0666.2004.02.010

    CrossRef Google Scholar

    王峰, 王驹, 范洪海, 等, 2005. 甘肃北山旧井地区晚第四纪活动断裂分布及其构造意义[J]. 地质论评, 51(3): 250-256. doi: 10.3321/j.issn:0371-5736.2005.03.004

    CrossRef Google Scholar

    谢富仁, 崔效锋, 赵建涛, 等, 2004. 中国大陆及邻区现代构造应力场分区[J]. 地球物理学报, 74(4): 654-662. doi: 10.3321/j.issn:0001-5733.2004.04.016

    CrossRef Google Scholar

    颜丹平, 孙铭, 巩凌霄, 等, 2020. 青藏高原东缘龙门山前陆逆冲带复合结构与生长[J]. 地质力学学报, 26(5): 615-633.

    Google Scholar

    云龙, 张进, 徐伟, 等, 2019. 甘肃北山南缘断裂的活动特征及其意义[J]. 地质论评, 65(4): 825-838.

    Google Scholar

    云龙, 张进, 徐伟, 等, 2021. 河西走廊西段花海断裂几何学、运动学及区域构造意义[J]. 地球科学, 46(1): 259-271.

    Google Scholar

    张波, 何文贵, 刘炳旭, 等, 2020. 甘肃北山南缘俄博庙断裂的新活动特征及活动速率[J]. 地震地质, 42(2): 455-471. doi: 10.3969/j.issn.0253-4967.2020.02.013

    CrossRef Google Scholar

    张宁, 郑文俊, 刘兴旺, 等, 2016. 河西走廊西端黑山断裂运动学特征及其在构造转换中的意义[J]. 地球科学与环境学报, 38(2): 245-257. doi: 10.3969/j.issn.1672-6561.2016.02.012

    CrossRef Google Scholar

    赵根模, 吴中海, 刘杰, 等, 2019. 印度-欧亚板块碰撞变形区的大地震时空分布特征与迁移规律[J]. 地质力学学报, 25(3): 324-340.

    Google Scholar

    赵志军, 方小敏, 李吉均, 2001. 祁连山北缘酒东盆地晚新生代磁性地层[J]. 中国科学D辑: 地球科学, 31(S1): 195-201.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(1)

Article Metrics

Article views(2155) PDF downloads(81) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint