Citation: | LIU Yuan, KONIETZKY Heinz. PARTICLE-BASED MODELING OF CRACK PROPAGATION DURING PULL-APART BASIN DEVELOPMENT[J]. Journal of Geomechanics, 2019, 25(5): 840-852. doi: 10.12090/j.issn.1006-6616.2019.25.05.069 |
Pull-apart basins are extensional structures which are closely related to strike-slip faults. Pull-apart basins have received considerable attention from geologists because of its significant tectonic meaning and the associations with volcanism, earthquake swarms, and special mineralization. Although numerous studies have contributed to the current understanding of pull-apart basin evolution, pull-apart basin development concentrating on crack propagation and coalescence is lacking because of the limitations of the previous methods. A particle-based approach, which is based on Discrete Element Method (DEM), can be successfully used to simulate crack propagation during pull-apart basin development for pure strike-slip. Transtensional models are also set up to investigate basin development and crack propagation in transtentional systems, with different angles between the master strike-slip faults and the motion direction in each system. Modeling results are compared with natural examples worldwide such as the Dead Sea basin, Cinarcik basin in Marmara Sea, and El Paraiso basin in SW Colombia et al. This research provides new method and view to study the evolution of pull-apart basins and the propagation and coalescence of the related strike-slip faults.
FOSSEN H. Structural geology[M]. New York:Cambridge University Press, 2016:356-366. |
MANN P, HEMPTON M R, BRADLEY D C, et al. Development of pull-apart basins[J]. The Journal of Geology, 1983, 91(5):529-554. doi: 10.1086/628803 |
AYDIN A, NUR A. Evolution of pull-apart basins and their scale independence[J]. Tectonics, 1982, 1(1):91-105. |
BAHAT D. New aspects of rhomb structures[J]. Journal of Structural Geology, 1983, 5(6):591-601. doi: 10.1016/0191-8141(83)90071-8 |
GVRBVZ A. Geometric characteristics of pull-apart basins[J]. Lithosphere, 2010, 2(3):199-206. doi: 10.1130/L36.1 |
WU J E, MCCLAY K, WHITEHOUSE P, et al. 4D analogue modelling of transtensional pull-apart basins[J]. Marine and Petroleum Geology, 2009, 26(8):1608-1623. doi: 10.1016/j.marpetgeo.2008.06.007 |
DOOLEY T P, MCCLAY K. Analog modeling of pull-apart basins[J]. AAPG Bulletin, 1997, 81(11):1804-1826. |
RAHE B, FERRILL D A, MORRIS A P. Physical analog modeling of pull-apart basin evolution[J]. Tectonophysics, 1998, 285(1-2):21-40. doi: 10.1016/S0040-1951(97)00193-5 |
CORTI G, DOOLEY T P. Lithospheric-scale centrifuge models of pull-apart basins[J]. Tectonophysics, 2015, 664:154-163. doi: 10.1016/j.tecto.2015.09.004 |
RODGERS D A. Analysis of pull-apart basin development produced by En echelon strike-slip faults[M]//BALANCE P E, READING H G. Sedimentation in Oblique-Slip Mobile Zones. Oxford: International Association of Sedimentologists Special Publication. |
GÖLKE M, CLOETINGH S, FUCHS K. Finite-element modelling of pull-apart basin formation[J]. Tectonophysics, 1994, 240(1-4):45-57. doi: 10.1016/0040-1951(94)90263-1 |
KATZMAN R, TEN BRINK U S, LIN J. Three-dimensional modeling of pull-apart basins:Implications for the tectonics of the Dead Sea Basin[J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B4):6295-6312. doi: 10.1029/94JB03101 |
PETRUNIN A, SOBOLEV S V. What controls thickness of sediments and lithospheric deformation at a pull-apart basin?[J]. Geology, 2006, 34(5):389-392. doi: 10.1130/G22158.1 |
VAN WIJK J, AXEN G, ABERA R. Initiation, evolution and extinction of pull-apart basins:Implications for opening of the Gulf of California[J]. Tectonophysics, 2017, 719-720:37-50. doi: 10.1016/j.tecto.2017.04.019 |
BURCHFIEL B C, STEWART J H. "Pull-apart" origin of the central segment of Death Valley, California[J]. GSA Bulletin, 1966, 77(4):439-442. doi: 10.1130/0016-7606(1966)77[439:POOTCS]2.0.CO;2 |
WRIGHT L A, OTTON J K, TROXEL B W. Turtleback surfaces of Death Valley viewed as phenomena of extensional tectonics[J]. Geology, 1974, 2(2):53-54. |
LALLEMAND S, JOLIVET L. Japan Sea:a pull-apart basin?[J]. Earth and Planetary Science Letters, 1986, 76(3-4):375-389. doi: 10.1016/0012-821X(86)90088-9 |
DENG Q D, WU D N, ZHANG P Z, et al. Structure and deformational character of strike-slip fault zones[J]. Pure and Applied Geophysics, 1986, 124(1-2):203-223. doi: 10.1007/BF00875726 |
邓起东, 张维岐, 张培震, 等.海原走滑断裂带及其尾端挤压构造[J].地震地质, 11(1):1-14. DENG Qidong, ZHANG Weiqi, ZHANG Peizhen, et al. Haiyuan strike-slip fault zone and its compressional structures of the end[J]. Seismology and Geology, 1989, 11(1):1-14. (in Chinese with English abstract) |
ZHANG P Z, BURCHFIEL B C, CHEN S F, et al. Extinction of pull-apart basins[J]. Geology, 1989, 17(9):814-817. doi: 10.1130/0091-7613(1989)017<0814:EOPAB>2.3.CO;2 |
国家地震局地质研究所, 宁夏回族自治区地震局.海原活动断裂带[M].北京:地震出版社, 1990:1-286. Institute of Geology, State Seismological Bureau (IG), and Seismological Bureau of Ningxia Hui Autonomous Province (SBNHAP). Haiyuan active fault[M]. Beijing:Seismological Press, 1990:1-286. (in Chinese) |
OKAY A İ, KAŞLlar-ÖZCAN A, IMREN C, et al. Active faults and evolving strike-slip basins in the Marmara Sea, northwest Turkey:a multichannel seismic reflection study[J]. Tectonophysics, 2000, 321(2):189-218. doi: 10.1016/S0040-1951(00)00046-9 |
ITOH Y. A Miocene pull-apart deformation zone at the western margin of the Japan Sea back-arc basin:implications for the back-arc opening mode[J]. Tectonophysics, 2001, 334(3-4):235-244. doi: 10.1016/S0040-1951(01)00068-3 |
施炜, 刘源, 刘洋, 等.青藏高原东北缘海原断裂带新生代构造演化[J].地学前缘, 2013, 20(4):1-17. SHI Wei, LIU Yuan, LIU Yang, et al. Cenozoic evolution of the Haiyuan fault zone in the northeast margin of the Tibetan Plateau[J]. Earth Science Frontiers, 2013, 20(4):1-17. (in Chinese with English abstract) |
QUENNELL A M. The structural and geomorphic evolution of the Dead Sea rift[J]. Quarterly Journal of the Geological Society, 1958, 114(1-4):1-24. doi: 10.1144/gsjgs.114.1.0001 |
CROWELL J C. Origin of late Cenozoic basins in southern California[M]//DOTT R H, SHAVER R H. Modern and Ancient Geosynclinal Sedimentation. Tulsa, Okla.: SEPM, 1958: 292-303. |
GARFUNKEL Z. Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics[J]. Tectonophysics, 1981, 80(1-4):81-108. doi: 10.1016/0040-1951(81)90143-8 |
KOIDE H, BHATTACHARJI S. Geometric patterns of active strike-slip faults and their significance as indicators for areas of energy release[M]//SAXENA S K, BHATTACHARJI S, ANNERSTEN H, et al. Energetics of Geological Processes. Berlin, Heidelberg: Springer, 1977: 46-66. |
SMIT J, BRUN J P, CLOETINGH S, et al. Pull-apart basin formation and development in narrow transform zones with application to the Dead Sea Basin[J]. Tectonics, 2008, 27(6):TC6018. |
SUGAN M, WU J E L, MCCLAY K. 3D analogue modelling of transtensional pull-apart basins:comparison with the Cinarcik basin, Sea of Marmara, Turkey[J]. Bollettino di Geofisica Teorica ed Applicata, 2014, 55(4):599-716. |
TEN BRINK U S, KATZMAN R, LIN J. Three-dimensional models of deformation near strike-slip faults[J]. Journal of Geophysical Research:Solid Earth, 1996, 101(B7):16205-16220. doi: 10.1029/96JB00877 |
BERTOLUZZA L, PEROTTI C R. A finite-element model of the stress field in strike-slip basins:implications for the Permian tectonics of the Southern Alps (Italy)[J]. Tectonophysics, 1997, 280(1-2):185-197. doi: 10.1016/S0040-1951(97)00140-6 |
Itasca. PFC2D (particle flow code in 2 dimensions) manual[M]. 4th ed. Minneapolis, Minnesota:ICG, 2004. |
CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1):47-65. doi: 10.1680/geot.1979.29.1.47 |
LIU Y, KONIETZKY H. Particle-based modeling of pull-apart basin development[J]. Tectonics, 2018, 37(1):343-358. doi: 10.1002/2017TC004685 |
VELANDIA F, ACOSTA J, TERRAZA R, et al. The current tectonic motion of the northern Andes along the Algeciras Fault System in SW Colombia[J]. Tectonophysics, 2005, 399(1-4):313-329. doi: 10.1016/j.tecto.2004.12.028 |
GARFUNKEL Z, BEN-AVRAHAM Z. The structure of the Dead Sea Basin[J]. Tectonophysics, 1996, 266(1-4):155-176. doi: 10.1016/S0040-1951(96)00188-6 |
BANDEL K, KHOURY H. Lithostratigraphy of the Triassic in Jordan[J]. Facies, 1981, 4(1):1-26. doi: 10.1007/BF02536584 |
FREUND R. The Hope fault:a strike-slip fault in New Zealand[J]. New Zealand Geological Survey Bulletin, 1971, 86:1-49. |
LIU Y, KONIETZKY H. Particle-based modeling of transtensional pull-apart basins[J]. Tectonics, 2018, 37(12):4700-4713. doi: 10.1029/2018TC004973 |
FODOR L. From transpression to transtension:Oligocene-Miocene structural evolution of the Vienna basin and the East Alpine-Western Carpathian junction[J]. Tectonophysics, 1995, 242(1-2):151-182. doi: 10.1016/0040-1951(94)00158-6 |
HINSCH R, DECKER K, PERESSON H. 3-D seismic interpretation and structural modeling in the Vienna Basin:implications for Miocene to recent kinematics[J]. Austrian Journal of Earth Sciences, 2005, 97:38-50. |
ARMIJO R, MEYER B, NAVARRO S, et al. Asymmetric slip partitioning in the Sea of Marmara pull-apart:A clue to propagation processes of the North Anatolian fault?[J]. Terra Nova, 2002, 14(2):80-86. doi: 10.1046/j.1365-3121.2002.00397.x |
FLERIT F, ARMIJO R, KING G C P, et al. Slip partitioning in the Sea of Marmara pull-apart determined from GPS velocity vectors[J]. Geophysical Journal International, 2003, 154(1):1-7. doi: 10.1046/j.1365-246X.2003.01899.x |
MCCLUSKY S, BALASSANIAN S, BARKA A, et al. Global positioning system constraints on plate kinematics and dynamics in the eastern mediterranean and caucasus[J]. Journal of Geophysical Research:Solid Earth, 2000, 105(B3):5695-5719. doi: 10.1029/1999JB900351 |
Summary of previous models for pull-apart basin development
Simplified sketch map of the PFC2D model[35]
Pull-apart basin models with three representative initial strike-slip fault patterns[35]
Pull-apart basin models with three different initial strike-slip fault kinematics
Crack propagation and basin development for models with 30° underlapping, 90° non-overlapping, and 150° overlapping, respectively[35]
Major principal stress σ1 versus relative extension εx* for the three representative models[35]
Examples of pull-apart basins in nature[35]
Simplified sketch of the important evolution points during pull-apart basin development for the three models and the estimated maximum displacement and time for the El Paraiso basin calculated from the modeling results[35]
Comparison of crack propagation and basin development for pure strike slip model, 5° transtensional model, and 10° transtensional model[40]
Simplified structural map of pull-apart basins in the Marmara Sea, Turkey (after reference [43])