2021 Vol. 27, No. 2
Article Contents

HUANG Feipeng, ZHANG Huiping, XIONG Jianguo, ZHAO Xudong. 2021. Estimation of displacements along strike-slip fault on a million-year timescale: A case study of the AltynTagh fault system. Journal of Geomechanics, 27(2): 208-217. doi: 10.12090/j.issn.1006-6616.2021.27.02.020
Citation: HUANG Feipeng, ZHANG Huiping, XIONG Jianguo, ZHAO Xudong. 2021. Estimation of displacements along strike-slip fault on a million-year timescale: A case study of the AltynTagh fault system. Journal of Geomechanics, 27(2): 208-217. doi: 10.12090/j.issn.1006-6616.2021.27.02.020

Estimation of displacements along strike-slip fault on a million-year timescale: A case study of the AltynTagh fault system

    Fund Project: This research is financially supported by the National Natural Science Foundation (Grant No.41761144071), and the Second Tibetan Plateau Scientific Expedition and Research Program (Grant No.2019QZKK0704)
More Information
  • Fault slip rate matters not only as one of the important parameters for quantitative study of Cenozoic tectonics but also a key element in geodynamic research. However, most studies have focused on the long-term (>Ma) cumulative displacement of geological mass, short-time (since the late Quaternary) dislocation of geomorphic units as well as annual-decadal geodetic observations, and few people studied the fault displacement on a timescale in between, leaving a gap in understanding the evolutionary history of fault on a million-year timescale. Since the strike-slip fault breaks the system of alluvial fans and their catchment basins, causing the spatially uneven distribution of residual offset alluvial fans along the fault direction, we proposed three methods to determine the large-scale cumulative displacement of strike-slip fault based on the offset alluvial fans. The first method commonly presents a correspondence between the alluvial-fan area and catchment basin area as Af=γAc(Af is the alluvial-fan area, Ac is the catchment basin area, γ is a constant 0.5±0.35), which leads us to determine the strike-slip displacement of the offset basin by identifying whether the correspondence is unusual. The second method helps us to get the strike-slip displacement by distinguishing geomorphic units with the same lithological mineral components distributed at both sides of the fault. The third is to measure the strike-slip displacement by comparing the residual geomorphic unit with the corresponding stream outlet. In this study, we applied the above three methods to study the strike-slip displacement of the AltynTagh fault system on a million-year timescale, and to estimate the formation age of these geomorphic units based on the exiting fault slip-rate. It is further verified that the estimation methods proposed in this paper can provide a new angle and technical solution to accurately determine the evolution history of the strike-slip fault on a million-year scale.

  • 加载中
  • ADAMS K D, WESNOUSKY S G, BILLS B G, 1999. Isostatic rebound, active faulting, and potential geomorphic effects in the Lake Lahontan basin, Nevada andCalifornia[J]. GSA Bulletin, 111(12): 1739-1756. doi: 10.1130/0016-7606(1999)111<1739:IRAFAP>2.3.CO;2

    CrossRef Google Scholar

    AVOUAC JP, TAPPONNIER P, 1993. Kinematic model of active deformation in central Asia[J]. Geophysical Research Letters, 20(10): 895-898. doi: 10.1029/93GL00128

    CrossRef Google Scholar

    BAI Y J, NI H Y, GE H, 2019. Advances in research on the geohazard effect of active faults on the southeastern margin of the Tibetan plateau[J]. Journal of Geomechanics, 25(6): 1116-1128. (in Chinese with English abstract)

    Google Scholar

    BURBANK D W, ANDERSON R S, 2012. Tectonic geomorphology[M]. 2nd ed. Hoboken, NJ: Blackwell Publishing Ltd: 17-44.

    Google Scholar

    CASKEY S J, RAMELLI A R, 2004. Tectonic displacement and far-field isostatic flexure of pluvial lake shorelines, Dixie Valley, Nevada[J]. Journal of Geodynamics, 38(2): 131-145. doi: 10.1016/j.jog.2004.06.001

    CrossRef Google Scholar

    CHEN W B, XU X W, 2006. Sinistral strike-slip faults along the southern Alashan margin and eastwards extending of the Altun fault[J]. Seismology and Geology, 28(2): 319-324. (in Chinese with English abstract)

    Google Scholar

    CHEN Y W, LI S H, LI B, 2012. Slip rate of the Aksay segment of Altyn Tagh Fault revealed by OSL dating of river terraces[J]. Quaternary Geochronology, 10: 291-299. doi: 10.1016/j.quageo.2012.04.012

    CrossRef Google Scholar

    CHEN Y W, LI S H, SUN J M, et al., 2013. OSL dating of offset streams across the Altyn Tagh Fault: Channel deflection, loess deposition and implication for the slip rate[J]. Tectonophysics, 594: 182-194. doi: 10.1016/j.tecto.2013.04.002

    CrossRef Google Scholar

    CHENG Y, LI X Q, ZHAO Z Y, et al., 2018. Detrital zircon U-Pb ages and its provenance significance in the TZK3 core from the yangtze river delta[J]. Journal of Geomechanics, 24(5): 635-644. (in Chinese with English abstract)

    Google Scholar

    CHEVALIER M L, RYERSON F J, TAPPONNIER P, et al., 2005. Slip-rate measurements on the Karakorum Fault may imply secular variations in fault motion[J]. Science, 307(5708): 411-414. doi: 10.1126/science.1105466

    CrossRef Google Scholar

    CUI J W, TANG Z M, DENG J F, et al., 1999. Altun fault system[M]. Beijing: Geological Publishing House. (in Chinese)

    Google Scholar

    CUI J W, ZHANG X W, LI P W, 2002. The Altun fault: its geometry, nature and mode of growth[J]. Acta Geoscientia Sinica, 23(2): 509-516. (in Chinese with English abstract)

    Google Scholar

    DADE W B, VERDEYEN M E, 2007. Tectonic and climatic controls of alluvial-fan size and source-catchment relief[J]. Journal of the Geological Society, 164(2): 353-358. doi: 10.1144/0016-76492006-039

    CrossRef Google Scholar

    ENGLAND P, HOUSEMAN G, 1986. Finite strain calculations of continental deformation: 2. Comparison with the India-Asia Collision Zone[J]. Journal of Geophysical Research: Solid Earth, 91(B3): 3664-3676. doi: 10.1029/JB091iB03p03664

    CrossRef Google Scholar

    ENGLAND P, MOLNAR P, 1997. Active deformation of Asia: from kinematics to dynamics[J]. Science, 278(5338): 647-650. doi: 10.1126/science.278.5338.647

    CrossRef Google Scholar

    FLETCHER K E K, ROCKWELL T K, SHARP W D, 2011. Late Quaternary slip rate of the southern Elsinore fault, Southern California: Dating offset alluvial fans via 230Th/U on pedogenic carbonate[J]. Journal of Geophysical Research: Earth Surface, 116(F2): F02006.

    Google Scholar

    FRANKEL K L, BRANTLEY K S, DOLAN J F, et al., 2007. Cosmogenic10Be and36Cl geochronology of offset alluvial fans along the northern Death Valley fault zone: Implications for transient strain in the eastern California shear zone[J]. Journal of Geophysical Research: Solid Earth, 112(B6): B06407.

    Google Scholar

    FU B H, CHOU X W, 1994. Study of thermal infrared spectra features of typical sedimentary rocks from Kalpin uplift in Tarim basin[J]. Acta Sedimentologica Sinica, 12(4): 95-100. (in Chinese with English abstract)

    Google Scholar

    FU B H, ZHANG S L, XIE X P, et al., 2006. Late Quaternary tectono-geomorphic features along the Kangxiwar fault, altyn Tagh fault system, Northern Tibet[J]. Quaternary Sciences, 26(2): 228-235. (in Chinese with English abstract)

    Google Scholar

    GILLESPIE A R, KAHLE A B, PALLUCONI F D, 1984. Mapping alluvial fans in Death Valley, California, using multichannel thermal infrared images[J]. Geophysical Research Letters, 11(11): 1153-1156. doi: 10.1029/GL011i011p01153

    CrossRef Google Scholar

    GINAT H, ENZEL Y, AVNI Y, 1998. Translocated Plio-Pleistocene drainage systems along the Arava fault of the Dead Sea transform[J]. Tectonophysics, 284(1-2): 151-160. doi: 10.1016/S0040-1951(97)00165-0

    CrossRef Google Scholar

    GOODE J K, BURBANK D W, 2011. The temporal evolution of minor channels on growing folds and its bearing on fold kinematics[J]. Journal of Geophysical Research: Solid Earth, 116(B4): B04407.

    Google Scholar

    HOUSEMAN G, ENGLAND P, 1993. Crustal thickening versus lateral expulsion in the Indian-Asian continental collision[J]. Journal of Geophysical Research: Solid Earth, 98(B7): 12233-12249. doi: 10.1029/93JB00443

    CrossRef Google Scholar

    HUANG F P, REN J J, LV Y W, et al., 2018. Late Quaternary slip rate of the Xiugou segment, Eastern Kunlun fault zone[J]. Advances in Earth Science, 33(3): 321-332. (in Chinese with English abstract)

    Google Scholar

    KHAN S D, GLENN N F, 2006. New strike-slip faults and litho-units mapped in Chitral (N. Pakistan) using field and ASTER data yield regionally significant results[J]. International Journal of Remote Sensing, 27(20): 4495-4512. doi: 10.1080/01431160600721830

    CrossRef Google Scholar

    LAMBECK K, CHAPPELL J, 2001. Sea level change through the last glacial cycle[J]. Science, 292(5517): 679-686. doi: 10.1126/science.1059549

    CrossRef Google Scholar

    LAVÉ J, AVOUAC J P, 2000. Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal[J]. Journal of Geophysical Research: Solid Earth, 105(B3): 5735-5770. doi: 10.1029/1999JB900292

    CrossRef Google Scholar

    LEE J, SPENCER J Q G, OWEN L A, 2001. Holocene slip rates along the Owens Valley fault, California: Implications for the recent evolution of the Eastern California Shear Zone[J]. Geology, 29(9): 819-822. doi: 10.1130/0091-7613(2001)029<0819:HSRATO>2.0.CO;2

    CrossRef Google Scholar

    LI H B, YANG J S, XU Z Q, et al., 2001. The geological and geochronogical evidence of ATF sttriking-slipping during Indosinian[J]. Chinese Science Bulletin, 46(16): 1333-1338. (in Chinese) doi: 10.1360/csb2001-46-16-1333

    CrossRef Google Scholar

    MÉRIAUX A S, TAPPONNIER P, RYERSON F J, et al., 2005. The Aksay segment of the northern Altyn Tagh fault: Tectonic geomorphology, landscape evolution, and Holocene slip rate[J]. Journal of Geophysical Research: Solid Earth, 110(B4): B04404.

    Google Scholar

    MCSAVENEY M J, GRAHAM I J, BEGG J, et al., 2006. Late Holocene uplift of beach ridges at Turakirae Head, south Wellington coast, New Zealand[J]. New Zealand Journal of Geology and Geophysics, 49(3): 337-358. doi: 10.1080/00288306.2006.9515172

    CrossRef Google Scholar

    MOLNAR P, TAPPONNIER P, 1975. Cenozoic tectonics of Asia: effects of a Continental collision: features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision[J]. Science, 189(4201): 419-426. doi: 10.1126/science.189.4201.419

    CrossRef Google Scholar

    MOLNAR P, DAYEM K E, 2010. Major intracontinental strike-slip faults and contrasts in lithospheric strength[J]. Geosphere, 6(4): 444-467. doi: 10.1130/GES00519.1

    CrossRef Google Scholar

    OSKIN M, BURBANK D W, 2005. Alpine landscape evolution dominated by cirque retreat[J]. Geology, 33(12): 933-936. doi: 10.1130/G21957.1

    CrossRef Google Scholar

    OWEN L A, CAFFEE M W, FINKEL R C, et al., 2008. Quaternary glaciation of the Himalayan-Tibetan orogen[J]. Journal of Quaternary Science, 23(6-7): 513-531. doi: 10.1002/jqs.1203

    CrossRef Google Scholar

    PAN B T, BURBANK D W, WANG Y X, et al., 2003. A 900 k. y. record of strath terrace formation during glacial-interglacial transitions in northwest China[J]. Geology, 31(11): 957-960. doi: 10.1130/G19685.1

    CrossRef Google Scholar

    PELTZER G, TAPPONNIER P, 1988. Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia Collision: An experimental approach[J]. Journal of Geophysical Research: Solid Earth, 93(B12): 15085-15117. doi: 10.1029/JB093iB12p15085

    CrossRef Google Scholar

    PELTZER G, TAPPONNIER P, ARMIJO R, 1989. Magnitude of late quaternary left-lateral displacements along the north edge of Tibet[J]. Science, 246(4935): 1285-1289. doi: 10.1126/science.246.4935.1285

    CrossRef Google Scholar

    POUSSE-BELTRAN L, VASSALLO R, AUDEMARD F, et al., 2017. Pleistocene slip rates on the Boconó fault along the North Andean Block plate boundary, Venezuela[J]. Tectonics, 36(7): 1207-1231. doi: 10.1002/2016TC004305

    CrossRef Google Scholar

    Research Group of the Altyn Tagh Active Fault Zone, State Seismological Bureau, 1992. The Altyn Tagh active fault zone[M]. Beijing: Seismological Press. (in Chinese)

    Google Scholar

    ROCKWELL T, 1988. Neotectonics of the San Cayetano fault, transverse ranges, California[J]. GSA Bulletin, 100(4): 500-513. doi: 10.1130/0016-7606(1988)100<0500:NOTSCF>2.3.CO;2

    CrossRef Google Scholar

    SHI X H, KIRBY E, LU H J, et al., 2014. Holocene slip rate along the Gyaring Co Fault, central Tibet[J]. Geophysical Research Letters, 41(16): 5829-5837. doi: 10.1002/2014GL060782

    CrossRef Google Scholar

    SULTAN M, ARVIDSON R E, STURCHIO N C, et al., 1987. Lithologic mapping in arid regions with Landsat thematic mapper data: Meatiq dome, Egypt[J]. GSA Bulletin, 99(6): 748-762. doi: 10.1130/0016-7606(1987)99<748:LMIARW>2.0.CO;2

    CrossRef Google Scholar

    TAPPONNIER P, PELTZER G, LE DAIN A Y, et al., 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine[J]. Geology, 10(12): 611-616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2

    CrossRef Google Scholar

    TAPPONNIER P, XU Z Q, ROGER F, et al., 2001. Oblique stepwise rise and growth of the Tibet plateau[J]. Science, 294(5547): 1671-1677. doi: 10.1126/science.105978

    CrossRef Google Scholar

    THOMPSON S C, WELDON R J, RUBIN C M, et al., 2002. Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, central Asia[J]. Journal of Geophysical Research: Solid Earth, 107(B9): ETG 7-1-ETG 7-32.

    Google Scholar

    THORSON R M, 1989. Glacio-isostatic response of the Puget Sound area, Washington[J]. GSA Bulletin, 101(9): 1163-1174. doi: 10.1130/0016-7606(1989)101<1163:GIROTP>2.3.CO;2

    CrossRef Google Scholar

    VAN DER WOERD J, KLINGER Y, SIEHK, et al., 2006. Long-term slip rate of the southern San Andreas Fault from 10Be-26Al surface exposure dating of an offset alluvial fan[J]. Journal of Geophysical Research: Solid Earth, 111(B4): B04407.

    Google Scholar

    WELDON Ⅱ R J, SIEH K E, 1985. Holocene rate of slip and tentative recurrence interval for large earthquakes on the San Andreas fault, Cajon Pass, southern California[J]. GSA Bulletin, 96(6): 793-812. doi: 10.1130/0016-7606(1985)96<793:HROSAT>2.0.CO;2

    CrossRef Google Scholar

    WHIPPLE K X, DUNNE T, 1992. The influence of debris-flow rheology on fan morphology, Owens Valley, California[J]. GSA Bulletin, 104(7): 887-900. doi: 10.1130/0016-7606(1992)104<0887:TIODFR>2.3.CO;2

    CrossRef Google Scholar

    XIAO Kunze, TONG Hengmao, 2020. Progress on strike-slip fault research and its significance[J]. Journal of Geomechanics, 26(2): 151-166.

    Google Scholar

    XU X W, TAPPONNIER P, VAN DER WOERDJ, et al., 2003. Late Quaternary sinistral slip rate along the Altyn Tagh Fault and its structural transformation model[J]. Sience in China(Series D), 33(10): 967-974. (in Chinese)

    Google Scholar

    XU X W, WANG F, ZHENG R Z, et al., 2005. Late Quaternary sinistral slip rate along the Altyn Tagh fault and its structural transformation model[J]. Science in China Series D: Earth Sciences, 48(3): 384-397. doi: 10.1360/02yd0436

    CrossRef Google Scholar

    XU X W, YU G H, CHEN G H, et al., 2007. Near-surface character of permanent geologic deformation across the mega-strike-slip faults in the northern Tibetan plateau[J]. Seismology and Geology, 29(2): 201-217. (in Chinese with English abstract)

    Google Scholar

    YAN S X, ZHANG B, ZHAO Y C, et al., 2003. Summarizing the VIS-NIR spectra of minerals and rocks[J]. Remote Sensing Technology and Application, 18(4): 191-201. (in Chinese with English abstract)

    Google Scholar

    YUE Y J, LIOU J G, 1999. Two-stage evolution model for the Altyn Tagh fault, China[J]. Geology, 27(3): 227-230. doi: 10.1130/0091-7613(1999)027<0227:TSEMFT>2.3.CO;2

    CrossRef Google Scholar

    YUE Y J, GRAHAM S A, RITTS B D, et al., 2005. Detrital zircon provenance evidence for large-scale extrusion along the Altyn Tagh fault[J]. Tectonophysics, 406(3-4): 165-178. doi: 10.1016/j.tecto.2005.05.023

    CrossRef Google Scholar

    YUN L, YANG X P, SONG F M, et al., 2016. Late Quaternary sinistral strike-slip activities of Sanwei shan fault in the north of Tibetan plateau[J]. Seismology and Geology, 38(2): 434-446. (in Chinese with English abstract)

    Google Scholar

    ZHANG P Z, WANG Q, MA Z J, 2002. GPS velocity field and active crustal blocks of contemporary tectonic deformation in continental China[J]. Earth Science Frontiers, 9(2): 430-441. (in Chinese with English abstract)

    Google Scholar

    ZHANG P Z, SHEN Z K, WANG M, et al., 2004. Continuous deformation of the Tibetan Plateau from global positioning system data[J]. Geology, 32(9): 809-812. doi: 10.1130/G20554.1

    CrossRef Google Scholar

    ZHANG P Z, SHEN Z K, WANG M, et al., 2004. Kinematics of present-day tectonic deformation of the Tibetan plateau and its vicinities[J]. Seismology and Geology, 26(3): 367-377. (in Chinese with English abstract)

    Google Scholar

    ZHANG P Z, MOLNAR P, XU X W, 2007. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau[J]. Tectonics, 26(5): TC5010.

    Google Scholar

    ZHANG P Z, DENG Q D, ZHANG Z Q, et al., 2013. Active faults, earthquake hazards and associated geodynamic processes in continental China[J]. Scientia SinicaTerrae, 43(10): 1607-1620. (in Chinese with English abstract)

    Google Scholar

    ZIELKE O, ARROWSMITH J R, LUDWIG L G, et al., 2010. Slip in the 1857 and earlier large earthquakes along the Carrizo Plain, San Andreas Fault[J]. Science, 327(5969): 1119-1122. doi: 10.1126/science.1182781

    CrossRef Google Scholar

    白永健, 倪化勇, 葛华, 2019. 青藏高原东南缘活动断裂地质灾害效应研究现状[J]. 地质力学学报, 25(6): 1116-1128.

    Google Scholar

    陈文彬, 徐锡伟, 2006. 阿拉善地块南缘的左旋走滑断裂与阿尔金断裂带的东延[J]. 地震地质, 28(2): 319-324. doi: 10.3969/j.issn.0253-4967.2006.02.015

    CrossRef Google Scholar

    崔军文, 唐哲民, 邓晋福, 等, 1999. 阿尔金断裂系[M]. 北京: 地质出版社.

    Google Scholar

    崔军文, 张晓卫, 李朋武, 2002. 阿尔金断裂: 几何学、性质和生长方式[J]. 地质学报, 23(2): 509-516.

    Google Scholar

    程瑜, 李向前, 赵增玉, 等, 2018. 长江三角洲地区TZK3孔碎屑锆石U-Pb年龄及其物源意义[J]. 地质力学学报, 24(5): 635-644.

    Google Scholar

    傅碧宏, 丑晓伟, 1994. 塔里木盆地柯坪隆起典型沉积岩类的热红外光谱特征研究[J]. 沉积学报, 12(4): 95-100.

    Google Scholar

    付碧宏, 张松林, 谢小平, 等, 2006. 阿尔金断裂系西段: 康西瓦断裂的晚第四纪构造地貌特征研究[J]. 第四纪研究, 26(2): 228-235. doi: 10.3321/j.issn:1001-7410.2006.02.010

    CrossRef Google Scholar

    国家地震局《阿尔金活动断裂带》课题组, 1992. 阿尔金活动断裂带[M]. 北京: 地震出版社.

    Google Scholar

    黄飞鹏, 任俊杰, 吕延武, 等, 2018. 东昆仑断裂带秀沟段晚第四纪滑动速率研究[J]. 地球科学进展, 33(3): 321-332.

    Google Scholar

    李海兵, 杨经绥, 许志琴, 等, 2001. 阿尔金断裂带印支期走滑活动的地质及年代学证据[J]. 科学通报, 46(16): 1333-1338. doi: 10.3321/j.issn:0023-074X.2001.16.003

    CrossRef Google Scholar

    徐锡伟, 于贵华, 陈桂华, 等, 2007. 青藏高原北部大型走滑断裂带近地表地质变形带特征分析[J]. 地震地质, 29(2): 201-217. doi: 10.3969/j.issn.0253-4967.2007.02.002

    CrossRef Google Scholar

    徐锡伟, TAPPONNIER P, VAN DER WOERDJ, 等, 2003. 阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论[J]. 中国科学(D辑), 33(10): 967-974.

    Google Scholar

    肖坤泽, 童亨茂, 2020. 走滑断层研究进展及启示[J]. 地质力学学报, 26(2): 151-166.

    Google Scholar

    燕守勋, 张兵, 赵永超, 等, 2003. 矿物与岩石的可见: 近红外光谱特性综述[J]. 遥感技术与应用, 18(4): 191-201. doi: 10.3969/j.issn.1004-0323.2003.04.002

    CrossRef Google Scholar

    云龙, 杨晓平, 宋方敏, 等, 2016. 青藏高原北缘三危山断裂晚第四纪以来的左旋走滑活动[J]. 地震地质, 38(2): 434-446. doi: 10.3969/j.issn.0253-4967.2016.02.016

    CrossRef Google Scholar

    张培震, 王琪, 马宗晋, 2002. 中国大陆现今构造运动的GPS速度场与活动地块[J]. 地学前缘, 9(2): 430-441. doi: 10.3321/j.issn:1005-2321.2002.02.022

    CrossRef Google Scholar

    张培震, 沈正康, 王敏, 等, 2004. 青藏高原及周边现今构造变形的运动学[J]. 地震地质, 26(3): 367-377. doi: 10.3969/j.issn.0253-4967.2004.03.002

    CrossRef Google Scholar

    张培震, 邓起东, 张竹琪, 等, 2013. 中国大陆的活动断裂、地震灾害及其动力过程[J]. 中国科学: 地球科学, 43(10): 1607-1620.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(1759) PDF downloads(88) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint