2025 Vol. 52, No. 2
Article Contents

ZHU Guilin, LIU Donglin, ZHOU Yinzhu, BIAN Chao, CAO Yueting, FENG Qingda, ZHANG Linyou, XU Wenhao, NIU Zhaoxuan, DENG Zhihui. 2025. Tracer test study on artificial reservoirs in hot dry rock geothermal systems in the Gonghe Basin, Qinghai[J]. Geology in China, 52(2): 416-424. doi: 10.12029/gc20231121002
Citation: ZHU Guilin, LIU Donglin, ZHOU Yinzhu, BIAN Chao, CAO Yueting, FENG Qingda, ZHANG Linyou, XU Wenhao, NIU Zhaoxuan, DENG Zhihui. 2025. Tracer test study on artificial reservoirs in hot dry rock geothermal systems in the Gonghe Basin, Qinghai[J]. Geology in China, 52(2): 416-424. doi: 10.12029/gc20231121002

Tracer test study on artificial reservoirs in hot dry rock geothermal systems in the Gonghe Basin, Qinghai

    Fund Project: Supported by the project of China Geological Survey (No.DD20230018) and the Open Fund for Hebei Province Collaborative Innovation Center for Sustainable Utillization of Water Resources and Optimization of Industrial Structure (No.SXTCX202402).
More Information
  • Author Bio: ZHU Guilin, male, born in 1993, engineer, engaged in geothermal reservoir engineering; E-mail: zguilin@mail.cgs.gov.cn
  • Corresponding author: LIU Donglin, male, born in 1985, senior engineer, engaged in geothermal reservoir engineering; E-mail: ldonglin@mail.cgs.gov.cn
  • This paper is the result of geothermal geological survey engineering.

    Objective

    Hot dry rock is a clean and vast geothermal resource. China Geological Survey has been continuously implementing China's first hot dry rock geothermal power generation and grid connection project in Gonghe, Qinghai since 2019. Hot dry rock reservoirs are dense and require fracturing to form a permeable interconnected fracture network, creating a reservoir capable of accommodating a certain scale of heat exchange and water conduction. However, research on artificial reservoirs in high−temperature hard rock is relatively limited.

    Methods

    The successful construction of artificial reservoirs and effective inter−well communication are the core of successful hot dry rock development. Tracer tests are an effective means to study the above issues and characterize reservoir hydrogeological conditions. This study focuses on the hot dry rock test site in the Gonghe Basin of Qinghai, selecting sodium fluorescein and sodium bromide as tracers, and conducting tracer tests before and after large−scale fracturing.

    Results

    Before large−scale fracturing, tracer recovery rate and heat exchange volume were relatively low. After the transformation, reservoir fractures became more complex, reservoir connectivity improved, and the tracer recovery rate reached 14.14%. The heat exchange volume of fractures increased to 27 times, and the fractures became relatively homogeneous, effectively reducing the risk of heat breakthrough.

    Conclusions

    Tracer experiments can quantitatively evaluate the effectiveness of hot dry rock artificial reservoir fracturing. The research results have guiding significance for the conduct of hot dry rock tracer tests and the scientific development of high−temperature hard rock thermal storage.

  • 加载中
  • [1] Axelsson G, Flovenz O G, Hauksdottir S, Hjartarson A, Liu J. 2001. Analysis of tracer test data, and injection–induced cooling, in the Laugaland geothermal field, N–Iceland[J]. Geothermics, 30: 697−725. doi: 10.1016/S0375-6505(01)00026-8

    CrossRef Google Scholar

    [2] Ayling B F, Hogarth R A, Rose P E. 2016. Tracer testing at the Habanero EGS site, central Australia[J]. Geothermics, 63: 15−26. doi: 10.1016/j.geothermics.2015.03.008

    CrossRef Google Scholar

    [3] Cartwright I, Cendon D, Currell M, Meredith K. 2017. A review of radioactive isotopes and other residence time tracers in understanding groundwater recharge: Possibilities, challenges, and limitations[J]. Journal of Hydrology, 555: 797−811. doi: 10.1016/j.jhydrol.2017.10.053

    CrossRef Google Scholar

    [4] Chen Yazhou, Dong Weihong. 2022. Analysis of karst pipeline structure characteristics using tracer test time–concentration curves[J]. Hydrogeology and Engineering Geology, 49(1): 41−47 (in Chinese with English abstract).

    Google Scholar

    [5] Crooijmans R A, Willems C J L, Nick H M, Bruhn D. 2016. The influence of facies heterogeneity on the doublet performance in low–enthalpy geothermal sedimentary reservoirs[J]. Geothermics, 64: 209−219. doi: 10.1016/j.geothermics.2016.06.004

    CrossRef Google Scholar

    [6] Erol S, Bayer P, Akin T, Karydakis D. 2022. Advanced workflow for multi–well tracer test analysis in a geothermal reservoir[J]. Geothermics, 101: 102375. doi: 10.1016/j.geothermics.2022.102375

    CrossRef Google Scholar

    [7] Gu Ruiting, Shi Xiaoqing, Guo Qiongze, Song Meiyu, Xu Hongxia, Wu Jichun. 2023. Numerical analysis of DNAPL residuals in aquifers based on single–well injection–extraction tracer tests[J]. Hydrogeology and Engineering Geology, 50(4): 204−212 (in Chinese with English abstract).

    Google Scholar

    [8] Huang Kuan, Zhang Wanyi, Wang Fengxiang, Luan Zhuoran, Hu Yalu, Chen Ji, Fang Yuan, Song Zefeng, Wang Jian. 2024. Development status of underground space energy storage at home and abroad and geological survey suggestions[J]. Geology in China, 51(1): 105−117 (in Chinese with English abstract).

    Google Scholar

    [9] Li Dewei, Wang Yanxin. 2015. Major issues in the research and development of hot dry rock geothermal energy[J]. Earth Science (Journal of China University of Geosciences), 40(11): 1858−1869 (in Chinese with English abstract). doi: 10.3799/dqkx.2015.166

    CrossRef Google Scholar

    [10] Li Huayang, Deng Jingen, Feng Yongcun, Dong Baohong, Ding Jianqi, Cao Zhipeng. 2023. Research status and development trends of tracer technology in oilfields[J]. Applied Chemistry, 52(11): 3163−3168, 3174 (in Chinese with English abstract).

    Google Scholar

    [11] Liang Juan, Pang Jufeng, Li Qiang, Wang Lei, Li Zhen. 2008. Tracer test technology and its applications between wells[J]. Petroleum Instruments, 22(6): 41−43, 101 (in Chinese).

    Google Scholar

    [12] Liang X, Xu T, Chen J, Jiang Z. 2023. A deep–learning based model for fracture network characterization constrained by induced micro−seismicity and tracer test data in enhanced geothermal system[J]. Renewable Energy, 216: 119046. doi: 10.1016/j.renene.2023.119046

    CrossRef Google Scholar

    [13] Liao R K, Yang P L, Wu W Y, Luo D, Yang D Y. 2018. A DNA tracer system for hydrological environment investigations[J]. Environmental Science & Technology, 52: 1695−1703.

    Google Scholar

    [14] Lin Wenjing, Liu Zhiming, Ma Feng, Liu Chunlei, Wang Guiling. 2012. Estimation of hot dry rock resource potential in China's continental area[J]. Acta Geologica Sinica, 33(5): 807−811 (in Chinese with English abstract).

    Google Scholar

    [15] Liu Y G, Liu G H, Zhao Z H, Zhang H L. 2019. Theoretical model of geothermal tail water reinjection based on an equivalent flow channel model: A case study in Xianxian, North China Plain[J]. Energy Exploration & Exploitation, 37: 849−864.

    Google Scholar

    [16] Liu Y G, Long X T, Liu F. 2022. Tracer test and design optimization of doublet system of carbonate geothermal reservoirs[J]. Geothermics, 105: 102533. doi: 10.1016/j.geothermics.2022.102533

    CrossRef Google Scholar

    [17] Lorenzi V, Banzato F, Barberio M D, Milani P, Fantoni R. 2024. Tracking flowpaths in a complex karst system through tracer test and hydrogeochemical monitoring: Implications for groundwater protection (Gran Sasso, Italy)[J]. Heliyon, 10: e24663. doi: 10.1016/j.heliyon.2024.e24663

    CrossRef Google Scholar

    [18] Martín–Rodríguez J F, Mudarra M, De La Torre B, González A, Delgado J. 2023. Towards a better understanding of time–lags in karst aquifers by combining hydrological analysis tools and dye tracer tests. Application to a binary karst aquifer in southern Spain[J]. Journal of Hydrology, 621: 129643. doi: 10.1016/j.jhydrol.2023.129643

    CrossRef Google Scholar

    [19] Moreno L, Tsang C F. 1994. Flow channeling in strongly heterogeneous porous media: A numerical study[J]. Water Resources Research, 30: 1439−1450. doi: 10.1029/94WR00220

    CrossRef Google Scholar

    [20] Ren K, Pan X D, Peng C, Chen J Y, Li J, Zeng J. 2023a. Tracking contaminants in groundwater flowing across a river bottom within a complex karst system: Clues from hydrochemistry, stable isotopes, and tracer tests[J]. Journal of Environmental Management, 342: 118099. doi: 10.1016/j.jenvman.2023.118099

    CrossRef Google Scholar

    [21] Ren Y Q, Kong Y L, Pang Z H, Wang J Y. 2023b. A comprehensive review of tracer tests in enhanced geothermal systems[J]. Renewable and Sustainable Energy Reviews, 182: 113393. doi: 10.1016/j.rser.2023.113393

    CrossRef Google Scholar

    [22] Robertsontait D, Drakos D, Leecaster M, Holdaway L, Hall R. 2009. Tracer testing at the desert peak EGS project[J]. Transactions–Geothermal Resources Council, 33: 217−220.

    Google Scholar

    [23] Robinson B A, Tester J W, Brown L F. 1988. Reservoir sizing using inert and chemically reacting tracers[J]. SPE Formation Evaluation, 3: 227−234. doi: 10.2118/13147-PA

    CrossRef Google Scholar

    [24] Sanjuan B, Millot R, Dezayes R, Dumas P, Soulas J. 2010. Main characteristics of the deep geothermal brine (5 km) at Soultz–sous–Forêts (France) determined using geochemical and tracer test data[J]. Comptes Rendus Geoscience, 342: 546−559.

    Google Scholar

    [25] Stefansson V. 1997. Geothermal reinjection experience[J]. Geothermics, 26: 99−139. doi: 10.1016/S0375-6505(96)00035-1

    CrossRef Google Scholar

    [26] Wang G L, Liu G H, Zhao Z H, Liu Y G, Pu H. 2019. A robust numerical method for modeling multiple wells in city–scale geothermal field based on simplified one–dimensional well model[J]. Renewable Energy, 139: 873−894. doi: 10.1016/j.renene.2019.02.131

    CrossRef Google Scholar

    [27] Wang Jiyang, Hu Shengbiao, Pang Zhonghe, He Lijuan, Zhao Ping, Zhu Chuanqing, Rao Song, Tang Xiaoyin, Kong Yanlong, Luo Lu, Li Weiwei. 2012. Assessment of geothermal resource potential of hot dry rock in mainland China[J]. Science and Technology Review, 30(32): 25−31 (in Chinese with English abstract).

    Google Scholar

    [28] Wang Weihao, Liu Jinhui, Yang Yihan, Wang Ruyi, Liang Daye, Yan Xuerui, He Ting. 2024. Tracer tests on the permeability evolution of ore–bearing layers during uranium leaching in–situ[J]. Nonferrous Metals (Smelting Part), (2): 72−82 (in Chinese with English abstract).

    Google Scholar

    [29] Xu Yong. 2018. Simulation and Prospects of Geothermal Tailwater Reinjection in the Pore–type Geothermal Reservoir in the Sanqiao Area of Xi'an[D]. Xi’an: Chang’an University, 1–116 (in Chinese with English abstract).

    Google Scholar

    [30] Xue Yuze, Zhang Yugui, Ma Yinjuan, Xue Chao. 2023. Tracer test on well reinjection in karst thermal reservoirs on the southeastern edge of the Ordos Basin[J]. Oil and Gas Reservoir Evaluation and Development, 13(6): 757−764, 780 (in Chinese with English abstract).

    Google Scholar

    [31] Yanagisawa N. 2009. First tracer test at Cooper–basin, Australia HDR reservoir[J]. Geothermal Resources Council Transactions, 33: 281−284.

    Google Scholar

    [32] Yang H R, Guo K L, Zhu G W, Gao X C. 2022. Application of trace substance tracer test method in low permeability reservoir–CQ oilfield[J]. Energy Reports, 8: 11309–11319.

    Google Scholar

    [33] Yin Xiaoxiao, Shen Jian, Zhao Yanting, Liu Donglin, Zhao Sumin, Zong Zhenhai. 2021. Tracer tests on group wells in carbonate thermal reservoirs under centralized production and reinjection conditions[J]. Acta Geologica Sinica, 95(6): 1984−1994 (in Chinese with English abstract). doi: 10.1111/1755-6724.14721

    CrossRef Google Scholar

    [34] Yun Zhihan. 2014. Study on the Mechanism of Geothermal Tailwater Reinjection Plugging and Tracer Technology in Deep Pore–type Thermal Reservoirs[D]. Xi’an: Chang’an University, 1–85 (in Chinese with English abstract).

    Google Scholar

    [35] Zhang E Y, Wen D G, Wang G L, Yan W D, Wang W S, Ye C M, Li X F, Wang H, Tang X C, Weng W, Li K, Zhang C Y, Liang M X, Luo H B, Hu H Y, Zhang W, Zhang S Q, Jin X P, Wu H D, Zhang L Y, Yang L. 2022. The first power generation test of hot dry rock resources exploration and production demonstration project in the Gonghe Basin, Qinghai Province, China[J]. China Geology, 5(3): 372−382. doi: 10.31035/cg2022038

    CrossRef Google Scholar

    [36] Zhao Z H, Chen S C, Zhang J T, Chen J Y, Wu Y. 2024. In–situ tracer test in fractured rocks for nuclear waste repository[J]. Earth–Science Reviews, 250: 104683.

    Google Scholar

    [37] 陈亚洲, 董维红. 2022. 利用示踪试验时间–浓度曲线分析岩溶管道结构特征[J]. 水文地质工程地质, 49(1): 41−47.

    Google Scholar

    [38] 顾瑞婷, 施小清, 郭琼泽, 宋美钰, 徐红霞, 吴吉春. 2023. 单井注抽示踪试验推估含水层中DNAPL残留量的数值分析[J]. 水文地质工程地质, 50(4): 204−212.

    Google Scholar

    [39] 黄宽, 张万益, 王丰翔, 栾卓然, 胡雅璐, 陈骥, 方圆, 宋泽峰, 王健. 2024. 地下空间储能国内外发展现状及调查建议[J]. 中国地质, 51(1): 105−117.

    Google Scholar

    [40] 李德威, 王焰新. 2015. 干热岩地热能研究与开发的若干重大问题[J]. 地球科学(中国地质大学学报), 40(11): 1858−1869.

    Google Scholar

    [41] 李华洋, 邓金根, 冯永存, 董保宏, 丁建琦, 曹志鹏. 2023. 油田示踪剂技术的研究现状及发展趋势[J]. 应用化工, 52(11): 3163−3168, 3174. doi: 10.3969/j.issn.1671-3206.2023.11.038

    CrossRef Google Scholar

    [42] 梁娟, 庞巨丰, 李强, 王磊, 李震. 2008. 井间示踪测试技术及其应用[J]. 石油仪器, 22(6): 41−43, 101.

    Google Scholar

    [43] 蔺文静, 刘志明, 马峰, 刘春雷, 王贵玲. 2012. 我国陆区干热岩资源潜力估算[J]. 地球学报, 33(5): 807−811. doi: 10.3975/cagsb.2012.05.12

    CrossRef Google Scholar

    [44] 汪集旸, 胡圣标, 庞忠和, 何丽娟, 赵平, 朱传庆, 李卫卫. 2012. 中国大陆干热岩地热资源潜力评估J]. 科技导报, 30(32): 25–31.

    Google Scholar

    [45] 王伟豪, 刘金辉, 阳奕汉, 王如意, 梁大业, 闫学锐, 何挺. 2024. 地浸采铀过程中含矿层渗透性演化的示踪试验[J]. 有色金属(冶炼部分), (2): 72−82.

    Google Scholar

    [46] 许勇. 2018. 西安三桥地区孔隙型地热尾水回灌模拟及前景展望—以惠森公司地热回灌井为例[D]. 西安: 长安大学, 1–116.

    Google Scholar

    [47] 薛宇泽, 张玉贵, 麻银娟, 薛超. 2023. 鄂尔多斯盆地东南缘岩溶热储对井回灌示踪试验[J]. 油气藏评价与开发, 13(6): 757−764, 780.

    Google Scholar

    [48] 殷肖肖, 沈健, 赵艳婷, 刘东林, 赵苏民, 宗振海. 2021. 集中采灌条件下碳酸盐岩热储群井示踪试验[J]. 地质学报, 95(6): 1984−1994. doi: 10.3969/j.issn.0001-5717.2021.06.022

    CrossRef Google Scholar

    [49] 云智汉. 2014. 深层孔隙型热储地热尾水回灌堵塞机理及示踪技术研究—以咸阳回灌二号井为例[D]. 西安: 长安大学, 1–85.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(42) PDF downloads(12) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint