2019 Vol. 25, No. 5
Article Contents

LIU Yuan, KONIETZKY Heinz. PARTICLE-BASED MODELING OF CRACK PROPAGATION DURING PULL-APART BASIN DEVELOPMENT[J]. Journal of Geomechanics, 2019, 25(5): 840-852. doi: 10.12090/j.issn.1006-6616.2019.25.05.069
Citation: LIU Yuan, KONIETZKY Heinz. PARTICLE-BASED MODELING OF CRACK PROPAGATION DURING PULL-APART BASIN DEVELOPMENT[J]. Journal of Geomechanics, 2019, 25(5): 840-852. doi: 10.12090/j.issn.1006-6616.2019.25.05.069

PARTICLE-BASED MODELING OF CRACK PROPAGATION DURING PULL-APART BASIN DEVELOPMENT

  • Pull-apart basins are extensional structures which are closely related to strike-slip faults. Pull-apart basins have received considerable attention from geologists because of its significant tectonic meaning and the associations with volcanism, earthquake swarms, and special mineralization. Although numerous studies have contributed to the current understanding of pull-apart basin evolution, pull-apart basin development concentrating on crack propagation and coalescence is lacking because of the limitations of the previous methods. A particle-based approach, which is based on Discrete Element Method (DEM), can be successfully used to simulate crack propagation during pull-apart basin development for pure strike-slip. Transtensional models are also set up to investigate basin development and crack propagation in transtentional systems, with different angles between the master strike-slip faults and the motion direction in each system. Modeling results are compared with natural examples worldwide such as the Dead Sea basin, Cinarcik basin in Marmara Sea, and El Paraiso basin in SW Colombia et al. This research provides new method and view to study the evolution of pull-apart basins and the propagation and coalescence of the related strike-slip faults.

  • 加载中
  • FOSSEN H. Structural geology[M]. New York:Cambridge University Press, 2016:356-366.

    Google Scholar

    MANN P, HEMPTON M R, BRADLEY D C, et al. Development of pull-apart basins[J]. The Journal of Geology, 1983, 91(5):529-554. doi: 10.1086/628803

    CrossRef Google Scholar

    AYDIN A, NUR A. Evolution of pull-apart basins and their scale independence[J]. Tectonics, 1982, 1(1):91-105.

    Google Scholar

    BAHAT D. New aspects of rhomb structures[J]. Journal of Structural Geology, 1983, 5(6):591-601. doi: 10.1016/0191-8141(83)90071-8

    CrossRef Google Scholar

    GVRBVZ A. Geometric characteristics of pull-apart basins[J]. Lithosphere, 2010, 2(3):199-206. doi: 10.1130/L36.1

    CrossRef Google Scholar

    WU J E, MCCLAY K, WHITEHOUSE P, et al. 4D analogue modelling of transtensional pull-apart basins[J]. Marine and Petroleum Geology, 2009, 26(8):1608-1623. doi: 10.1016/j.marpetgeo.2008.06.007

    CrossRef Google Scholar

    DOOLEY T P, MCCLAY K. Analog modeling of pull-apart basins[J]. AAPG Bulletin, 1997, 81(11):1804-1826.

    Google Scholar

    RAHE B, FERRILL D A, MORRIS A P. Physical analog modeling of pull-apart basin evolution[J]. Tectonophysics, 1998, 285(1-2):21-40. doi: 10.1016/S0040-1951(97)00193-5

    CrossRef Google Scholar

    CORTI G, DOOLEY T P. Lithospheric-scale centrifuge models of pull-apart basins[J]. Tectonophysics, 2015, 664:154-163. doi: 10.1016/j.tecto.2015.09.004

    CrossRef Google Scholar

    RODGERS D A. Analysis of pull-apart basin development produced by En echelon strike-slip faults[M]//BALANCE P E, READING H G. Sedimentation in Oblique-Slip Mobile Zones. Oxford: International Association of Sedimentologists Special Publication.

    Google Scholar

    GÖLKE M, CLOETINGH S, FUCHS K. Finite-element modelling of pull-apart basin formation[J]. Tectonophysics, 1994, 240(1-4):45-57. doi: 10.1016/0040-1951(94)90263-1

    CrossRef Google Scholar

    KATZMAN R, TEN BRINK U S, LIN J. Three-dimensional modeling of pull-apart basins:Implications for the tectonics of the Dead Sea Basin[J]. Journal of Geophysical Research:Solid Earth, 1995, 100(B4):6295-6312. doi: 10.1029/94JB03101

    CrossRef Google Scholar

    PETRUNIN A, SOBOLEV S V. What controls thickness of sediments and lithospheric deformation at a pull-apart basin?[J]. Geology, 2006, 34(5):389-392. doi: 10.1130/G22158.1

    CrossRef Google Scholar

    VAN WIJK J, AXEN G, ABERA R. Initiation, evolution and extinction of pull-apart basins:Implications for opening of the Gulf of California[J]. Tectonophysics, 2017, 719-720:37-50. doi: 10.1016/j.tecto.2017.04.019

    CrossRef Google Scholar

    BURCHFIEL B C, STEWART J H. "Pull-apart" origin of the central segment of Death Valley, California[J]. GSA Bulletin, 1966, 77(4):439-442. doi: 10.1130/0016-7606(1966)77[439:POOTCS]2.0.CO;2

    CrossRef Google Scholar

    WRIGHT L A, OTTON J K, TROXEL B W. Turtleback surfaces of Death Valley viewed as phenomena of extensional tectonics[J]. Geology, 1974, 2(2):53-54.

    Google Scholar

    LALLEMAND S, JOLIVET L. Japan Sea:a pull-apart basin?[J]. Earth and Planetary Science Letters, 1986, 76(3-4):375-389. doi: 10.1016/0012-821X(86)90088-9

    CrossRef Google Scholar

    DENG Q D, WU D N, ZHANG P Z, et al. Structure and deformational character of strike-slip fault zones[J]. Pure and Applied Geophysics, 1986, 124(1-2):203-223. doi: 10.1007/BF00875726

    CrossRef Google Scholar

    邓起东, 张维岐, 张培震, 等.海原走滑断裂带及其尾端挤压构造[J].地震地质, 11(1):1-14.

    Google Scholar

    DENG Qidong, ZHANG Weiqi, ZHANG Peizhen, et al. Haiyuan strike-slip fault zone and its compressional structures of the end[J]. Seismology and Geology, 1989, 11(1):1-14. (in Chinese with English abstract)

    Google Scholar

    ZHANG P Z, BURCHFIEL B C, CHEN S F, et al. Extinction of pull-apart basins[J]. Geology, 1989, 17(9):814-817. doi: 10.1130/0091-7613(1989)017<0814:EOPAB>2.3.CO;2

    CrossRef Google Scholar

    国家地震局地质研究所, 宁夏回族自治区地震局.海原活动断裂带[M].北京:地震出版社, 1990:1-286.

    Google Scholar

    Institute of Geology, State Seismological Bureau (IG), and Seismological Bureau of Ningxia Hui Autonomous Province (SBNHAP). Haiyuan active fault[M]. Beijing:Seismological Press, 1990:1-286. (in Chinese)

    Google Scholar

    OKAY A İ, KAŞLlar-ÖZCAN A, IMREN C, et al. Active faults and evolving strike-slip basins in the Marmara Sea, northwest Turkey:a multichannel seismic reflection study[J]. Tectonophysics, 2000, 321(2):189-218. doi: 10.1016/S0040-1951(00)00046-9

    CrossRef Google Scholar

    ITOH Y. A Miocene pull-apart deformation zone at the western margin of the Japan Sea back-arc basin:implications for the back-arc opening mode[J]. Tectonophysics, 2001, 334(3-4):235-244. doi: 10.1016/S0040-1951(01)00068-3

    CrossRef Google Scholar

    施炜, 刘源, 刘洋, 等.青藏高原东北缘海原断裂带新生代构造演化[J].地学前缘, 2013, 20(4):1-17.

    Google Scholar

    SHI Wei, LIU Yuan, LIU Yang, et al. Cenozoic evolution of the Haiyuan fault zone in the northeast margin of the Tibetan Plateau[J]. Earth Science Frontiers, 2013, 20(4):1-17. (in Chinese with English abstract)

    Google Scholar

    QUENNELL A M. The structural and geomorphic evolution of the Dead Sea rift[J]. Quarterly Journal of the Geological Society, 1958, 114(1-4):1-24. doi: 10.1144/gsjgs.114.1.0001

    CrossRef Google Scholar

    CROWELL J C. Origin of late Cenozoic basins in southern California[M]//DOTT R H, SHAVER R H. Modern and Ancient Geosynclinal Sedimentation. Tulsa, Okla.: SEPM, 1958: 292-303.

    Google Scholar

    GARFUNKEL Z. Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics[J]. Tectonophysics, 1981, 80(1-4):81-108. doi: 10.1016/0040-1951(81)90143-8

    CrossRef Google Scholar

    KOIDE H, BHATTACHARJI S. Geometric patterns of active strike-slip faults and their significance as indicators for areas of energy release[M]//SAXENA S K, BHATTACHARJI S, ANNERSTEN H, et al. Energetics of Geological Processes. Berlin, Heidelberg: Springer, 1977: 46-66.

    Google Scholar

    SMIT J, BRUN J P, CLOETINGH S, et al. Pull-apart basin formation and development in narrow transform zones with application to the Dead Sea Basin[J]. Tectonics, 2008, 27(6):TC6018.

    Google Scholar

    SUGAN M, WU J E L, MCCLAY K. 3D analogue modelling of transtensional pull-apart basins:comparison with the Cinarcik basin, Sea of Marmara, Turkey[J]. Bollettino di Geofisica Teorica ed Applicata, 2014, 55(4):599-716.

    Google Scholar

    TEN BRINK U S, KATZMAN R, LIN J. Three-dimensional models of deformation near strike-slip faults[J]. Journal of Geophysical Research:Solid Earth, 1996, 101(B7):16205-16220. doi: 10.1029/96JB00877

    CrossRef Google Scholar

    BERTOLUZZA L, PEROTTI C R. A finite-element model of the stress field in strike-slip basins:implications for the Permian tectonics of the Southern Alps (Italy)[J]. Tectonophysics, 1997, 280(1-2):185-197. doi: 10.1016/S0040-1951(97)00140-6

    CrossRef Google Scholar

    Itasca. PFC2D (particle flow code in 2 dimensions) manual[M]. 4th ed. Minneapolis, Minnesota:ICG, 2004.

    Google Scholar

    CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1):47-65. doi: 10.1680/geot.1979.29.1.47

    CrossRef Google Scholar

    LIU Y, KONIETZKY H. Particle-based modeling of pull-apart basin development[J]. Tectonics, 2018, 37(1):343-358. doi: 10.1002/2017TC004685

    CrossRef Google Scholar

    VELANDIA F, ACOSTA J, TERRAZA R, et al. The current tectonic motion of the northern Andes along the Algeciras Fault System in SW Colombia[J]. Tectonophysics, 2005, 399(1-4):313-329. doi: 10.1016/j.tecto.2004.12.028

    CrossRef Google Scholar

    GARFUNKEL Z, BEN-AVRAHAM Z. The structure of the Dead Sea Basin[J]. Tectonophysics, 1996, 266(1-4):155-176. doi: 10.1016/S0040-1951(96)00188-6

    CrossRef Google Scholar

    BANDEL K, KHOURY H. Lithostratigraphy of the Triassic in Jordan[J]. Facies, 1981, 4(1):1-26. doi: 10.1007/BF02536584

    CrossRef Google Scholar

    FREUND R. The Hope fault:a strike-slip fault in New Zealand[J]. New Zealand Geological Survey Bulletin, 1971, 86:1-49.

    Google Scholar

    LIU Y, KONIETZKY H. Particle-based modeling of transtensional pull-apart basins[J]. Tectonics, 2018, 37(12):4700-4713. doi: 10.1029/2018TC004973

    CrossRef Google Scholar

    FODOR L. From transpression to transtension:Oligocene-Miocene structural evolution of the Vienna basin and the East Alpine-Western Carpathian junction[J]. Tectonophysics, 1995, 242(1-2):151-182. doi: 10.1016/0040-1951(94)00158-6

    CrossRef Google Scholar

    HINSCH R, DECKER K, PERESSON H. 3-D seismic interpretation and structural modeling in the Vienna Basin:implications for Miocene to recent kinematics[J]. Austrian Journal of Earth Sciences, 2005, 97:38-50.

    Google Scholar

    ARMIJO R, MEYER B, NAVARRO S, et al. Asymmetric slip partitioning in the Sea of Marmara pull-apart:A clue to propagation processes of the North Anatolian fault?[J]. Terra Nova, 2002, 14(2):80-86. doi: 10.1046/j.1365-3121.2002.00397.x

    CrossRef Google Scholar

    FLERIT F, ARMIJO R, KING G C P, et al. Slip partitioning in the Sea of Marmara pull-apart determined from GPS velocity vectors[J]. Geophysical Journal International, 2003, 154(1):1-7. doi: 10.1046/j.1365-246X.2003.01899.x

    CrossRef Google Scholar

    MCCLUSKY S, BALASSANIAN S, BARKA A, et al. Global positioning system constraints on plate kinematics and dynamics in the eastern mediterranean and caucasus[J]. Journal of Geophysical Research:Solid Earth, 2000, 105(B3):5695-5719. doi: 10.1029/1999JB900351

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(2635) PDF downloads(71) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint