2025 Vol. 52, No. 3
Article Contents

GENG Wenda, JI Wenbing, LIU Bingquan, YE Guiqi, MA Xudong, HOU Qingye, YU Tao, YANG Zhongfang. 2025. Research status and progress of carbon isotope in soil−vegetation−ecology−environment[J]. Geology in China, 52(3): 867-889. doi: 10.12029/gc20240604001
Citation: GENG Wenda, JI Wenbing, LIU Bingquan, YE Guiqi, MA Xudong, HOU Qingye, YU Tao, YANG Zhongfang. 2025. Research status and progress of carbon isotope in soil−vegetation−ecology−environment[J]. Geology in China, 52(3): 867-889. doi: 10.12029/gc20240604001

Research status and progress of carbon isotope in soil−vegetation−ecology−environment

    Fund Project: Supported by the project of Guangdong Geological Exploration and Urban Geology (No.2023−25), “Research on the transformation factors of soil carbon sinks and carbon pool conservation in north-central Ningxia” of the Key R&D Program of Ningxia Hui Autonomous Region (No.2022BBF02036), Jiangxi Provincial Geological Survey Project “Integration Study of 1:250000 Multi-objective Regional Geochemical Survey Results in Jiangxi Province” (No.20240084).
More Information
  • Author Bio: GENG Wenda, male, born in 1998, master candidate, engaged in environmental geochemistry research; E-mail: gengwd0911@163.com
  • Corresponding author: JI Wenbing, male, born in 1991, assistant researcher, engaged in research on ecological geochemistry and soil pollution treatment and remediation; E-mail: 13121531228@163.com
  • This paper is the result of environmental geological suvery engineering.

    Objective

    In recent decades, the theory of stable carbon isotopes has been gradually perfected, and with the progress and development of testing techniques, carbon isotope analysis has become more accurate and efficient. As a powerful tool, carbon isotope tracer technology is widely used in soil−vegetation−ecology−environment research and plays an important role.

    Methods

    In this paper, a large number of literatures on the application of carbon isotope technology are reviewed, and the latest research progress on the principle and practical application of stable carbon isotope technology at home and abroad is reviewed.

    Results

    Using stable carbon isotope technology, the genetic source of natural organic matter such as coal, oil and natural gas can be effectively identified. Global climate change can be effectively retrieved through the changes of carbon isotope composition in different geological bodies such as cave stalagmites, loess sediments, lake sediments, tree rings, Marine foraminifera, Marine carbonate rocks and ice cores. In addition, carbon stable isotopes are also used to trace the geochemical cycle of soil organic carbon, and solve the problems of inorganic carbon sink transformation and carbon pool identification in arid and semi−arid areas.

    Conclusions

    Stable carbon isotope technology has been widely used in the research of coal−oil−natural gas field, global climate change, organic carbon cycle in superorganism system and inorganic carbon sink source, and has achieved a lot of research results. In the future, with the continuous progress of equipment and testing technology, relevant theories and research methods will become increasingly mature and perfect, and carbon isotope tracer will play a greater role.

  • 加载中
  • [1] Agnihotri R, Gahlaud S K S, Patel N, Sharma R, Kumar P, Chopra S. 2020. Radiocarbon measurements using new automated graphite preparation laboratory coupled with stable isotope mass−spectrometry at Birbal Sahni Institute of Palaeosciences, Lucknow (India)[J]. Journal of Environmental Radioactivity, 213: 106156. doi: 10.1016/j.jenvrad.2019.106156

    CrossRef Google Scholar

    [2] Aichner B, Feakins S J, Lee J E, Herzschuh U, Liu X. 2015. High−resolution leaf wax carbon and hydrogen isotopic record of the late Holocene paleoclimate in arid Central Asia[J]. Climate of the Past, 11(4): 619−633. doi: 10.5194/cp-11-619-2015

    CrossRef Google Scholar

    [3] Al−Khafaji A J, Hakimi M H, Mohialdeen I M J, Idan R M, Afify W E, Lashin A A. 2021. Geochemical characteristics of crude oils and basin modelling of the probable source rocks in the Southern Mesopotamian Basin, South Iraq[J]. Journal of Petroleum Science and Engineering, 196: 107641. doi: 10.1016/j.petrol.2020.107641

    CrossRef Google Scholar

    [4] Apostel C, Dippold M, Kuzyakov Y. 2015. Biochemistry of hexose and pentose transformations in soil analyzed by position−specific labeling and 13C−PLFA[J]. Soil Biology and Biochemistry, 80: 199−208. doi: 10.1016/j.soilbio.2014.09.005

    CrossRef Google Scholar

    [5] Atere C T, Ge T, Zhu Z, Tong C, Jones D L, Shibistova O, Guggenberger G, Wu J. 2017. Rice rhizodeposition and carbon stabilisation in paddy soil are regulated via drying−rewetting cycles and nitrogen fertilisation[J]. Biology and Fertility of Soils, 53(4): 407−417. doi: 10.1007/s00374-017-1190-4

    CrossRef Google Scholar

    [6] Baniasad A, Littke R, Abeed Q. 2023. Petroleum systems analysis of the eastern arabian plate: Chemometrics based on a review of the geochemical characteristics of oils in Jurassic−Cenozoic reservoirs[J]. Journal of Petroleum Geology, 46(1): 3−45. doi: 10.1111/jpg.12829

    CrossRef Google Scholar

    [7] Batjes N H. 1996. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 47(2): 151−163. doi: 10.1111/j.1365-2389.1996.tb01386.x

    CrossRef Google Scholar

    [8] Bauska T K, Joos F, Mix A C, Roth R, Ahn J, Brook E J. 2015. Links between atmospheric carbon dioxide, the land carbon reservoir and climate over the past millennium[J]. Nature Geoscience, 8(5): 383−387. doi: 10.1038/ngeo2422

    CrossRef Google Scholar

    [9] Bayat O, Karimi A, Khademi H. 2017. Stable isotope geochemistry of pedogenic carbonates in loess−derived soils of northeastern Iran: Paleoenvironmental implications and correlation across Eurasia[J]. Quaternary International, 429: 52−61. doi: 10.1016/j.quaint.2016.01.040

    CrossRef Google Scholar

    [10] Bernard B B, Brooks J M, Sackett W M. 1976. Natural gas seepage in the Gulf of Mexico[J]. Earth and Planetary Science Letters, 31(1): 48−54. doi: 10.1016/0012-821X(76)90095-9

    CrossRef Google Scholar

    [11] Berry D, Stecher B, Schintlmeister A, Reichert J, Brugiroux S, Wild B, Wanek W, Richter A, Rauch I, Decker T, Loy A, Wagner M. 2013. Host−compound foraging by intestinal microbiota revealed by single−cell stable isotope probing[J]. Proceedings of the National Academy of Sciences, 110(12): 4720−4725. doi: 10.1073/pnas.1219247110

    CrossRef Google Scholar

    [12] Blagodatskaya E, Yuyukina T, Blagodatsky S, Kuzyakov Y. 2011. Turnover of soil organic matter and of microbial biomass under C3−C4 vegetation change: Consideration of 13C fractionation and preferential substrate utilization[J]. Soil Biology and Biochemistry, 43(1): 159−166. doi: 10.1016/j.soilbio.2010.09.028

    CrossRef Google Scholar

    [13] Burns S J, Godfrey L R, Faina P, McGee D, Hardt B, Ranivoharimanana L, Randrianasy J. 2016. Rapid human−induced landscape transformation in Madagascar at the end of the first millennium of the Common Era[J]. Quaternary Science Reviews, 134: 92−99. doi: 10.1016/j.quascirev.2016.01.007

    CrossRef Google Scholar

    [14] Butterly C R, Armstrong R, Chen D, Tang C. 2015. Carbon and nitrogen partitioning of wheat and field pea grown with two nitrogen levels under elevated CO2[J]. Plant and Soil, 391(1−2): 367−382. doi: 10.1007/s11104-015-2441-5

    CrossRef Google Scholar

    [15] Chen Anding, Liu Guixia, Lian Liwen, Qian Yibe, Zhang Hui. 1991. An experiment on the formation of biogenic methane and a discussion of the favorable geologic conditions of the accumulation of biogenic natural gas[J]. Acta Petrolei Sinica, 12(3): 7−16, 158 (in Chinese with English abstract).

    Google Scholar

    [16] Chen Jianping, Wang Xulong, Chen Jianfa, Ni Yunyan, Xiang Baoli, Liao Fengrong, He Wenjun, Yao Limiao, Li Erting. 2021. New equation to decipher the relationship between carbon isotopic composition of methane and maturity of gas source rocks[J]. Science China Earth Sciences, 51(4): 560−581 (in Chinese).

    Google Scholar

    [17] Chen Shiping, Bai Yongfei, Han Xingguo. 2002. Applications of stable carbon isotope techniques to ecological research[J]. Chinese Journal of Plant Ecology, 26(5): 549−560 (in Chinese with English abstract).

    Google Scholar

    [18] Chen Yilin, Qin Yong. 2017. Characterization and mechanism of exchange reaction through gas−water interface of gaseous inorganic CO2[J]. Journal of China Coal Society, 42(7): 1811−1817 (in Chinese with English abstract).

    Google Scholar

    [19] Conrad R, Klose M, Yuan Q, Lu Y, Chidthaisong A. 2012. Stable carbon isotope fractionation, carbon flux partitioning and priming effects in anoxic soils during methanogenic degradation of straw and soil organic matter[J]. Soil Biology and Biochemistry, 49: 193−199. doi: 10.1016/j.soilbio.2012.02.030

    CrossRef Google Scholar

    [20] Da J, Zhang Y G, Li G, Ji J. 2020. Aridity−driven decoupling of δ13C between pedogenic carbonate and soil organic matter[J]. Geology, 48(10): 981−985. doi: 10.1130/G47241.1

    CrossRef Google Scholar

    [21] Dai Jinxing, Ni Yunyan, Gong Deyu, Huang Shipeng, Liu Quanyou, Hong Feng, Zhang Yanling. 2024. Characteristics of carbon isotopic composition of alkane gas in large gas fields in China[J]. Petroleum Exploration and Development, 51(2): 223−233.

    Google Scholar

    [22] Dai Jinxing. 1993. Hydrocarbon isotope characteristics of natural gas and identification of various types of natural gas[J]. Natural Gas Geoscience, (Z1): 1−40 (in Chinese).

    Google Scholar

    [23] Deng Y, Chen F, Guo Q, Hu Y, Chen D, Yang S, Cao J, Chen H, Wei R, Cheng S, Zhou J, Liu C, Jiang X, Zhu J. 2021. Possible links between methane seepages and glacial−interglacial transitions in the South China Sea[J]. Geophysical Research Letters, 48(8): e2020GL091429. doi: 10.1029/2020GL091429

    CrossRef Google Scholar

    [24] Ding D, Liu G, Fu B, Wang W. 2018. New insights into the nitrogen isotope compositions in coals from the Huainan Coalfield, Anhui Province, China: Influence of the distribution of nitrogen forms[J]. Energy & Fuels, 32(9): 9380−9387.

    Google Scholar

    [25] Ding D, Liu G, Fu B. 2019. Influence of carbon type on carbon isotopic composition of coal from the perspective of solid−state 13C NMR[J]. Fuel, 245: 174−180. doi: 10.1016/j.fuel.2019.02.072

    CrossRef Google Scholar

    [26] Eldridge D L, Turner A C, Bill M, Conrad M E, Stolper D A. 2023. Experimental determinations of carbon and hydrogen isotope fractionations and methane clumped isotope compositions associated with ethane pyrolysis from 550 to 600 °C[J]. Geochimica et Cosmochimica Acta, 355: 235−265. doi: 10.1016/j.gca.2023.06.006

    CrossRef Google Scholar

    [27] Erbacher J, Bornemann A, Petrizzo M R, Huck S. 2020. Chemostratigraphy and stratigraphic distribution of keeled planktonic foraminifera in the Cenomanian of the North German Basin[J]. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 171(2): 149−161.

    Google Scholar

    [28] Gao Y, Zhang P, Liu J. 2020. One third of the abiotically−absorbed atmospheric CO2 by the loess soil is conserved in the solid phase[J]. Geoderma, 374: 114448. doi: 10.1016/j.geoderma.2020.114448

    CrossRef Google Scholar

    [29] Ge T, Li B, Zhu Z, Hu Y, Yuan H, Dorodnikov M, Jones D L, Wu J, Kuzyakov Y. 2017. Rice rhizodeposition and its utilization by microbial groups depends on N fertilization[J]. Biology and Fertility of Soils, 53(1): 37−48.

    Google Scholar

    [30] Ge T, Yuan H, Zhu H, Wu X, Nie S, Liu C, Tong C, Wu J, Brookes P. 2012. Biological carbon assimilation and dynamics in a flooded rice−soil system[J]. Soil Biology and Biochemistry, 48: 39−46. doi: 10.1016/j.soilbio.2012.01.009

    CrossRef Google Scholar

    [31] Ge Tida, Wang Dongdong, Zhu Zhenke, Wei Liang, Wei Xiaomeng, Wu Jinshui. 2020. Tracing technology of carbon isotope and its applications to studies of carbon cycling in terrestrial ecosystem[J]. Chinese Journal of Plant Ecology, 44(4): 360−372 (in Chinese with English abstract). doi: 10.17521/cjpe.2019.0208

    CrossRef Google Scholar

    [32] Gutsalo L K, Plotnikov A M. 1981. Carbon isotopic composition in the CH4−CO2 system as a criterion for the origin of methane and carbon dioxide in Earth natural gases (in Russian)[J]. Doklady Akademii Nauk SSSR, 259: 470−473.

    Google Scholar

    [33] He Cong, Ji Liming, Su Ao, Wu Yuandong, Zhang Mingzhen. 2016. Genesis analysis and geological application of gas component carbon isotope reversal[J]. Special Oil & Gas Reservoirs, 23(4): 14−19,151 (in Chinese with English abstract).

    Google Scholar

    [34] Hoogakker B A A, Anderson C, Paoloni T, Stott A, Grant H, Keenan P, Mahaffey C, Blackbird S, McClymont E L, Rickaby R, Poulton A, Peck V L. 2022. Planktonic foraminifera organic carbon isotopes as archives of upper ocean carbon cycling[J]. Nature Communications, 13(1): 4841. doi: 10.1038/s41467-022-32480-0

    CrossRef Google Scholar

    [35] Hu Guoyi, Li Jian, Li Jin, Li Zhisheng, Luo Xia, Sun Qingwu, Ma Chenghua. 2007. Discussion on light hydrocarbon index for identifying the origin of natural gas[J]. Science in China (Series D: Earth Sciences), 37(S2): 111−117 (in Chinese).

    Google Scholar

    [36] Hu X, Zhu L, Wang Y, Wang J, Peng P, Ma Q, Hu J, Lin X. 2014. Climatic significance of n−alkanes and their compound−specific δD values from lake surface sediments on the southwestern Tibetan Plateau[J]. Chinese Science Bulletin, 59(24): 3022−3033. doi: 10.1007/s11434-014-0227-4

    CrossRef Google Scholar

    [37] Hungate B A, Mau R L, Schwartz E, Caporaso J G, Dijkstra P, Van Gestel N, Koch B J, Liu C M, McHugh T A, Marks J C, Morrissey E M, Price L B. 2015. Quantitative microbial ecology through stable isotope probing[J]. Applied and Environmental Microbiology, 81(21): 7570−7581. doi: 10.1128/AEM.02280-15

    CrossRef Google Scholar

    [38] Jia G, Bai Y, Yang X, Xie L, Wei G, Ouyang T, Chu G, Liu Z, Peng P. 2015. Biogeochemical evidence of Holocene East Asian summer and winter monsoon variability from a tropical maar lake in southern China[J]. Quaternary Science Reviews, 111: 51−61. doi: 10.1016/j.quascirev.2015.01.002

    CrossRef Google Scholar

    [39] Kang S, Loader N J, Wang J, Qin C, Liu J, Song M. 2022. Tree−Ring Stable Carbon Isotope as a Proxy for hydroclimate Variations in Semi−Arid Regions of North−Central China[J]. Forests, 13(4): 492. doi: 10.3390/f13040492

    CrossRef Google Scholar

    [40] Keeling C D. 1958. The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas[J]. Geochimica et Cosmochimica Acta, 13(4): 322−334. doi: 10.1016/0016-7037(58)90033-4

    CrossRef Google Scholar

    [41] Kuzyakov Y. 2010. Priming effects: Interactions between living and dead organic matter[J]. Soil Biology and Biochemistry, 42(9): 1363−1371. doi: 10.1016/j.soilbio.2010.04.003

    CrossRef Google Scholar

    [42] Larsen T, Yokoyama Y, Fernandes R. 2018. Radiocarbon in ecology: Insights and perspectives from aquatic and terrestrial studies[J]. Methods in Ecology and Evolution, 9(1): 181−190. doi: 10.1111/2041-210X.12851

    CrossRef Google Scholar

    [43] Li Chang, Yang Zhongfang, Yu Tao, Niu Rongchen, Guo Rucan, Yu Baocheng, Xia Xueqi, Yu Chaoyang, Cao Yuanyuan. 2023. Carbon sink of soil inorganic carbon in arid regions and its contribution to carbon sequestration and emission reduction: A review[J]. Geology in China, 51(4): 1210−1242 (in Chinese with English abstract).

    Google Scholar

    [44] Li Fadong, Li Zhaoxin, Qiao Yunfeng, Liu Shanbao, Tian Chao, Zhu Nong, Hubert Hirwa, Simon Measho. 2023. Using soil organic carbon isotope composition analysis to elucidate the carbon cycle of agroecosystems[J]. Chinese Journal of Eco−Agriculture, 31(2): 194−205 (in Chinese with English abstract).

    Google Scholar

    [45] Li Jiangtao. 2018. Relationship between organic carbon isotope characteristics and maturity in Xishan coalfield[J]. Safety in Coal Mines, 49(11): 164−167 (in Chinese with English abstract).

    Google Scholar

    [46] Li Meijun, Ren Ping, Hu Liguo, Jiao Yunjing. 2000. Application of carbon isotope typical curve to oil source correlation in Liaohe basin[J]. Special Oil & Gas Reservoirs, 7(2): 11−12, 27−51 (in Chinese with English abstract).

    Google Scholar

    [47] Li Q, Azmy K, Yang S, Chen H, Xu S, Lin L, Su Z, Chen A, Yu Y, Sun F. 2022. Early−Middle Permian carbon−isotope stratigraphy of marine carbonates in the northern edge of the South China: Implications for global correlation[J]. Carbonates and Evaporites, 37(1): 1. doi: 10.1007/s13146-021-00743-4

    CrossRef Google Scholar

    [48] Li Xiumei, Fan Baowei, Hou Juzhi, Wang Mingda, He Yue. 2022. Characteristics of compositions of organic matter δ13C in lake sediments from Dagze Co in Tibetan Plateau and its paleoclimatic and paleoenvironmental significance[J]. Earth Science, 47(6): 2275−2286 (in Chinese with English abstract).

    Google Scholar

    [49] Li Yangmei, Gong Lu, An Shenqun, Sun Li, Chen XinLi Yangmei, Gong Lu, An Shenqun, Sun Li, Chen Xin. 2018. Transfer of soil organic carbon to inorganic carbon in arid oasis based on stable carbon isotope technique[J]. Environmental Science, 39(8): 3867−3875 (in Chinese with English abstract).

    Google Scholar

    [50] Liang C, Schimel J P, Jastrow J D. 2017. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2(8): 17105. doi: 10.1038/nmicrobiol.2017.105

    CrossRef Google Scholar

    [51] Liu C G, Qi L X, Liu Y L, Luo M X, Shao X M, Luo P, Zhang Z L. 2016. Positive carbon isotope excursions: Global correlation and genesis in the Middle–Upper Ordovician in the northern Tarim Basin, Northwest China[J]. Petroleum Science, 13(2): 192−203. doi: 10.1007/s12182-016-0096-3

    CrossRef Google Scholar

    [52] Liu J, Fa K, Zhang Y, Wu B, Qin S, Jia X. 2015a. Abiotic CO2 uptake from the atmosphere by semiarid desert soil and its partitioning into soil phases[J]. Geophysical Research Letters, 42(14): 5779−5785. doi: 10.1002/2015GL064689

    CrossRef Google Scholar

    [53] Liu Lizhen, Pang Danbo, Wang Xinyun, Chen Lin, Li Xuebin, Wu Mengyao, Liu Bo, Zhu Zhongyou, Li Jingyao, Wang Jifei. 2021. Application of stable carbon isotope technique in soil organic carbon research: A literature review[J]. Arid Zone Research, 38(1): 123−132 (in Chinese with English abstract).

    Google Scholar

    [54] Liu Y, Ge T, Ye J, Liu S, Shibistova O, Wang P, Wang J, Li Y, Guggenberger G, Kuzyakov Y, Wu J. 2019a. Initial utilization of rhizodeposits with rice growth in paddy soils: Rhizosphere and N fertilization effects[J]. Geoderma, 338: 30−39. doi: 10.1016/j.geoderma.2018.11.040

    CrossRef Google Scholar

    [55] Liu Y, Ge T, Zhu Z, Liu S, Luo Y, Li Y, Wang P, Gavrichkova O, Xu X, Wang J, Wu J, Guggenberger G, Kuzyakov Y. 2019b. Carbon input and allocation by rice into paddy soils: A review[J]. Soil Biology and Biochemistry, 133: 97−107. doi: 10.1016/j.soilbio.2019.02.019

    CrossRef Google Scholar

    [56] Magaritz M, Amiel A J. 1980. Calcium Carbonate in a Calcareous Soil from the Jordan Valley, Israel: Its Origin as Revealed by the Stable Carbon Isotope Method[J]. Soil Science Society of America Journal, 44(5): 1059−1062. doi: 10.2136/sssaj1980.03615995004400050037x

    CrossRef Google Scholar

    [57] Marion G M, Introne D S, Van Cleve K. 1991. The stable isotope geochemistry of CaCO3 on the Tanana River floodplain of interior Alaska, U. S. A. : Composition and mechanisms of formation[J]. Chemical Geology: Isotope Geoscience section, 86(2): 97−110. doi: 10.1016/0168-9622(91)90056-3

    CrossRef Google Scholar

    [58] Miao Xiaoming, Feng Xiuli, Li Jingrui, Xiao Qianwen, Dan Xiaopeng, Wei Jiangong. 2022. Research progress on methane seepage and its implications for site selection for scientific drilling in the South China Sea[J]. Acta Geologica Sinica, 96(8): 2877−2895 (in Chinese with English abstract).

    Google Scholar

    [59] Milkov A V, Etiope G. 2018. Revised genetic diagrams for natural gases based on a global dataset of >20, 000 samples[J]. Organic Geochemistry, 125: 109−120. doi: 10.1016/j.orggeochem.2018.09.002

    CrossRef Google Scholar

    [60] Morgun E G, Kovda I V, Ryskov Ya G, Oleinik S A. 2008. Prospects and problems of using the methods of geochemistry of stable carbon isotopes in soil studies[J]. Eurasian Soil Science, 41(3): 265−275. doi: 10.1134/S1064229308030046

    CrossRef Google Scholar

    [61] Morrissey E M, Mau R L, Schwartz E, McHugh T A, Dijkstra P, Koch B J, Marks J C, Hungate B A. 2017. Bacterial carbon use plasticity, phylogenetic diversity and the priming of soil organic matter[J]. The ISME Journal, 11(8): 1890−1899. doi: 10.1038/ismej.2017.43

    CrossRef Google Scholar

    [62] Musat N, Musat F, Weber P K, Pett−Ridge J. 2016. Tracking microbial interactions with NanoSIMS[J]. Current Opinion in Biotechnology, 41: 114−121. doi: 10.1016/j.copbio.2016.06.007

    CrossRef Google Scholar

    [63] Ono S, Rhim J H, Gruen D S, Taubner H, Kölling M, Wegener G. 2021. Clumped isotopologue fractionation by microbial cultures performing the anaerobic oxidation of methane[J]. Geochimica et Cosmochimica Acta, 293: 70−85. doi: 10.1016/j.gca.2020.10.015

    CrossRef Google Scholar

    [64] Ortiz J E, Torres T, Delgado A, Valle M, Soler V, Araujo R, Rivas M R, Julià R, Sánchez−Palencia Y, Vega−Panizo R. 2021. Bulk and compound−specific δ13C and n−alkane indices in a palustrine intermontane record for assessing environmental changes over the past 320 ka: the Padul Basin (Southwestern Mediterranean realm)[J]. Journal of Iberian Geology, 47(4): 625−639. doi: 10.1007/s41513-021-00175-y

    CrossRef Google Scholar

    [65] Pötter S, Schmitz A, Lücke A, Schulte P, Obreht I, Zech M, Wissel H, Marković S B, Lehmkuhl F. 2021. Middle to Late Pleistocene environments based on stable organic carbon and nitrogen isotopes of loess‐palaeosol sequences from the Carpathian Basin[J]. Boreas, 50(1): 184−204. doi: 10.1111/bor.12470

    CrossRef Google Scholar

    [66] Reitner J, Thiel V. 2011. Encyclopedia of Geobiology[M]. Berlin: Springer Netherlands.

    Google Scholar

    [67] Rochette P, Flanagan L B, Gregorich E G. 1999. Separating Soil Respiration into Plant and Soil Components Using Analyses of the Natural Abundance of Carbon−13[J]. Soil Science Society of America Journal, 63(5): 1207−1213. doi: 10.2136/sssaj1999.6351207x

    CrossRef Google Scholar

    [68] Rosenzweig S T, Schipanski M E, Kaye J P. 2017. Rhizosphere priming and plant−mediated cover crop decomposition[J]. Plant and Soil, 417(1−2): 127−139. doi: 10.1007/s11104-017-3246-5

    CrossRef Google Scholar

    [69] Rumpel C, Baumann K, Remusat L, Dignac M F, Barré P, Deldicque D, Glasser G, Lieberwirth I, Chabbi A. 2015. Nanoscale evidence of contrasted processes for root−derived organic matter stabilization by mineral interactions depending on soil depth[J]. Soil Biology and Biochemistry, 85: 82−88. doi: 10.1016/j.soilbio.2015.02.017

    CrossRef Google Scholar

    [70] Ryskov Y, Demkin V, Oleynik S, Ryskova E. 2008. Dynamics of pedogenic carbonate for the last 5000 years and its role as a buffer reservoir for atmospheric carbon dioxide in soils of Russia[J]. Global and Planetary Change, 61(1−2): 63−69. doi: 10.1016/j.gloplacha.2007.08.006

    CrossRef Google Scholar

    [71] Schaefer H, Fletcher S E M, Veidt C, Lassey K R, Brailsford G W, Bromley T M, Dlugokencky E J, Michel S E, Miller J B, Levin I, Lowe D C, Martin R J, Vaughn B H, White J W C. 2016. A 21st−century shift from fossil−fuel to biogenic methane emissions indicated by 13 CH 4[J]. Science, 352(6281): 80−84. doi: 10.1126/science.aad2705

    CrossRef Google Scholar

    [72] Schäfer I K, Bliedtner M, Wolf D, Kolb T, Zech J, Faust D, Zech R. 2018. A δ13C and δ2H leaf wax record from the Late Quaternary loess−paleosoil sequence El Paraíso, Central Spain[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 507: 52−59.

    Google Scholar

    [73] Schoell M. 1980. The hydrogen and carbon isotopic composition of methane from natural gases of various origins[J]. Geochimica et Cosmochimica Acta, 44(5): 649−661. doi: 10.1016/0016-7037(80)90155-6

    CrossRef Google Scholar

    [74] Schoell M. 1983. Genetic Characterization of Natural Gases[J]. AAPG Bulletin, 67: 2225−2238.

    Google Scholar

    [75] Schwarzbauer J, Littke R, Meier R, Strauss H. 2013. Stable carbon isotope ratios of aliphatic biomarkers in Late Palaeozoic coals[J]. International Journal of Coal Geology, 107: 127−140. doi: 10.1016/j.coal.2012.10.001

    CrossRef Google Scholar

    [76] Shen Zhongmin, Wang Peng, Liu Sibing, Lv Zhengxiang, Feng Jierui. 2011. Carbon isotopes of Xujiahe Formation nature gas in middle part of western Sichuan depression[J]. Natural Gas Geoscience, 22(5): 834−839 (in Chinese with English abstract).

    Google Scholar

    [77] Shi Yuanbao, Cao Bing, Song Lihua, Wang Guibin. 2016. Effect of doubled CO2 concentration on accumulation of photosynthate in Lycium barbarum by 13C isotope tracer technique[J]. Transactions of the Chinese Society of Agricultural Engineering, 32(10): 201−206 (in Chinese with English abstract).

    Google Scholar

    [78] Sleen P V D, Groenendijk P, Vlam M, Anten N P R, Boom A, Bongers F, Pons T L, Terburg G, Zuidema P A. 2015. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water−use efficiency increased[J]. Nature Geoscience, 8(1): 24−28. doi: 10.1038/ngeo2313

    CrossRef Google Scholar

    [79] Song Chengpeng, Zhang Xiaobao, Wang Liqun, Xu Ziyuan, Ma Lixie. 2009. A study on genetic types and source discrimination of natural gas in the north margin of the Qaidam Basin[J]. Oil & Gas Geology, 30(1): 90−96 (in Chinese with English abstract).

    Google Scholar

    [80] Song Yan, Xu Yongchang. 2005. Origin and identification of natural gases[J]. Petroleum Exploration and Development, 32(4): 24−29 (in Chinese with English abstract).

    Google Scholar

    [81] Stahl W J, Carey B D. 1975. Source−rock identification by isotope analyses of natural gases from fields in the Val Verde and Delaware basins, west Texas[J]. Chemical Geology, 16(4): 257−267. doi: 10.1016/0009-2541(75)90065-0

    CrossRef Google Scholar

    [82] Stahl W J. 1978. Source rock−crude oil correlation by isotopic type−curves[J]. Geochimica et Cosmochimica Acta, 42(10): 1573−1577. doi: 10.1016/0016-7037(78)90027-3

    CrossRef Google Scholar

    [83] Suto N, Kawashima H. 2016. Global mapping of carbon isotope ratios in coal[J]. Journal of Geochemical Exploration, 167: 12−19. doi: 10.1016/j.gexplo.2016.05.001

    CrossRef Google Scholar

    [84] Tao Y, Gao D, He Y, Ngia N R, Wang M, Sun C, Huang X, Wu J. 2023. Carbon and oxygen isotopes of the Lianglitage Formation in the Tazhong area, Tarim Basin: Implications for sea−level changes and palaeomarine conditions[J]. Geological Journal, 58(3): 967−980. doi: 10.1002/gj.4637

    CrossRef Google Scholar

    [85] Wang J, Chapman S J, Yao H. 2016. Incorporation of 13 C−labelled rice rhizodeposition into soil microbial communities under different fertilizer applications[J]. Applied Soil Ecology, 101: 11−19. doi: 10.1016/j.apsoil.2016.01.010

    CrossRef Google Scholar

    [86] Wang Linghui, Shen Zhongmin, Zhao Hu. 2008. Carbon isotope features and genetic type of natural gas in the middle section of western Sichuan Depression[J]. Computing Techniques for Geophysical and Geochemical Exploration, 30(4): 326−330, 265 (in Chinese with English abstract).

    Google Scholar

    [87] Wang X, Cui L, Yang S, Zhai J, Ding Z. 2018. Stable carbon isotope records of black carbon on Chinese Loess Plateau since last glacial maximum: An evaluation on their usefulness for paleorainfall and paleovegetation reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 509: 98−104.

    Google Scholar

    [88] Warwick P D, Ruppert L F. 2016. Carbon and oxygen isotopic composition of coal and carbon dioxide derived from laboratory coal combustion: A preliminary study[J]. International Journal of Coal Geology, 166: 128−135. doi: 10.1016/j.coal.2016.06.009

    CrossRef Google Scholar

    [89] Wei Juying, Wang Yuguan. 1988. Isotope Geochemistry[M]. Beijing: Geological Publishing House (in Chinese).

    Google Scholar

    [90] Whitman T, Lehmann J. 2015. A dual−isotope approach to allow conclusive partitioning between three sources[J]. Nature Communications, 6(1): 8708. doi: 10.1038/ncomms9708

    CrossRef Google Scholar

    [91] Wiesheu A C, Brejcha R, Mueller C W, Kögel−Knabner I, Elsner M, Niessner R, Ivleva N P. 2018. Stable−isotope Raman microspectroscopy for the analysis of soil organic matter[J]. Analytical and Bioanalytical Chemistry, 410(3): 923−931. doi: 10.1007/s00216-017-0543-z

    CrossRef Google Scholar

    [92] Xia X, Tang Y. 2012. Isotope fractionation of methane during natural gas flow with coupled diffusion and adsorption/desorption[J]. Geochimica et Cosmochimica Acta, 77: 489−503. doi: 10.1016/j.gca.2011.10.014

    CrossRef Google Scholar

    [93] Xu Xiangchun, Zhou Bin, Zhou Xuehang, Wang Zhe. 2021. A review for the stable carbon isotope proxies in the paleovegetation researches in the loess−paleosol deposits on the Chinese loess Plateau[J]. Quaternary Sciences, 41(4): 931−947 (in Chinese with English abstract).

    Google Scholar

    [94] Yan Y, Bender M L, Brook E J, Clifford H M, Kemeny P C, Kurbatov A V, Mackay S, Mayewski P A, Ng J, Severinghaus J P, Higgins J A. 2019. Two−million−year−old snapshots of atmospheric gases from Antarctic ice[J]. Nature, 574(7780): 663−666. doi: 10.1038/s41586-019-1692-3

    CrossRef Google Scholar

    [95] Yang Ping, Tan Fuwen, Shi Meifeng, Wang Zhenghe, Li Zhongxiong, Zhan Wangzhong, Sudhir Rajaure, Ganesh N. Tripathi. 2021. Oil−source correlation and hydrocarbon accumulation in the Lesser Himalayan belt of Nepal[J]. Acta Geologica Sinica, 95(11): 3426−3441 (in Chinese with English abstract).

    Google Scholar

    [96] Yang Yizhuo, Huang Zhilong, Zhao Zhen, Tang Youjun. 2022. Geochemical characteristics and oil source correlation of paleo−reservoirs in Biluocuo Area, Qiangtang Basin[J]. Earth Science, 47(5): 1834−1848 (in Chinese with English abstract).

    Google Scholar

    [97] Ye Sujuan, Zhu Hongquan, Li Rong, Yang Yingtao, Li Qing. 2017. Tracing natural gas migration by integrating organic and inorganic geochemical data: A case study of the Jurassic gas fields in western Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 44(4): 549−560 (in Chinese with English abstract).

    Google Scholar

    [98] Ye Xiaoxian. 2022. The Evolution of the Paleo−Ocean Environment Revealed by Planktonic Foraminifera Since 70 Ka in the Mid−Latitude North Atlantic[D]. Shanghai: Shanghai Ocean University, 1−95 (in Chinese with English abstract).

    Google Scholar

    [99] Yin Qianqian. 2020. Study on Origin of Deep Natural Gas And Gas and Source Rocks Correlation of Gudian Depression in Songliao Basin[D]. Beijing: China University of Petroleum, Beijing, 1−80 (in Chinese with English abstract).

    Google Scholar

    [100] Yuan Hongzhao, Li Chunyong, Jian Yan, Geng Meimei, Xu Liwei, Wang Jiurong. 2014. Stable isotope technique in the soil carbon cycling research of agricultural ecosystems[J]. Journal of Isotopes, 27(3): 170−178 (in Chinese with English abstract).

    Google Scholar

    [101] Zang H, Xiao M, Wang Y, Ling N, Wu J, Ge T, Kuzyakov Y. 2019. Allocation of assimilated carbon in paddies depending on rice age, chase period and N fertilization: Experiment with 13CO2 labelling and literature synthesis[J]. Plant and Soil, 445(1−2): 113−123. doi: 10.1007/s11104-019-03995-1

    CrossRef Google Scholar

    [102] Zhang H, Cai Y, Tan L, Cheng H, Qin S, An Z, Edwards R L, Ma L. 2015. Large variations of δ13C values in stalagmites from southeastern China during historical times: implications for anthropogenic deforestation[J]. Boreas, 44(3): 511−525. doi: 10.1111/bor.12112

    CrossRef Google Scholar

    [103] Zhang Ke, Su Jin, Chen Yongquan, Ma Sihong, Zhang Haizu, Yang Chunlong, Fang Yu. 2023. The biogeochemical features of the Cambrian−Ordovician source rocks and origin of ultra−deep hydrocarbons in the Tarim basin[J]. Acta Geologica Sinica, 97(6): 2026−2041 (in Chinese with English abstract).

    Google Scholar

    [104] Zhang Mai, Song Daofu, Wang Tieguan, He Faqi, Zhang Wei, An Chuan, Liu Yue, Lu Zhengang. 2024. Geochemical characteristics and sources of natural gas in Hangjinqi area of Ordos Basin[J]. Petroleum Geology & Experiment, 46(1): 124−135 (in Chinese with English abstract).

    Google Scholar

    [105] Zhang Yuying, He Zhiliang, Gao Bo, Liu Zhongbao. 2017. Sedimentary environment of the Lower Cambrian organic−rich shale and its influence on organic content in the Upper Yangtze[J]. Petroleum Geology & Experiment, 39(2): 154−161 (in Chinese with English abstract).

    Google Scholar

    [106] Zhou B, Bird M, Zheng H, Zhang E, Wurster C M, Xie L, Taylor D. 2017. New sedimentary evidence reveals a unique history of C4 biomass in continental East Asia since the early Miocene[J]. Scientific Reports, 7(1): 170. doi: 10.1038/s41598-017-00285-7

    CrossRef Google Scholar

    [107] Zhu Shufa, Liu Congqiang, Tao Faxiang. 2005. Use of δ13C method in studying soil organic matter[J]. Acta Pedologica Sinica, 42(3): 495−503 (in Chinese with English abstract).

    Google Scholar

    [108] Zhu X, Chen J, Wu J, Wang Y, Zhang B, Zhang K, He L. 2017a. Carbon isotopic compositions and origin of Paleozoic crude oil in the platform region of Tarim Basin, NW China[J]. Petroleum Exploration and Development, 44(6): 1053−1060. doi: 10.1016/S1876-3804(17)30119-2

    CrossRef Google Scholar

    [109] Zhu Z, Ge T, Hu Y, Zhou P, Wang T, Shibistova O, Guggenberger G, Su Y, Wu J. 2017b. Fate of rice shoot and root residues, rhizodeposits, and microbial assimilated carbon in paddy soil − part 2: Turnover and microbial utilization[J]. Plant and Soil, 416(1/2): 243−257. doi: 10.1007/s11104-017-3210-4

    CrossRef Google Scholar

    [110] Zhu Z, Ge T, Liu S, Hu Y, Ye R, Xiao M, Tong C, Kuzyakov Y, Wu J. 2018. Rice rhizodeposits affect organic matter priming in paddy soil: The role of N fertilization and plant growth for enzyme activities, CO2 and CH4 emissions[J]. Soil Biology and Biochemistry, 116: 369−377. doi: 10.1016/j.soilbio.2017.11.001

    CrossRef Google Scholar

    [111] Zhu Z, Ge T, Xiao M, Yuan H, Wang T, Liu S, Atere C T, Wu J, Kuzyakov Y. 2017c. Belowground carbon allocation and dynamics under rice cultivation depends on soil organic matter content[J]. Plant and Soil, 410(1−2): 247−258. doi: 10.1007/s11104-016-3005-z

    CrossRef Google Scholar

    [112] Zhu Z, Zeng G, Ge T, Hu Y, Tong C, Shibistova O, He X, Wang J, Guggenberger G, Wu J. 2016. Fate of rice shoot and root residues, rhizodeposits, and microbe−assimilatedcarbon in paddy soil−Part 1: Decomposition and priming effect[J]. Biogeosciences, 13(15): 4481−4489. doi: 10.5194/bg-13-4481-2016

    CrossRef Google Scholar

    [113] Zvi S. 1984. Stable carbon isotope compositions of crude oils: Application to source depositional environments and petroleum alteration[J]. AAPG Bulletin, 68: 31−49.

    Google Scholar

    [114] 陈安定, 刘桂霞, 连莉文, 钱贻伯, 张辉. 1991. 生物甲烷形成试验与生物气聚集的有利地质条件探讨[J]. 石油学报,12(3): 7−16, 158.

    Google Scholar

    [115] 陈建平, 王绪龙, 陈践发, 倪云燕, 向宝力, 廖凤蓉, 何文军, 姚立邈, 李二庭. 2021. 甲烷碳同位素判识天然气及其源岩成熟度新公式[J]. 中国科学: 地球科学, 51(4): 560−581.

    Google Scholar

    [116] 陈世苹, 白永飞, 韩兴国. 2002. 稳定性碳同位素技术在生态学研究中的应用[J]. 植物生态学报,26(5): 549−560.

    Google Scholar

    [117] 陈义林, 秦勇. 2017. 无机成因二氧化碳气−水界面交换反应表征与机制[J]. 煤炭学报, 42(7): 1811−1817.

    Google Scholar

    [118] 戴金星, 倪云燕, 龚德瑜, 黄士鹏, 刘全有, 洪峰, 张延玲. 2024. 中国大气田烷烃气碳同位素组成的若干特征[J]. 石油勘探与开发, 51(2): 223−233. doi: 10.11698/PED.20230669

    CrossRef Google Scholar

    [119] 戴金星. 1993. 天然气碳氢同位素特征和各类天然气鉴别[J]. 天然气地球科学,(Z1): 1−40.

    Google Scholar

    [120] 葛体达, 王东东, 祝贞科, 魏亮, 魏晓梦, 吴金水. 2020. 碳同位素示踪技术及其在陆地生态系统碳循环研究中的应用与展望[J]. 植物生态学报, 44(4): 360−372.

    Google Scholar

    [121] 贺聪, 吉利明, 苏奥, 吴远东, 张明震. 2016. 天然气组分碳同位素倒转成因分析及地质应用[J]. 特种油气藏, 23(4): 14−19,151.

    Google Scholar

    [122] 胡国艺, 李剑, 李谨, 李志生, 罗霞, 孙庆伍, 马成华. 2007. 判识天然气成因的轻烃指标探讨[J]. 中国科学(D辑: 地球科学), 37(S2): 111−117.

    Google Scholar

    [123] 李畅, 杨忠芳, 余涛, 牛荣琛, 郭茹璨, 余保成, 夏学齐, 于朝阳, 曹圆圆. 2023. 干旱区土壤无机碳碳汇作用及其对固碳减排贡献研究进展[J]. 中国地质, 51(4): 1210−1242.

    Google Scholar

    [124] 李发东, 栗照鑫, 乔云峰, 刘山宝, 田超, 朱农, Hubert Hirwa, Simon Measho. 2023. 土壤有机碳同位素组成在农田生态系统碳循环中的应用进展[J]. 中国生态农业学报(中英文), 31(2): 194−205.

    Google Scholar

    [125] 李江涛. 2018. 西山矿区煤中有机碳同位素特征与其成熟度之间的联系[J]. 煤矿安全, 49(11): 164−167.

    Google Scholar

    [126] 李美俊, 任平, 胡礼国, 焦运景. 2000. 碳同位素类型曲线在辽河盆地油源对比中的应用[J]. 特种油气藏,7(2): 11−12, 27−51.

    Google Scholar

    [127] 李秀美, 范宝伟, 侯居峙, 王明达, 贺跃. 2022. 青藏高原达则错沉积物有机碳同位素特征及古气候环境意义[J]. 地球科学, 47(6): 2275−2286. doi: 10.3321/j.issn.1000-2383.2022.6.dqkx202206027

    CrossRef Google Scholar

    [128] 李杨梅, 贡璐, 安申群, 孙力, 陈新. 2018. 基于稳定碳同位素技术的干旱区绿洲土壤有机碳向无机碳的转移[J]. 环境科学, 39(8): 3867−3875.

    Google Scholar

    [129] 刘丽贞, 庞丹波, 王新云, 陈林, 李学斌, 吴梦瑶, 刘波, 祝忠有, 李静尧, 王继飞. 2021. 稳定碳同位素技术在土壤有机碳研究中的应用进展[J]. 干旱区研究, 38(1): 123−132.

    Google Scholar

    [130] 苗晓明, 冯秀丽, 李景瑞, 肖倩文, 但孝鹏, 尉建功. 2022. 南海甲烷渗漏研究进展及其对我国南海科学钻探选址的启示[J]. 地质学报, 96(8): 2877−2895.

    Google Scholar

    [131] 沈忠民, 王鹏, 刘四兵, 吕正祥, 冯杰瑞. 2011. 川西坳陷中段须家河组天然气碳同位素特征[J]. 天然气地球科学, 22(5): 834−839. doi: 10.11764/j.issn.1672-1926.2011.05.834

    CrossRef Google Scholar

    [132] 石元豹, 曹兵, 宋丽华, 汪贵斌. 2016. 用13C示踪研究CO2浓度倍增对枸杞光合产物积累的影响[J]. 农业工程学报, 32(10): 201−206. doi: 10.11975/j.issn.1002-6819.2016.10.028

    CrossRef Google Scholar

    [133] 宋成鹏, 张晓宝, 汪立群, 徐子远, 马立协. 2009. 柴达木盆地北缘天然气成因类型及气源判识[J]. 石油与天然气地质, 30(1): 90−96. doi: 10.3321/j.issn:0253-9985.2009.01.013

    CrossRef Google Scholar

    [134] 宋岩, 徐永昌. 2005. 天然气成因类型及其鉴别[J]. 石油勘探与开发, 32(4): 24−29. doi: 10.3321/j.issn:1000-0747.2005.04.004

    CrossRef Google Scholar

    [135] 王玲辉, 沈忠民, 赵虎. 2008. 川西坳陷中段天然气碳同位素特征及其成因类型[J]. 物探化探计算技术,30(4): 326−330, 265.

    Google Scholar

    [136] 魏菊英, 王关玉. 1988. 同位素地球化学[M]. 北京: 地质出版社.

    Google Scholar

    [137] 徐向春, 周斌, 周雪航, 王者. 2021. 中国黄土高原沉积物稳定碳同位素指标在古植被环境研究中的进展[J]. 第四纪研究, 41(4): 931−947. doi: 10.11928/j.issn.1001-7410.2021.04.05

    CrossRef Google Scholar

    [138] 杨平, 谭富文, 施美凤, 王正和, 李忠雄, 占王忠, Sudhir Rajaure, Ganesh N. Tripathi. 2021. 尼泊尔低喜马拉雅推覆带油源对比及油气成藏[J]. 地质学报, 95(11): 3426−3441. doi: 10.3969/j.issn.0001-5717.2021.11.018

    CrossRef Google Scholar

    [139] 杨易卓, 黄志龙, 赵珍, 唐友军. 2022. 羌塘盆地毕洛错地区古油藏地球化学特征与油源对比[J]. 地球科学, 47(5): 1834−1848. doi: 10.3321/j.issn.1000-2383.2022.5.dqkx202205021

    CrossRef Google Scholar

    [140] 叶素娟, 朱宏权, 李嵘, 杨映涛, 黎青. 2017. 天然气运移有机-无机地球化学示踪指标——以四川盆地川西坳陷侏罗系气藏为例[J]. 石油勘探与开发, 44(4): 549−560. doi: 10.11698/PED.2017.04.08

    CrossRef Google Scholar

    [141] 叶孝贤. 2022. 北大西洋中纬度海域浮游有孔虫揭示的70ka以来古海洋环境演化[D]. 上海: 上海海洋大学, 1−95.

    Google Scholar

    [142] 尹倩倩. 2020. 松辽盆地孤店断陷深层天然气成因研究及气源对比[D]. 北京: 中国石油大学(北京), 1−80.

    Google Scholar

    [143] 袁红朝, 李春勇, 简燕, 耿梅梅, 许丽卫, 王久荣. 2014. 稳定同位素分析技术在农田生态系统土壤碳循环中的应用[J]. 同位素, 27(3): 170−178. doi: 10.7538/tws.2014.27.03.0170

    CrossRef Google Scholar

    [144] 张科, 苏劲, 陈永权, 马巳翃, 张海祖, 杨春龙, 方玙. 2023. 塔里木盆地寒武系—奥陶系烃源岩油源特征与超深层油气来源[J]. 地质学报, 97(6): 2026−2041.

    Google Scholar

    [145] 张迈, 宋到福, 王铁冠, 何发岐, 张威, 安川, 刘悦, 陆振港. 2024. 鄂尔多斯盆地杭锦旗地区天然气地球化学特征及气源探讨[J]. 石油实验地质, 46(1): 124−135. doi: 10.11781/sysydz202401124

    CrossRef Google Scholar

    [146] 张钰莹, 何治亮, 高波, 刘忠宝. 2017. 上扬子区下寒武统富有机质页岩沉积环境及其对有机质含量的影响[J]. 石油实验地质, 39(2): 154−161. doi: 10.11781/sysydz201702154

    CrossRef Google Scholar

    [147] 朱书法, 刘丛强, 陶发祥. 2005. δ13C方法在土壤有机质研究中的应用[J]. 土壤学报, 42(3):495−503. doi: 10.11766/trxb200406220322

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(4)

Article Metrics

Article views(8) PDF downloads(1) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint