2018 Vol. 24, No. 1
Article Contents

Wei LI, Shuping CHEN, Jinbiao YUN, Zhina LIU, Shilin LIU, Hongying JI. FORMATION MECHANISM OF STEEPLY INCLINED REVERSE FAULT: TAKE THE SERIKBUYA FAULT IN TARIM BASIN AS AN EXAMPLE[J]. Journal of Geomechanics, 2018, 24(1): 1-8. doi: 10.12090/j.issn.1006-6616.2018.24.01.001
Citation: Wei LI, Shuping CHEN, Jinbiao YUN, Zhina LIU, Shilin LIU, Hongying JI. FORMATION MECHANISM OF STEEPLY INCLINED REVERSE FAULT: TAKE THE SERIKBUYA FAULT IN TARIM BASIN AS AN EXAMPLE[J]. Journal of Geomechanics, 2018, 24(1): 1-8. doi: 10.12090/j.issn.1006-6616.2018.24.01.001

FORMATION MECHANISM OF STEEPLY INCLINED REVERSE FAULT: TAKE THE SERIKBUYA FAULT IN TARIM BASIN AS AN EXAMPLE

  • Many steeply inclined reverse faults have developed in basins of western China, but we have not yet gained an unified understanding of their formation mechanism. The Serikbuya fault is located in the western Tarim Basin and it is a typical steeply inclined reverse fault, which provides a good example to study the formation mechanism of steeply inclined reverse fault. According to the latest seismic profiles and stratigraphic analysis, the inclination of the upper part of the Serikbuya fault is about 65°. The Serikbuya fault formed through two-staged tectonic movement. The first period ranged from Late Caledonian movement to early Hercynian movement(439~362 Ma), and the second period was during the Medium Himalayan movement(23.3~5.3 Ma). It is the multi-stage movements of the fault that formed the upper steeply inclined fault. That is, the movement of the previous gently inclined reverse fault changed the local stress field and promoted the maximum stress spindle from horizontal to tilt. Then the Coulomb fault inclination occurred steep and back thrusts appeared. At the same time, the results of digital sandbox simulation are used to confirm the above inferences.
  • 加载中
  • 胡素云, 蔚远江, 董大忠, 等.准噶尔盆地腹部断裂活动对油气聚集的控制作用[J].石油学报, 2006, 27(1):1~7. doi: 10.7623/syxb200601001

    CrossRef Google Scholar

    HU Suyun, YU Yuanjiang, DONG Dazhong, et al. Control of fault activity on hydrocarbon accumulation in central Junggar Basin[J]. Acta Petrolei Sinica, 2006, 27(1):1~7. (in Chinese with English abstract) doi: 10.7623/syxb200601001

    CrossRef Google Scholar

    曲国胜, 马宗晋, 张宁, 等.准噶尔盆地及周缘断裂构造特征[J].新疆石油地质, 2008, 29(3):290~295.

    Google Scholar

    QU Guosheng, MA Zongjin, ZHANG Ning, et al. Fault structures in and around Junggar Basin[J]. Xinjiang Petroleum Geology, 2008, 29(3):290~295. (in Chinese with English abstract)

    Google Scholar

    李曰俊, 吴根耀, 孟庆龙, 等.塔里木盆地中央地区的断裂系统:几何学、运动学和动力学背景[J].地质科学, 2008, 43(1):82~118.

    Google Scholar

    LI Yuejun, WU Genyao, MENG Qinglong, et al. Fault systems in central area of the Tarim Basin:Geometry, kinematics and dynamic settings[J]. Chinese Journal of Geology, 2008, 43(1):82~118. (in Chinese with English abstract)

    Google Scholar

    汤良杰, 漆立新, 邱海峻, 等.塔里木盆地断裂构造分期差异活动及其变形机理[J].岩石学报, 2012, 28(8):2569~2583.

    Google Scholar

    TANG Liangjie, QI Lixin, QIU Haijun, et al. Poly-phase differential fault movement and hydrocarbon accumulation of the Tarim Basin, NW China[J]. Acta Petrologica Sinica, 2012, 28(8):2569~2583. (in Chinese with English abstract)

    Google Scholar

    朱志澄.构造地质学[M]. 2版.武汉:中国地质大学出版社, 2006, 181~194.

    Google Scholar

    ZHU Zhicheng. Structural geology[M]. 2nd ed. Wuhan:China University of Geosciences Press, 2006, 181~194. (in Chinese)

    Google Scholar

    Zheng Y D, Wang T, Ma M B, et al. Maximum effective moment criterion and the origin of low-angle normal faults[J]. Journal of Structural Geology, 2004, 26(2):271~285. doi: 10.1016/S0191-8141(03)00079-8

    CrossRef Google Scholar

    杨勇, 汤良杰, 蒋华山, 等.塔里木盆地巴楚隆起断裂分期差异活动特征及其变形机理[J].石油实验地质, 2014, 36(3):275~284. doi: 10.11781/sysydz201403275

    CrossRef Google Scholar

    YANG Yong, TANG Liangjie, JIANG Huashan, et al. Characteristics and deformation mechanism of staging differential fault activities in Bachu Uplift, Tarim Basin[J]. Petroleum Geology & Experiment, 2014, 36(3):275~284. (in Chinese with English abstract) doi: 10.11781/sysydz201403275

    CrossRef Google Scholar

    Mandl G. Mechanics of tectonic faulting:Models and basic concepts. Development in structural geology[M]. Amsterdam:Elsevier, 1988.

    Google Scholar

    孟庆龙, 李曰俊, 师骏, 等.塔里木盆地西部色力布亚断裂和康西断裂的主要特征及活动时代[J].地质科学, 2008, 43(2):282~293.

    Google Scholar

    MENG Qinglong, LI Yuejun, SHI Jun, et al. Main characters and active ages of the Serikbuya and Kangxi faults in the western Tarim Basin[J]. Chinese Journal of Geology, 2008, 43(2):282~293. (in Chinese with English abstract)

    Google Scholar

    肖安成, 李景义, 张春生.塔里木盆地色力布亚断裂系的走滑双重构造特征[J].江汉石油学院学报, 1998, 20(2):6~12.

    Google Scholar

    XIAO Ancheng, LI Jingyi, ZHANG Chunsheng. Structure and kinematic genesis of the Selibuya strike-slip duplex in the Tarim Basin[J]. Journal of Jianghan Petroleum Institute, 1998, 20(2):6~12. (in Chinese with English abstract)

    Google Scholar

    姚文倩, 汤良杰, 谢大庆, 等.塔里木盆地色力布亚断裂带变形特征和演化史[J].石油与天然气地质, 2013, 34(4):522~527. doi: 10.11743/ogg20130414

    CrossRef Google Scholar

    YAO Wenqian, TANG Liangjie, XIE Daqing, et al. Deformation and tectonic evolution of the Selibuya fault zone in Tarim Basin[J]. Oil & Gas Geology, 2013, 34(4):522~527. (in Chinese with English abstract) doi: 10.11743/ogg20130414

    CrossRef Google Scholar

    何登发, 贾承造, 李德生, 等.塔里木多旋回叠合盆地的形成与演化[J].石油与天然气地质, 2005, 26(1):64~77. doi: 10.11743/ogg20050109

    CrossRef Google Scholar

    HE Dengfa, JIA Chengzao, LI Desheng, et al. Formation and evolution of polycyclic superimposed Tarim Basin[J]. Oil & Gas Geology, 2005, 26(1):64~77. (in Chinese with English abstract) doi: 10.11743/ogg20050109

    CrossRef Google Scholar

    孙岩, 贾承造.塔里木地区油气构造的复合关系[J].地质力学学报, 1996, 2(3):63~64.

    Google Scholar

    SUN Yan, JIA Chengzao. The complex relation of oil and gas construction in Tarim Area[J]. Journal of Geomechanics, 1996, 2(3):63~64. (in Chinese)

    Google Scholar

    吕修祥, 周新源, 皮学军, 等.塔里木盆地巴楚凸起油气聚集及分布规律[J].新疆石油地质, 2002, 23(6):489~492.

    Google Scholar

    LÜ Xiuxiang, ZHOU Xinyuan, PI Xuejun, et al. Accumulation and distribution patterns of hydrocarbon in Bachu Arch of Tarim Basin[J]. Xinjiang Petroleum Geology, 2002, 23(6):489~492. (in Chinese with English abstract)

    Google Scholar

    佘晓宇, 施泽进, 刘高波, 等.巴楚-麦盖提地区油气动态成藏的运移通道[J].成都理工大学学报(自然科学版), 2004, 31(3):291~296.

    Google Scholar

    SHE Xiaoyu, SHI Zejin, LIU Gaobo, et al. Migration pathway of hydrocarbon dynamic accumulation in Bachu-Markit area, Xinjiang, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2004, 31(3):291~296. (in Chinese with English abstract)

    Google Scholar

    罗廷辉, 赵锡奎, 李坤, 等.巴楚隆起色力布亚断裂演化及其油气意义[J].重庆科技学院学报(自然科学版), 2010, 12(6):5~8.

    Google Scholar

    LUO Tinghui, ZHAO Xikui, LI Kun, et al. Evolution and its oil-gas sense of Serikbuya fault in Bachu Uplift[J]. Journal of Chongqing University of Science and Technology (Natural Science Edition), 2010, 12(6):5~8. (in Chinese with English abstract)

    Google Scholar

    Chen S P, Wang Y, Jin Z J. Controls of tectonics on both sedimentary sequences and petroleum systems in Tarim basin, Northwest China[J]. Petroleum Science, 2007, 4(2):1~9. doi: 10.1007/BF03187435

    CrossRef Google Scholar

    汤良杰.塔里木盆地走滑断裂带与油气聚集关系的探讨[J].地球科学——中国地质大学学报, 1992, 17(4):403~410.

    Google Scholar

    TANG Liangjie. A discussion on the relation between strike-slip fault belts and hydrocarbon accumulation in Tarim Basin[J]. Earth Science-Journal of China University of Geosciences, 1992, 17(4):403~410. (in Chinese with English abstract)

    Google Scholar

    崔军文, 唐哲民.塔里木盆地构造格架和构造应力场分析[J].岩石学报, 2011, 27(1):231~242.

    Google Scholar

    CUI Junwen, TANG Zhemin. Tectonic framework of the Tarim basin and its tectonic stress field analysis[J]. Acta Petrologica Sinica, 2011, 27(1):231~242. (in Chinese with English abstract)

    Google Scholar

    Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1):47~65. doi: 10.1680/geot.1979.29.1.47

    CrossRef Google Scholar

    刘顺桂, 刘海宁, 王思敬, 等.断续节理直剪试验与PFC2D数值模拟分析[J].岩石力学与工程学报, 2008, 27(9):1828~1836.

    Google Scholar

    LIU Shungui, LIU Haining, WANG Sijing, et al. Direct shear tests and PFC2D numerical simulation of intermittent joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9):1828~1836. (in Chinese with English abstract)

    Google Scholar

    刘志娜, 梅林芳, 宋卫东.基于PFC数值模拟的无底柱采场结构参数优化研究[J].矿业研究与开发, 2008, 28(1):3~5.

    Google Scholar

    LIU Zhina, MEI Linfang, SONG Weidong. Study on stope structure parameter optimization of sublevel caving without sill pillar based on numeral simulation with PFC[J]. Mining Research and Development, 2008, 28(1):3~5. (in Chinese with English abstract)

    Google Scholar

    Liu Z N, Koyi H A. Analogue modeling of the collapse of non-homogeneous granular slopes along weak horizons[J]. Tectonophysics, 2014, 632:76~95. doi: 10.1016/j.tecto.2014.06.007

    CrossRef Google Scholar

    Liu Z N, Koyi H A. The impact of a weak horizon on kinematics and internal deformation of a failure mass using discrete element method[J]. Tectonophysics, 2013, 586:95~111. doi: 10.1016/j.tecto.2012.11.009

    CrossRef Google Scholar

    Liu Z N, Koyi H A. Kinematics and internal deformation of granular slopes:Insights from discrete element modeling[J]. Landslides, 2013, 10(2):139~160. doi: 10.1007/s10346-012-0318-8

    CrossRef Google Scholar

    Liu Z N, Koyi H A, Swantesson J O H, et al. Kinematics and 3~D internal deformation of granular slopes:Analogue models and natural landslides[J]. Journal of Structural Geology, 2013, 53:27~42. doi: 10.1016/j.jsg.2013.05.010

    CrossRef Google Scholar

    Cheng Y M, Liu Z N, Song W D, et al. Laboratory test and Particle Flow Simulation of silos problem with nonhomogeneous materials[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(11):1754~1761. doi: 10.1061/(ASCE)GT.1943-5606.0000125

    CrossRef Google Scholar

    Zhang J, Morgan J K, Gray G G, et al. Comparative FEM and DEM modeling of basement-involved thrust structures, with application to Sheep Mountain, Greybull area, Wyoming[J]. Tectonophysics, 2013, 608:408~417. doi: 10.1016/j.tecto.2013.09.006

    CrossRef Google Scholar

    Hardy S, McClay K, Muñoz J A. Deformation and fault activity in space and time in high-resolution numerical models of doubly vergent thrust wedges[J]. Marine and Petroleum Geology, 2009, 26(2):232~248. doi: 10.1016/j.marpetgeo.2007.12.003

    CrossRef Google Scholar

    Strayer L M, Suppe J. Out-of-plane motion of a thrust sheet during along-strike propagation of a thrust ramp:A distinct-element approach[J]. Journal of Structural Geology, 2002, 24(4):637~650. doi: 10.1016/S0191-8141(01)00115-8

    CrossRef Google Scholar

    Finch E, Hardy S, Gawthorpe R. Discrete-element modelling of extensional fault-propagation folding above rigid basement fault blocks[J]. Basin Research, 2004, 16(4):467~488. doi: 10.1111/bre.2004.16.issue-4

    CrossRef Google Scholar

    Potyondy D O, Cundall P A. A bonded-particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8):1329~1364. doi: 10.1016/j.ijrmms.2004.09.011

    CrossRef Google Scholar

    李乐, 侯贵廷, 潘文庆, 等.塔里木盆地巴楚地区二叠纪以来构造应力场解析[J].地质力学学报, 2011, 17(3):262~273.

    Google Scholar

    LI Le, HOU Guiting, PAN Wenqing, et al. Study on structural stress fields since Permian, Bachu Area, Tarim Basin[J]. Journal of Geomechanics, 2011, 17(3):262~273. (in Chinese with English abstract)

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(2648) PDF downloads(85) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint