2025 Vol. 52, No. 2
Article Contents

ZHANG Linyou, LI Xufeng, ZHU Guilin, ZHANG Shengsheng, ZHANG Chao, WANG Huang, FENG Qingda, XU Wenhao, NIU Zhaoxuan, DENG Zhihui. 2025. Geothermal geological characteristics, genetic model and resource potential of hot dry rocks in the Gonghe Basin, Qinghai[J]. Geology in China, 52(2): 399-415. doi: 10.12029/gc20240226001
Citation: ZHANG Linyou, LI Xufeng, ZHU Guilin, ZHANG Shengsheng, ZHANG Chao, WANG Huang, FENG Qingda, XU Wenhao, NIU Zhaoxuan, DENG Zhihui. 2025. Geothermal geological characteristics, genetic model and resource potential of hot dry rocks in the Gonghe Basin, Qinghai[J]. Geology in China, 52(2): 399-415. doi: 10.12029/gc20240226001

Geothermal geological characteristics, genetic model and resource potential of hot dry rocks in the Gonghe Basin, Qinghai

    Fund Project: Supported by National Natural Science Foundation of China (No.42202336), the projects of China Geological Survey (No.DD20190131, No.DD20211336, No.DD20230018).
More Information
  • Author Bio: ZHANG Linyou, male, born in 1987, Ph.D., senior engineer, mainly engaged in geothermal geology; E-mail: zhanglinyou@mail.cgs.gov.cn
  • This paper is the result of geothermal geological survey engineering.

    Objective

    The Gonghe Basin, situated on the northeastern margin of the Qinghai−Tibet Plateau, is a significant experimental area for the exploration and development of hot dry rock (HDR) in China. The formation mechanisms of HDR within the Gonghe Basin remain controversial and have attracted considerable research attention. The current thermal state is of great significance for a deeper understanding the distribution patterns and formation mechanisms of high−temperature geothermal reservoirs.

    Methods

    In this study, extensive geophysical exploration and drilling data are integrated to describe the geological and geothermal architecture of the Gonghe Basin. A two−dimensional temperature field profile across the east−west axis is established through numerical simulation. Based on these results, the resource potential of HDR is assessed, and the key factors controlling HDR formation are analyzed.

    Results

    The Gonghe Basin hosts abundant HDR resources, with an estimated 2.48×1021 J within the depth of 5 km. The two−dimensional numerical simulation reveals significant temperature field variations between the eastern and western parts of the basin. The temperature field variations are consistent with the distribution of the basin's basement depth, which decreases from west to east. High−temperature anomalies are observed in the northeastern region, particularly around the Xinjie−Waliguan uplift belt.

    Conclusions

    On the basis of understanding the knowledge of predecessors, this paper proposes a comprehensive HDR formation mechanism from the perspectives of geological, geothermal, and geophysical backgrounds. The formation of HDR in the Gonghe Basin is controlled by multiple factors, including continuous heating by partial melting, heating and conducting heat by granite, heat controlling by neotectonic uplift and denudation, and heat preservation and accumulation by sedimentary covers.

  • 加载中
  • [1] Aghahosseini A, Breyer C. 2020. From hot rock to useful energy: A global estimate of enhanced geothermal systems potential[J]. Applied Energy, 279: 115769. doi: 10.1016/j.apenergy.2020.115769

    CrossRef Google Scholar

    [2] Allen P A, Allen J R. 2013. Basin Analysis: Principles and Application to Petroleum Play Assessment[M]. UK: John Wiley & Sons, 479−480.

    Google Scholar

    [3] Artemieva I M, Thybo H, Jakobsen K, Sørensen N K, Nielsen L S K. 2017. Heat production in granitic rocks: Global analysis based on a new data compilation GRANITE 2017[J]. Earth−Science Reviews, 172: 1−26. doi: 10.1016/j.earscirev.2017.07.003

    CrossRef Google Scholar

    [4] Axelsson G. 2024. Chapter 20−The Future of Geothermal Energy, in: Living With Climate Change[M]. Netherlands: Elsevier, 397−422.

    Google Scholar

    [5] Ayling B F, Hogarth R A, Rose P E. 2016. Tracer testing at the Habanero EGS site, central Australia[J]. Geothermics, 63: 15−26.

    Google Scholar

    [6] Beardsmore G. 2004. The influence of basement on surface heat flow in the Cooper Basin[J]. Exploration Geophysics. 35(4): 223−235.

    Google Scholar

    [7] Benato S. 2016. Conceptual model and numerical analysis of the Desert Peak EGS project: Reservoir response to the shallow medium flow−rate hydraulic stimulation phase[J]. Geothermics, 63: 139−156. doi: 10.1016/j.geothermics.2015.06.008

    CrossRef Google Scholar

    [8] Bertani R. 2016. Geothermal power generation in the world 2010−2014 update report[J]. Geothermics, 60: 31−43.

    Google Scholar

    [9] Breede K, Dzebisashvili K, Liu X, Falcone G. 2013. Systematic review of enhanced (or engineered) geothermal systems: Past, present and future[J]. Geothermal Energy, 1(1): 4. doi: 10.1186/2195-9706-1-4

    CrossRef Google Scholar

    [10] Brown M, Rushmer T. 2008. Evolution and Differentiation of the Continental Crust[M]. New York: Cambridge University Press.

    Google Scholar

    [11] Callonnec L L, Renard M, Rafélis M D, Minoletti F, Beltran C, Chêne R J D. 2014. Evolution of the trace element contents (Sr and Mn) of hemipelagic carbonates from the Zumaia Paleocene section (Gipuzkoa, Spain): Implications for the knowledge of seawater chemistry during the Selandian[J]. Bulletin De La Societe Geologique De France, 185(6): 413−435.

    Google Scholar

    [12] Chen Xijie, Yun Xiaorui, Lei Min, Cai Zhihui, Zhang Shengsheng, Liu Ruohan, Li Yibing, He Bizhu. 2020. Petrogenesis of Middle Triassic granite association in the Gonghe basin, Qinghai: Constraints from geochemistry, U−Pb ages and Hf isotopic[J]. Acta Petrologica Sinica 36(10): 3152−3170 (in Chinese with English abstract).

    Google Scholar

    [13] Craddock W H. 2011. Structural and Geomorphic Evolution of the Gonghe Basin Complex, Northeastern Tibet: Implications for the Timing of Plateau Growth[D]. State College: Pennsylvania State University.

    Google Scholar

    [14] Craddock W H, Kirby E, Zhang H, Clark M K, Champagnac J D, Yuan D. 2014. Rates and style of Cenozoic deformation around the Gonghe Basin, northeastern Tibetan Plateau[J]. Geosphere, 10(6): 1255−1282. doi: 10.1130/GES01024.1

    CrossRef Google Scholar

    [15] Davies J H, Davies D R. 2010. Earth's surface heat flux[J]. Solid Earth, 1(1): 5−24. doi: 10.5194/se-1-5-2010

    CrossRef Google Scholar

    [16] Davies J H. 2013. Global map of solid Earth surface heat flow[J]. Geochemistry, Geophysics, Geosystems, 14(10): 4608−4622.

    Google Scholar

    [17] England P C, Thompson A B. 1984. Pressure−temperature−time paths of regional metamorphism I. Heat transfer during the evolution of regions of thickened continental crust[J]. Journal of Petrology, 25: 894−928.

    Google Scholar

    [18] Fang X, Yan M, Voo R V D, Rea D K, Song C, Parés J M, Gao J, Nie J, Shuang D. 2005. Late Cenozoic deformation and uplift of the NE Tibetan Plateau: Evidence from high−resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China[J]. Geological Society of America Bulletin, 117(9/10): 1208−1225.

    Google Scholar

    [19] Feng Y F, Zhang X X, Zhang B, Liu J T, Wang Y G, Jia D L, Hao L R, Kong Z Y. 2018. The geothermal formation mechanism in the Gonghe Basin: Discussion and analysis from the geological background[J]. China Geology, 1(3): 331−345. doi: 10.31035/cg2018043

    CrossRef Google Scholar

    [20] Gao J, Zhang H J, Zhang H P, Zhang S Q, Cheng Z P. 2020. Three−dimensional magnetotelluric imaging of the SE Gonghe Basin: Implication for the orogenic uplift in the northeastern margin of the Tibetan plateau[J]. Tectonophysics, 789: 228525.

    Google Scholar

    [21] Gao J, Zhang H J, Zhang S Q, Chen X B, Cheng Z P, Jia X F, Li S T, Fu L, Gao L, Xin H L. 2018. Three−dimensional magnetotelluric imaging of the geothermal system beneath the Gonghe Basin, northeast Tibetan Plateau[J]. Geothermics, 76: 15−25.

    Google Scholar

    [22] Garcia J. 2016. The Northwest Geysers EGS Demonstration Project, California: Part 1: Characterization and reservoir response to injection[J]. Geothermics, 63: 97−119.

    Google Scholar

    [23] Genter A, Guillou−Frottier L, Feybesse J L, Nicol N, Dezayes C, Schwartz S. 2003. Typology of potential hot fractured rock resources in europe[J]. Geothermics, 32(4/6): 701−710.

    Google Scholar

    [24] Guo Jing, Tang Fawei, Guan Hui, Zhao Haihua, Zhao Xiaoyun, Danzeng Guojie, Du Bingrui. 2023. Structure−thermal coupling model of the high temperature geothermal system in Rujiao on the Xizang Plateau[J]. Geology in China, 50(6): 1621−1631 (in Chinese with English abstract).

    Google Scholar

    [25] He Bizhu, Zheng Menglin, Yun Xiaorui, Cai Zhihui, Jiao Cunli, Chen Xijie, Zheng Yong, Ma Xuxuan, Liu Ruohan, Chen Huiming, Zhang Shengsheng, Lei Min, Fu Guoqiang, Li Zhenyu. 2023. Structural architecture and energy resource potential of Gonghe Basin, NE Qinghai−Tibet Plateau[J]. Earth Science Frontiers, 30(1): 81−105 (in Chinese with English abstract).

    Google Scholar

    [26] He L J, Zhang L Y. 2018. Thermal evolution of cratons in China[J]. Journal of Asian Earth Sciences. 164(15): 237−247.

    Google Scholar

    [27] Jia L Y, Hu D G, Wu H H, Zhao X T, Chang P Y, You B J, Zhang M, Wang C Q, Ye M N, Wu Z Q, Liang X Z. 2017. Yellow River terrace sequences of the Gonghe–Guide section in the northeastern Qinghai–Tibet: Implications for plateau uplift[J]. Geomorphology, 295: 323−336. doi: 10.1016/j.geomorph.2017.06.007

    CrossRef Google Scholar

    [28] Jia S X, Guo W B, Mooney W D, Wang F Y, Duan Y H, Zhao J M, Lin J Y, Liu Z. 2019. Crustal structure of the middle segment of the Qilian fold belt and the coupling mechanism of its associated basin and range system[J]. Tectonophysics, 770: 128154. doi: 10.1016/j.tecto.2019.06.024

    CrossRef Google Scholar

    [29] Jiang F M, Chen J L, Huang W B, Luo L. 2014. A three−dimensional transient model for EGS subsurface thermo−hydraulic process[J]. Energy, 72: 300−310. doi: 10.1016/j.energy.2014.05.038

    CrossRef Google Scholar

    [30] Jiang G Z, Hu S B, Shi Y Z, Zhang C, Wang Z T, Hu D. 2019. Terrestrial heat flow of continental China: Updated dataset and tectonic implications[J]. Tectonophysics, 753: 36−48. doi: 10.1016/j.tecto.2019.01.006

    CrossRef Google Scholar

    [31] Kong Y L, Pan S, Ren Y Q, Zhang W Z, Wang K, Jiang G Z, Cheng Y Z, Sun W J, Zhang C, Hu S B, He L J. 2021. Catalog of enhanced geothermal systems based on heat sources[J]. Acta Geologica Sinica(English Edition), 95(6): 1882−1891. doi: 10.1111/1755-6724.14876

    CrossRef Google Scholar

    [32] Lang Xujuan, Liu Feng, Liu Zhiming, Lin Wenjing, Xing Linxiao, Wang Guiling. 2016. Terrestrial heat flow in Guide Basin, Qinghai[J]. Bulletin of Geological Science and Technology, 35(3): 227 (in Chinese with English abstract).

    Google Scholar

    [33] Lei Yude, Yuan Youjing, Qin Guangxiong, Ba Ruishou, Zhao Zhen, Li Tongbang. 2023. Analysis of thermal storage characteristics of the Guide Zhacang geothermal field in Gonghe Basin based on logging data[J]. Acta Geoscientica Sinica, 44(1): 145−157 (in Chinese with English abstract).

    Google Scholar

    [34] Li Linguo, Li Baixiang. 2017. A discussion on the heat source mechanism and geothermal system of Gonghe−Guide basin and mountain geothermal field in Qinghai Province[J]. Geophysical and Geochemical Exploration, 41(1): 29−34 (in Chinese with English abstract).

    Google Scholar

    [35] Lin Wenjing, Gan Haonan, Zhao Zhen, Zhang Shengsheng. 2022. Lithospheric thermal−rheological structure and geothermal significance in Gonghe Basin, Qinghai Province[J]. Acta Geoscientica Sinica, 44: 45−56 (in Chinese with English abstract).

    Google Scholar

    [36] Lin Wenjing, Wang Guilin, Zhang Shengsheng, Zhao Zhen, Xing Linxiao, Gan Haonan. 2022. Heat source mechanism of hot dry rock in the Gonghe Basin on the northeastern Qinghai−Tibet Plateau[J]. Geothermal Energy, 3: 14−24 (in Chinese with English abstract).

    Google Scholar

    [37] Lu S Y M. 2018. A global review of enhanced geothermal system (EGS)(Review)[J]. Renewable and Sustainable Energy Reviews, 81: 2902−2921. doi: 10.1016/j.rser.2017.06.097

    CrossRef Google Scholar

    [38] Olasolo P, Juárez M C, Morales M P, D´Amico S, Liarte I A. 2016. Enhanced geothermal systems (EGS): A review[J]. Renewable & Sustainable Energy Reviews, 56: 133−144.

    Google Scholar

    [39] Pan S , Kong Y L, Wang K, Ren Y Q, Pang Z H, Zhang C, Wen D G, Zhang L Y, Feng, Q D, Zhu G L, Wang J Y. 2021. Magmatic origin of geothermal fluids constrained by geochemical evidence: Implications for the heat source in the northeastern Tibetan Plateau[J]. Journal of Hydrology, 603: 126985.

    Google Scholar

    [40] Pollack A, Horne R N, Mukerji T. 2020. What are the challenges in developing enhanced geothermal systems (EGS)? Observations from 64 EGS Sites[C]// Reykjavik, Iceland: Proceedings World Geothermal Congress 2020+1.

    Google Scholar

    [41] Qian Hui, Jiang Mei, Xue Guangqi, Su Heping, Wittlinger G, Vergne J. 2001. Crustal structure of northeastern Tibet inferred from receiver function analysis[J]. Acta Seismologica Sinica, 23(1): 103−108 (in Chinese with English abstract).

    Google Scholar

    [42] Qiu Nansheng. 2002. Characters of thermal conductivity and radiogenic heat production rate in basins of Northwest China[J]. Chinese Journal of Geology, 37(2): 196−206 (in Chinese with English abstract).

    Google Scholar

    [43] Shen Xianjie, Zhang Wenren, Guan Hua, Jin Xu. 1989. The Yadong−Qaidam heat flow great section spanning the Tibetan Plateau[J]. Chinese Science Bulletin, 17: 1329−1329 (in Chinese with English abstract).

    Google Scholar

    [44] Siégel C, Bryan S E, Purdy D, Allen C M, Schrank C, Uysal T, Gust D, Beardsmore G. 2012. Evaluating the Role of Deep Granitic Rocks in Generating Anomalous Temperatures in South−west Queensland, in Geological Survey of Queensland: Digging Deeper 10 Seminar Extended Abstracts [Queensland Geological Record 2012/14][R]. Brisbane, Australia: Geological Survey of Queensland, Department of Natural Resource and Mines, 95–102.

    Google Scholar

    [45] Sun Yangui, Fang Hongbin, Zhang Kun, Zhao Fuyue, Liu Shiying. 2007. Step−like landform system of the Gonghe basin and the uplift of the Qinghai−Tibet Plateau and development of the Yellow River[J]. Geology in China, 34(6): 1141−1147 (in Chinese with English abstract).

    Google Scholar

    [46] Sun Yangui. 2004. Gonghe Aulacogen and Conjugate and Transfer Between the West Qinling and East Kunlun Orogens[D]. Xi’an: Northwest University (in Chinese with English abstract).

    Google Scholar

    [47] Tang X C, Liu S S, Zhang D L, Wang G L, Luo Y F, Hu S B, Xu Q. 2022. Geothermal accumulation constrained by the tectonic transformation in the Gonghe Basin, Northeastern Tibetan Plateau[J]. Lithosphere, 2021 (Special 5): 3936881.

    Google Scholar

    [48] Tang Xianchun, Wang Guiling, Ma Yan, Zhang Dailei, Liu Zhong, Zhao Xu, Cheng Tianjun. 2020. Geological model of heat source and accumulation for geothermal anomalies in the Gonghe basin, northeastern Tibetan Plateau[J]. Acta Geologica Sinica, 94(7): 2052−2065 (in Chinese with English abstract).

    Google Scholar

    [49] Tang Xianchun, Wang Guiling, Zhang Dailei, Ma Yan. 2023. Coupling mechanism of geothermal accumulation and the cenozoic active tectonics evolution in Gonghe Basin, northeastern margin of the Tibetan Plateau[J]. Acta Geoscientica Sinica, 44(1): 7−20 (in Chinese with English abstract).

    Google Scholar

    [50] Wang Changgui, Lü Yousheng. 2004. Gonghe Basin: A new and worth−researching Basin[J]. Xinjiang Petroleum Geology, 25(5): 471−473 (in Chinese with English abstract).

    Google Scholar

    [51] Wang Jiyang, Huang Shaopeng. 1990. Compilation of heat flow data in the China continental area (2nd Edition)[J]. Seismology and Geology, 12(4): 351−366 (in Chinese with English abstract).

    Google Scholar

    [52] Wang Jiyang, Pang Zhonghe, Cheng Yuanzhi, Huang Yonghui, Jiang Guangzheng, Lu Zhenneng, Kong Yanlong. 2023. Current state, utilization and prospective of global geothermal energy[J]. Science & Technology Review, 41(12): 5−11 (in Chinese with English abstract).

    Google Scholar

    [53] Wang Q, Hawkesworth C J, Wyman D, Chung S L, Wu F Y, Li X H, Li Z X, Gou G N, Zhang X Z, Tang G J, Dan W, Ma L, Dong Y H. 2015. Pliocene−Quaternary crustal melting in central and northern Tibet and insights into crustal flow[J]. Nature Communications, 7: 11888.

    Google Scholar

    [54] Weinert S, Br K, Scheuvens D, Sass I. 2021. Radiogenic heat production of crystalline rocks in the Gonghe Basin Complex (northeastern Qinghai–Tibet plateau, China)[J]. Environmental Earth Sciences, 80: 270. doi: 10.1007/s12665-021-09558-x

    CrossRef Google Scholar

    [55] Woodhouse J H, Birch F. 1980. Comment on 'Erosion, uplift, exponential heat source distribution, and transient heat flux' by T. −C. Lee[J]. Journal of Geophysical Research Solid Earth, 85(B5): 2691−2693.

    Google Scholar

    [56] Wu D L, Ge W P, Liu S Z, Yuan D Y, Zhang B, Wei C M. 2024. Present−day 3D crustal deformation of the northeastern Tibetan Plateau from space geodesy[J]. Geophysical Research Letters, 51(4): e2023GL106143. doi: 10.1029/2023GL106143

    CrossRef Google Scholar

    [57] Wu Huanhuan, Wu Xuewen, Li Yue, Hu Daogong, Jia Liyun, Yan Jiandong, Wang Chaoqun, Xia Mengmeng. 2019. River terraces in the Gonghe−Guide section of the Yellow River: Implications for the late uplift of the northeastern margin of the Qinghai−Tibet Plateau[J]. Acta Geologica Sinica, 93(12): 3239−3248 (in Chinese with English abstract).

    Google Scholar

    [58] Xu Ming, Zhu Chuanqing, Tian Yuntao, Rao Song, Hu Shengbiao. 2011. Borehole temperature logging and characteristics of subsurface temperature in Sichuan Basin[J]. Chinese Journal of Geophysics, 54(4): 1052−1060 (in Chinese with English abstract).

    Google Scholar

    [59] Xu Shuying, Xu Defu, Shi Shengren. 1984. Discussion on geomorphic development and environmental evolution of Gonghe Basin[J]. Journal of Lanzhou University (Natural Sciences), 20(1): 146−157 (in Chinese with English abstract).

    Google Scholar

    [60] Xu T, Wu Z B, Zhang Z J, Tian X B, Deng Y F, Wu C L, Teng J W. 2014. Crustal structure across the Kunlun fault from passive source seismic profiling in East Tibet[J]. Tectonophysics, 627: 98−107. doi: 10.1016/j.tecto.2013.11.010

    CrossRef Google Scholar

    [61] Yan Weide, Wang Yanxin, Gao Xuezhong, Zhang Shuheng, Ma Yuehua, Shang Xiaogang, Guo Shouyun. 2013. Distribution and aggregation mechanism of geothermal energy in Gonghe Basin[J]. Northwestern Geology, 46(4): 223−230 (in Chinese with English abstract).

    Google Scholar

    [62] Yun Xiaorui, Chen Xijie, Cai Zhihui, He Bizhu, Zhang Shengsheng, Lei Min, Xiang Hua. 2020. Preliminary study on magmatic emplacement and crystallization conditions and deep structure of hot dry rock in the northeastern Gonghe basin, Qinghai Province[J]. Acta Petrologica Sinica, 36(10): 3171−3191 (in Chinese with English abstract).

    Google Scholar

    [63] Zhang C, Hu S B, Zhang S S, Li S T, Zhang L Y, Kong Y L, Zuo Y H, Song R C, Jiang G Z, Wang Z T. 2020. Radiogenic heat production variations in the Gonghe basin, northeastern Tibetan Plateau: Implications for the origin of high−temperature geothermal resources[J]. Renewable Energy, 148: 284−297. doi: 10.1016/j.renene.2019.11.156

    CrossRef Google Scholar

    [64] Zhang C, Huang R H, Qin S, Hu S B, Zhang S S, Li S T, Zhang L Y, Wang Z T. 2021. The high−temperature geothermal resources in the Gonghe−Guide area, northeast Tibetan Plateau: A comprehensive review[J]. Geothermics, 97: 102264. doi: 10.1016/j.geothermics.2021.102264

    CrossRef Google Scholar

    [65] Zhang C, Jiang G Z, Shi Y Z, Wang Z T, Wang Y, Li S T, Jia X F, Hu S B. 2018. Terrestrial heat flow and crustal thermal structure of the Gonghe−Guide area, northeastern Qinghai−Tibetan plateau[J]. Geothermics, 72: 182−192. doi: 10.1016/j.geothermics.2017.11.011

    CrossRef Google Scholar

    [66] Zhang Chao, Hu Shengbiao, Song Rongcai, Zuo Yinhui, Jiang Guangzheng, Lei Yude, Zhang Shengsheng, Wang Zhuting. 2020. Genesis of the hot dry rock geothermal resources in the Gonghe basin: Constraints from the radiogenic heat production rate of rocks[J]. Chinese Journal of Geophysics, 63(7): 2697−2709 (in Chinese with English abstract).

    Google Scholar

    [67] Zhang Chao, Zhang Shengsheng, Li Shengtao, Jia Xiaofeng, Jiang Guangzheng, Gao Peng, Wang Yibo, Hu Shengbiao. 2018. Geothermal characteristics of the Qiabuqia geothermal area in the Gonghe basin, northeastern Tibetan Plateau[J]. Chinese Journal of Geophysics, 61(11): 4545−4557 (in Chinese with English abstract).

    Google Scholar

    [68] Zhang E Y, Wen D G, Wang G L, Yan W De, Wang W S, Ye C M, Li X F, Wang H, Tang X C, Weng W, Li K, Zhang C Y, Liang M X, Luo H B, Hu H Y, Zhang W, Zhang S Q, Jin X P, Wu H D, Zhang L Y, Feng Q D, Xie J Y, Wang D, He Y C, Wang Y W, Chen Z B, Cheng Z P, Luo W F, Yang Y, Zhang H, Zha E L, Gong Y L, Zheng Y, Jiang C S, Zhang S S, Niu X, Zhang H, Hu L S, Zhu G L, Xu W H, Niu Z X, Yang L. 2022. The first power generation test of hot dry rock resources exploration and production demonstration project in the Gonghe Basin, Qinghai Province, China[J]. China Geology, 5: 372−382. doi: 10.31035/cg2022038

    CrossRef Google Scholar

    [69] Zhang Huiping, Liu Shaofeng. 2009. Pleistocene deposition and subsequent erosion distribution around Xunhua−Guide Basin, North Eastern Tibetan Plateau[J]. Quaternary Sciences, 29(4): 806−815 (in Chinese with English abstract).

    Google Scholar

    [70] Zhang L Y, Li X F, Zhang S S, Zhu G L, Xu W H, Feng Q D, Deng Z H. 2024. Deep-seated radiogenic heat production characteristics in the northeastern Gonghe basin (northeastern Qinghai−Tibet plateau) from deep borehole samples: Implications for the formation of hot dry rock resources[J]. Geothermics, 123: 103110.

    Google Scholar

    [71] Zhang Peizhen, Zheng Dewen, Yin Gongming, Yuan Daoyang, Zhang Guangliang, Li Chuanyou, Wang Zhicai. 2006. Discussion on Late Cenozoic growth and rise of northeastern margin of the Tibetan Plateau[J]. Quaternary Sciences, 26(1): 5−13 (in Chinese with English abstract).

    Google Scholar

    [72] Zhang Senqi, Fu Lei, Zhang Yang, Song Jian, Wang Fuchun, Huang Jinhui, Jia Xiaofeng, Li Shengtao, Zhang Linyou, Feng Qingda. 2020b. Delineation of hot dry rock exploration target area in the Gonghe Basin based on high−precision aeromagnetic data[J]. Natural Gas Industry, 40(9): 156−169 (in Chinese with English abstract).

    Google Scholar

    [73] Zhang Senqi, Li Xufeng, Song Jian, Wen Dongguang, Li Zhiwei, Li Dunpeng, Cheng Zhengpu, Fu Lei, Zhang Linyou, Feng Qingda, Yang Tao, Niu Zhaoxuan. 2021. Analysis on geophysical evidence for existence of partial melting layer in crust and regional heat source mechanism for hot dry rock resources of Gonghe Basin[J]. Earth Science, 46(4): 1416−1436 (in Chinese with English abstract).

    Google Scholar

    [74] Zhang Senqi, Wu Haidong, Zhang Yang, Song Jian, Zhang Linyou, Xu Weilin, Li Dunpeng, Li Shengtao, Jia Xiaofeng, Fu Lei, Li Xufeng, Feng Qingda. 2020a. Characteristics of regional and geothermal geology of the Reshuiquan HDR in Guide County, Qinghai Province[J]. Acta Geologica Sinica, 94(5): 1591−1605 (in Chinese with English abstract). doi: 10.1111/1755-6724.14324

    CrossRef Google Scholar

    [75] Zhang Senqi, Yan Weide, Li Dunpeng, Jia Xiaofeng, Zhang Shengsheng, Li Shengtao, Fu Lei, Wu Haidong, Zeng Zhaofa, Li Zhiwei, Mu Jianqiang, Cheng Zhengpu, Hu Lisha. 2018. Characteristics of geothermal geology of the Qiabuqia HDR in Gonghe Basin, Qinghai Province[J]. Geology in China, 45(6): 1087−1102 (in Chinese with English abstract).

    Google Scholar

    [76] Zhang Yongming. 2017. Indosinian Tectonic−Magmatism and Regional Tectonic Evolution in the Qinghainanshan Tectonic Belt[D]. Xi’an: Chang’an University (in Chinese with English abstract).

    Google Scholar

    [77] Zhao X Y, Zeng Z F, Huai N, Wang K. 2020. Geophysical responses and possible geothermal mechanism in the Gonghe Basin, China[J]. Geomechanics and Geophysics for Geo−Energy and Geo−Resources, 6(1): 1−12. doi: 10.1007/s40948-019-00123-2

    CrossRef Google Scholar

    [78] 陈希节, 贠晓瑞, 雷敏, 蔡志慧, 张盛生, 刘若涵, 李毅兵, 何碧竹. 2020. 青海共和盆地中三叠世花岗岩组合岩石成因: 地球化学、锆石U−Pb年代学及Hf同位素约束[J]. 岩石学报, 36(10): 3152−3170.

    Google Scholar

    [79] 何碧竹, 郑孟林, 贠晓瑞, 蔡志慧, 焦存礼, 陈希节, 郑勇, 马绪宣, 刘若涵, 陈辉明. 2023. 青海共和盆地结构构造与能源资源潜力[J]. 地学前缘, 30(1): 81−105.

    Google Scholar

    [80] 郎旭娟, 刘峰, 刘志明, 蔺文静, 邢林啸, 王贵玲. 2016. 青海省贵德盆地大地热流研究[J]. 地质科技情报, 35(3): 227−232.

    Google Scholar

    [81] 雷玉德, 袁有靖, 秦光雄, 巴瑞寿, 赵振, 李铜邦. 2023. 基于测井资料的共和盆地贵德扎仓地热田热储特征分析[J]. 地球学报, 44(1): 145−157. doi: 10.3975/cagsb.2022.100903

    CrossRef Google Scholar

    [82] 李林果, 李百祥. 2017. 从青海共和—贵德盆地与山地地温场特征探讨热源机制和地热系统[J]. 物探与化探, 41(1): 29−34.

    Google Scholar

    [83] 蔺文静, 甘浩男, 赵振, 张盛生. 2023. 青海共和盆地岩石圈热−流变结构及地热意义[J]. 地球学报, 44(1): 45−56. doi: 10.3975/cagsb.2022.092001

    CrossRef Google Scholar

    [84] 蔺文静, 王贵玲, 张盛生, 赵振, 邢林啸, 甘浩男. 2022. 青藏高原东北缘共和盆地干热岩热源机制[J]. 地热能, 3: 14−24.

    Google Scholar

    [85] 钱辉, 姜枚, 薛光琦, 宿和平, Wittlinger G, Vergne J. 2001. 天然地震接收函数揭示的青藏高原东部地壳结构[J]. 地震学报, 23(1): 103−108.

    Google Scholar

    [86] 邱楠生. 2002. 中国西北部盆地岩石热导率和生热率特征[J]. 地质科学, 37(2): 196−206. doi: 10.3321/j.issn:0563-5020.2002.02.007

    CrossRef Google Scholar

    [87] 沈显杰, 张文仁, 管烨, 金旭. 1989. 纵贯青藏高原的亚东−柴达木热流大断面[J]. 科学通报, 17: 1329−1329.

    Google Scholar

    [88] 孙延贵, 方洪宾, 张琨, 赵福岳, 刘世英. 2007. 共和盆地层状地貌系统与青藏高原隆升及黄河发育[J]. 中国地质, 34(6): 1141−1147. doi: 10.3969/j.issn.1000-3657.2007.06.021

    CrossRef Google Scholar

    [89] 孙延贵. 2004. 西秦岭—东昆仑造山带的衔接转换与共和坳拉谷[D]. 西安: 西北大学.

    Google Scholar

    [90] 唐显春, 王贵玲, 马岩, 张代磊, 刘忠, 赵旭, 程天君. 2020. 青海共和盆地地热资源热源机制与聚热模式[J]. 地质学报, 94(7): 2052−2065. doi: 10.3969/j.issn.0001-5717.2020.07.013

    CrossRef Google Scholar

    [91] 唐显春, 王贵玲, 张代磊, 马岩. 2023. 青藏高原东北缘活动构造与共和盆地高温热异常形成机制[J]. 地球学报, 44(1): 7−20.

    Google Scholar

    [92] 王昌桂, 吕友生. 2004. 共和盆地—一个值得研究的新盆地[J]. 新疆石油地质, 25(5): 471−473. doi: 10.3969/j.issn.1001-3873.2004.05.003

    CrossRef Google Scholar

    [93] 汪集旸, 黄少鹏. 1990. 中国大陆地区大地热流数据汇编(第二版)[J]. 地震地质, 12(4): 351−366.

    Google Scholar

    [94] 汪集暘, 庞忠和, 程远志, 黄永辉, 姜光政, 陆振能, 孔彦龙. 2023. 全球地热能的开发利用现状与展望[J]. 科技导报, 41(12): 5−11.

    Google Scholar

    [95] 吴环环, 吴学文, 李玥, 胡道功, 贾丽云, 颜建东, 王超群, 夏蒙蒙. 2019. 黄河共和−贵德段河流阶地对青藏高原东北缘晚期隆升的指示[J]. 地质学报, 93(12): 3239−3248. doi: 10.3969/j.issn.0001-5717.2019.12.015

    CrossRef Google Scholar

    [96] 徐明, 朱传庆, 田云涛, 饶松, 胡圣标. 2011. 四川盆地钻孔温度测量及现今地热特征[J]. 地球物理学报, 54(4): 1052−1060. doi: 10.3969/j.issn.0001-5733.2011.04.020

    CrossRef Google Scholar

    [97] 徐叔鹰, 徐德馥, 石生仁. 1984. 共和盆地地貌发育与环境演化探讨[J]. 兰州大学学报(自然科学版), 20(1): 146−157.

    Google Scholar

    [98] 严维德, 王焰新, 高学忠, 张树恒, 马月花, 尚小刚, 郭守鋆. 2013. 共和盆地地热能分布特征与聚集机制分析[J]. 西北地质, 46(4): 223−230. doi: 10.3969/j.issn.1009-6248.2013.04.022

    CrossRef Google Scholar

    [99] 贠晓瑞, 陈希节, 蔡志慧, 何碧竹, 张盛生, 雷敏, 向华. 2020. 青海共和盆地东北部干热岩岩浆侵位结晶条件及深部结构初探[J]. 岩石学报, 36(10): 3171−319.

    Google Scholar

    [100] 张超, 胡圣标, 宋荣彩, 左银辉, 姜光政, 雷玉德, 张盛生, 王朱亭. 2020. 共和盆地干热岩地热资源的成因机制: 来自岩石放射性生热率的约束[J]. 地球物理学报, 63(7): 2697−2709. doi: 10.6038/cjg2020N0381

    CrossRef Google Scholar

    [101] 张超, 张盛生, 李胜涛, 贾小丰, 姜光政, 高堋, 王一波, 胡圣标. 2018. 共和盆地恰卜恰地热区现今地热特征[J]. 地球物理学报, 61(11): 4545−4557. doi: 10.6038/cjg2018L0747

    CrossRef Google Scholar

    [102] 张会平, 刘少峰. 2009. 青藏高原东北缘循化一贵德盆地及邻区更新世时期沉积与后期侵蚀样式研究[J]. 第四纪研究, 29(4): 806−816. doi: 10.3969/j.issn.1001-7410.2009.04.17

    CrossRef Google Scholar

    [103] 张培震, 郑德文, 尹功明, 袁道阳, 张广良, 李传友, 王志才. 2006. 有关青藏高原东北缘晚新生代扩展与隆升的讨论[J]. 第四纪研究, 26(1): 5−13. doi: 10.3321/j.issn:1001-7410.2006.01.002

    CrossRef Google Scholar

    [104] 张森琦, 付雷, 张杨, 宋健, 王富春, 黄金辉, 贾小丰, 李胜涛, 张林友, 冯庆达. 2020b. 基于高精度航磁数据的共和盆地干热岩勘查目标靶区圈定[J]. 天然气工业, 40(9): 156−169.

    Google Scholar

    [105] 张森琦, 李旭峰, 宋健, 文冬光, 李志伟, 黎敦朋, 程正璞, 付雷, 张林友, 冯庆达. 2021. 共和盆地壳内部分熔融层存在的地球物理证据与干热岩资源区域性热源分析[J]. 地球科学, 46(4): 1416−1436.

    Google Scholar

    [106] 张森琦, 吴海东, 张杨, 宋健, 张林友, 许伟林, 黎敦朋, 李胜涛, 贾小丰, 付雷. 2020a. 青海省贵德县热水泉干热岩体地质—地热地质特征[J]. 地质学报, 94(5): 1591−1605.

    Google Scholar

    [107] 张森琦, 严维德, 黎敦朋, 贾小丰, 张盛生, 李胜涛, 付雷, 吴海东, 曾昭发, 李志伟, 穆建强, 程正璞, 胡丽莎. 2018. 青海省共和县恰卜恰干热岩体地热地质特征[J]. 中国地质, 45(6): 1087−1102. doi: 10.12029/gc20180601

    CrossRef Google Scholar

    [108] 张永明. 2017. 青海南山构造带印支期构造岩浆作用与区域构造演化[D]. 西安: 长安大学.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(54) PDF downloads(11) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint