2019 Vol. 25, No. 5
Article Contents

CHEN Qunce, SUN Dongsheng, CUI Jianjun, QIN Xianghui, ZHANG Chongyuan, MENG Wen, LI Awei, YANG Yuehui. HYDRAULIC FRACTURING STRESS MEASUREMENTS IN XUEFENGSHAN DEEP BOREHOLE AND ITS SIGNIFICANCE[J]. Journal of Geomechanics, 2019, 25(5): 853-865. doi: 10.12090/j.issn.1006-6616.2019.25.05.070
Citation: CHEN Qunce, SUN Dongsheng, CUI Jianjun, QIN Xianghui, ZHANG Chongyuan, MENG Wen, LI Awei, YANG Yuehui. HYDRAULIC FRACTURING STRESS MEASUREMENTS IN XUEFENGSHAN DEEP BOREHOLE AND ITS SIGNIFICANCE[J]. Journal of Geomechanics, 2019, 25(5): 853-865. doi: 10.12090/j.issn.1006-6616.2019.25.05.070

HYDRAULIC FRACTURING STRESS MEASUREMENTS IN XUEFENGSHAN DEEP BOREHOLE AND ITS SIGNIFICANCE

  • By use of the recently developed hydraulic fracturing in situ stress measurement system, valid data of 16 depth intervals at the borehole depth range of 170~2021 m in the Xuefengshan deep borehole were obtained, which are the first reported results obtained at the borehole depth deeper than 2000 m in China. The test results showed that the magnitude of the in situ stress increased with the depth of the borehole. By linear regression, the relationship of the maximum and minimum horizontal principal stresses with the depth of the test borehole respectively are SH=0.03328H+5.25408, and Sh=0.0203H+4.5662, and at the borehole depth of 2021 m, the magnitude of which are 66.31 MPa and 43.33 MPa respectively. Based on the hydraulic fracturing test data, combined with the BHTV and borehole temperature logging test results, the analysis on the stress state of the study area were carried out. In the range of 170~800 m borehole depth, the relationship of the three principal stresses are SH > Sh > Sv, which are favourable for reverse faulting; In the range of 1000~2021 m borehole depth, the relationship changes to SH > Sv > Sh, which implied that the deep stress regime of this area are strike-slip faulting. The direction of the maximum horizontal principal stress is in NW~NWW direction. According to Mohr-Coulomb criterion, the activity of the faults of the study area were discussed and the conclusion were obtained that the faults of this area are in stable state.

  • 加载中
  • ZANG A, STEPHANSSON O. Stress field of the earth's crust[M]. Dordrecht:Springer, 2010.

    Google Scholar

    HAIMSON B C. The hydrofracturing stress measuring method and recent field results[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(4):167-178.

    Google Scholar

    HAIMSON B C. Crustal stress in the Michigan basin[J]. Journal of Geophysical Research:Solid Earth, 1978, 83(B12):5857-5863. doi: 10.1029/JB083iB12p05857

    CrossRef Google Scholar

    ZOBACK M D, BARTON C A, BRUDY M, et al. Determination of stress orientation and magnitude in deep wells[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(7-8):1049-1076. doi: 10.1016/j.ijrmms.2003.07.001

    CrossRef Google Scholar

    ZOBACK M D, APEL R, BAUMGÄRTNER J, et al. Upper-crustal strength inferred from stress measurements to 6 km depth in the KTB borehole[J]. Nature, 1993, 365(6447):633-635. doi: 10.1038/365633a0

    CrossRef Google Scholar

    HSV K J, SUN S, LI J L, et al. Mesozoic overthrust tectonics in South China[J]. Geology, 1988, 16(5):418-421. doi: 10.1130/0091-7613(1988)016<0418:MOTISC>2.3.CO;2

    CrossRef Google Scholar

    DONG S W, ZHANG Y Q, GAO R, et al. A possible buried Paleoproterozoic collisional orogen beneath central South China:evidence from seismic-reflection profiling[J]. Precambrian Research, 2015, 264:1-10. doi: 10.1016/j.precamres.2015.04.003

    CrossRef Google Scholar

    颜丹平, 邱亮, 陈峰, 等.华南地块雪峰山中生代板内造山带构造样式及其形成机制[J].地学前缘, 2018, 25(1):1-13.

    Google Scholar

    YAN Danping, QIU Liang, CHEN Feng, et al. Structural style and kinematics of the Mesozoic Xuefengshan intraplate orogenic belt, South China Block[J]. Earth Science Frontiers, 2018, 25(1):1-13. (in Chinese with English abstract)

    Google Scholar

    褚杨, 林伟, FAURE M, 等.华南板块早中生代陆内造山过程——以雪峰山-九岭为例[J].岩石学报, 2015, 31(8):2145-2155.

    Google Scholar

    CHU Yang, LIN Wei, FAURE M, et al. Early Mesozoic intracontinental orogeny:example of the Xuefengshan-Jiuling Belt[J]. Acta Petrologica Sinica, 2015, 31(8):2145-2155. (in Chinese with English abstract)

    Google Scholar

    HAIMSON B C, CORNET F H. ISRM Suggested Methods for rock stress estimation-Part 3:hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF)[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(7-8):1011-1020. doi: 10.1016/j.ijrmms.2003.08.002

    CrossRef Google Scholar

    王建军, 李方全, 陈群策, 等. DB/T 14-2000原地应力测量-水压致裂法和套芯解除法技术规范[S].北京: 科学出版社, 2001.

    Google Scholar

    WANG Jianjun, LI Fangquan, CHEN Qunce, et al. DB/T 14-2000 Code of hydraulic fracturing and overcoring method for in-situ stress measurement[S]. Beijing: Science Press, 2001. (in Chinese with English abstract)

    Google Scholar

    SHI W, DONG S W, ZHANG Y Q, et al.The typical large-scale superposed folds in the central South China:Implications for Mesozoic intracontinental deformation of the South China Block[J]. Tectonophysics, 2015, 664:50-66. doi: 10.1016/j.tecto.2015.08.039

    CrossRef Google Scholar

    ZOBACK M D. Reservoir geomechanics[M]. Cambridge:Cambridge University Press, 2006.

    Google Scholar

    苏恺之, 李方全, 张伯崇, 等.长江三峡坝区地壳应力与孔隙水压力综合研究[M].北京:地震出版社, 1996.

    Google Scholar

    SU Kaizhi, LI Fangquan, ZHANG Bochong, et al. Integrated research on the stress field and pore pressure at The Three Gorges site[M]. Beijing:Seismological Press, 1996. (in Chinese)

    Google Scholar

    ITO T, EVANS K, KAWAI K, et al. Hydraulic fracture reopening pressure and the estimation of maximum horizontal stress[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(6):811-826. doi: 10.1016/S0148-9062(99)00053-4

    CrossRef Google Scholar

    ITO T, IGARASHI A, KATO H, et al. Crucial effect of system compliance on the maximum stress estimation in the hydrofracturing method:theoretical considerations and field-test verification[J]. Earth, Planets and Space, 2006, 58(8):963-971. doi: 10.1186/BF03352601

    CrossRef Google Scholar

    ITO T, FUNATO A, LIN W R, et al. Determination of stress state in deep subsea formation by combination of hydraulic fracturing in situ test and core analysis:a case study in the IODP Expedition 319[J]. Journal of Geophysical Research:Solid Earth, 2013, 118(3):1203-1215. doi: 10.1002/jgrb.50086

    CrossRef Google Scholar

    王成虎, 宋成科, 邢博瑞.水压致裂应力测量系统柔性分析及其对深孔测量的影响[J].现代地质, 2012, 26(4):808-816. doi: 10.3969/j.issn.1000-8527.2012.04.024

    CrossRef Google Scholar

    WANG Chenghu, SONG Chengke, XING Borui. Compliance of drilling-rod system for hydro-fracturing in situ stress measurement and its effect on measurements at great depth[J]. Geoscience, 2012, 26(4):808-816. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-8527.2012.04.024

    CrossRef Google Scholar

    徐志英.岩石力学[M].北京:水利电力出版社, 1986.

    Google Scholar

    XU Zhiying. Rock mechanics[M]. Beijing:Water Resources and Electric Power Press, 1986. (in Chinese)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(2344) PDF downloads(76) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint