2025 Vol. 52, No. 1
Article Contents

WANG Hao, XU Junhui, LU Jiamin, ZHANG Gao, LUO Miao, ZHAO Yunsong, WANG Weidong, XU Zijun, DAI Qiuxia, CHEN Liuping, WANG Tongtao. 2025. Current situation and application prospect of large−scale geological hydrogen storage engineering[J]. Geology in China, 52(1): 180-204. doi: 10.12029/gc20240124002
Citation: WANG Hao, XU Junhui, LU Jiamin, ZHANG Gao, LUO Miao, ZHAO Yunsong, WANG Weidong, XU Zijun, DAI Qiuxia, CHEN Liuping, WANG Tongtao. 2025. Current situation and application prospect of large−scale geological hydrogen storage engineering[J]. Geology in China, 52(1): 180-204. doi: 10.12029/gc20240124002

Current situation and application prospect of large−scale geological hydrogen storage engineering

    Fund Project: Supported by National Key Research and Development Program of China (No.2023YFB4005500), Hubei Province Outstanding Youth Fund (No.2021CFA095), Key Science and Technology Development Project of China National Salt Industry Co., LTD. (No.ZK−2205, No.ZK−2301).
More Information
  • Author Bio: WANG Hao, male, born in 1996, master, engaged in salt cavern energy storage technology research; E-mail: haowang@chinasalt-jt.com
  • Corresponding authors: XU Junhui, male, born in 1988, senior engineer, engaged in research on salt cavern energy storage technology; E-mail: jhxu@chinasalt-jt.com;  CHEN Liuping, male, born in 1967, professor level senior engineer, engaged in salt production and salt cavern energy storage technology research; E-mail: jsb@chinasalt-jt.com
  • This paper is the result of energy exploration engineering.

    Objective

    Geological hydrogen storage has the outstanding advantages of large scale, long period and cross−season energy storage, which is an important development direction of large−scale hydrogen energy storage in the future.

    Methods

    This review systematically collects and collates the research results in the field of geological hydrogen storage, and discusses the current situation of geological hydrogen storage engineering based on literature investigation. At the same time, the review makes full reference to the experience of salt cavern gas storage engineering construction, analyzes the challenges in the construction of salt cavern hydrogen storage in China, and puts forward solutions. Based on the salt basin resource condition and the comprehensive utilization experience of salt cavern in Jintan District of Jiangsu Province, the possibility of constructing the technical route of salt cavern hydrogen storage is explored.

    Results

    (1) Geological hydrogen storage facilities are classified according to geological structures into salt caverns, depleted oil and gas reservoirs, aquifers, and abandoned mines. Among these, salt cavern storage facilities have the highest number of operational and research projects. They achieve hydrogen storage with purity exceeding 95%, making them the primary direction for large−scale geological hydrogen storage development. (2) The construction cycle of salt cavern hydrogen storage can be divided into eight stages, including site selection, drilling, solution mining, injection and production completion, gas first fill, snubbing, operation and monitoring, which can refer to the construction experience of salt cavern natural gas storage, but there are still problems in policy, materials and construction technology. (3) In Jintan area of Jiangsu Province, the salt cavern hydrogen storage technology route can be combined with the salt cavern compressed air energy storage and salt cavern natural gas storage technology to form a set of comprehensive technical solutions, including renewable energy power generation technology, high−pressure air compression technology, electrolytic water hydrogen production technology and natural gas pipeline hydrogen mixing technology.

    Conclusions

    In recent years, the site selection, investigation, and experimental verification of geological hydrogen storage facilities abroad have been accelerating, with several geological hydrogen storage projects in the pilot stage. Considering factors such as safety, economy, and technical difficulty, salt cavern storage is considered the primary direction for large−scale geological hydrogen storage in our country. Establishing a salt cavern hydrogen storage verification platform and advancing demonstration project construction will help to form a salt cavern hydrogen storage technology system with independent intellectual property rights.

  • 加载中
  • [1] Amir M, Deshmukh R G, Khalid H M, Said Z, Raza A, Muyeen S M, Nizami A S, Elavarasan R M, Saidur R, Sopian K. 2023. Energy storage technologies: An integrated survey of developments, global economical/envirnmental effects, optimal scheduling model, and sustainable adaption policies[J]. Journal of Energy Storage, 72.

    Google Scholar

    [2] Andersson J, Gronkvist S. 2019. Large−scale storage of hydrogen[J]. International Journal of Hydrogen Energy, 44(23): 11901−11919. doi: 10.1016/j.ijhydene.2019.03.063

    CrossRef Google Scholar

    [3] Bely N I, Smirnov V I, Parfenov V I, Marchand R L, Laguerie P D, Yoy T. 1997. Experience of cooperation between rao gazprom (russia) and geostock (france) in the project for underground storage of natural gas in salt caverns at volgograd [C]// 20th World Gas Conference.

    Google Scholar

    [4] Berest P, Brouard B. 2006. Safety of salt caverns used for underground storage blow out, Mechanical Instability, Seepage, Cavern Abandonment[J]. Oil & Gas Science and Technology, 58(3): 361−384.

    Google Scholar

    [5] Berest P, Brouard B, Durup J G. 2006. Tightness tests in salt−cavern wells[J]. Oil & Gas Science and Technology, 56(5): 451−469.

    Google Scholar

    [6] Berest P, Brouard B, Hevin G, Reveillere A. 2021. Tightness of salt caverns used for hydrogen storage [C]//SMRI Collection(ed./eds.). SMRI Spring 2021 Virtual Technical Conference. USA: Solution Mining Research Instituteusa, 2021: 1−20.

    Google Scholar

    [7] Buzogany R, Bernhardt H. 2023. Hydrogen storage in salt caverns current status and potential future research topics [C]//Fifth EAGE Global Energy Transition Conference & Exhibition, European Association of Geoscientists & Engineers, (1): 1−4.

    Google Scholar

    [8] Caglayan D G, Weber N, Heinrichs H U, Linben J, Robinius M, Kukla P A, Stolten D. 2020. Technical potential of salt caverns for hydrogen storage in Europe[J]. International Journal of Hydrogen Energy, 45(11): 6793−6805. doi: 10.1016/j.ijhydene.2019.12.161

    CrossRef Google Scholar

    [9] Chemical Weekly Group. 2017. Air Liquide commissions world's largest hydrogen storage facility in US[J]. Chemical Weekly, 62(24): 184−184.

    Google Scholar

    [10] Dash S K, Chakraborty S, Elangovan D. 2023. A brief review of hydrogen production methods and their challenges[J]. Energies, 16(3): 1141. doi: 10.3390/en16031141

    CrossRef Google Scholar

    [11] Davenport J, Wayth N. 2023. Statistical Review of World Energy [R]. Britain: Energy Institute.

    Google Scholar

    [12] Dawood F, Anda M, Shafiullah G M. 2020. Hydrogen production for energy: An overview[J]. International Journal of Hydrogen Energy, 45(7): 3847−3869. doi: 10.1016/j.ijhydene.2019.12.059

    CrossRef Google Scholar

    [13] Deveci M. 2018. Site selection for hydrogen underground storage using interval type−2 hesitant fuzzy sets[J]. International Journal of Hydrogen Energy, 43(19): 9353−9368. doi: 10.1016/j.ijhydene.2018.03.127

    CrossRef Google Scholar

    [14] Dopffel N, Jansen S, Gerritse J. 2021. Microbial side effects of underground hydrogen storage−Knowledge gaps, risks and opportunities for successful implementation[J]. International Journal of Hydrogen Energy, 46(12): 8594−8606. doi: 10.1016/j.ijhydene.2020.12.058

    CrossRef Google Scholar

    [15] Ding Guosheng, Xie Ping. 2006. Current situation and prospect of Chinese underground gas storage[J]. Natural Gas Industry, 26(6): 111−113(in Chinese with English abstract).

    Google Scholar

    [16] Ding Guosheng, Zhang Yuwen. 2010. Salt Cavern Underground Gas Storage[M]. Beijing: Petroleum Industry Press, 62–63 (in Chinese).

    Google Scholar

    [17] Duan Zhixiang, Shi Kun, Hu Hangjian, Zhang Yansheng, Feng Yiyong. 2003. Review on the development of inspection technology for underground gas (hydrogen) storage wells in China[J]. China Special Equipment Safety, 39(6): 1−7 (in Chinese with English abstract).

    Google Scholar

    [18] Dutta A, Gupta D S, Gupta A, Sarkar J, Roy S, Mukherjee A, Sar P. 2018. Exploration of deep terrestrial subsurface microbiome in Late Cretaceous Deccan traps and underlying Archean basement, India[J]. Scientific Reports, 8(1): 17459. doi: 10.1038/s41598-018-35940-0

    CrossRef Google Scholar

    [19] Fang D, Zhao C, Yu Q. 2018. Government regulation of renewable energy generation and transmission in China’ s electricity market[J]. Renewable and Sustainable Energy Reviews, 93: 775−793. doi: 10.1016/j.rser.2018.05.039

    CrossRef Google Scholar

    [20] Gajda D, Lutynski M. 2021. Hydrogen permeability of epoxy composites as liners in lined rock caverns—Experimental study[J]. Applied Sciences, 11(9): 3885. doi: 10.3390/app11093885

    CrossRef Google Scholar

    [21] Gu Chunsheng, Yang Lei, Min Wang, Zhang Qiqi, Lu Yi, Su Dong. 2023. Monitoring and analyzing the development trend of land subsidence in Changzhou City, Jiangsu Province[J]. The Chinese Journal of Geological Hazard and Control, 34(2): 82−91 (in Chinese with English abstract).

    Google Scholar

    [22] Guan Guoxing, Li Liurong. 2003. Jintan City cooperated with "West–East Gas Transmission" to establish gas storage by using underground salt caverns[J]. Conservation and Utilization of Mineral Resources, 2: 24 (in Chinese).

    Google Scholar

    [23] Guney T. 2019. Renewable energy, non−renewable energy and sustainable development[J]. International Journal of Sustainable Development & World Ecology, 26(5): 389−397.

    Google Scholar

    [24] Guo Chaobin, Li Cai, Yang Lichao, Liu Kai, Ruan Yuejun, He Yang. 2021. Research review and engineering case analysis of geological compressed air energy storage[J]. Geological Survey of China, 8(4): 109−119 (in Chinese with English abstract).

    Google Scholar

    [25] Guo Chaobin, Wang Zhihui, Liu Kai, Li Cai. 2019. The application and research progress of special underground space[J]. Geology in China, 46(3): 482−492. (in Chinese with English abstract

    Google Scholar

    [26] Guo Juan, Cui Rongguo, Zhou Qizhong, Hu Rongbo. 2024. Outlook and overview of mineral resources situation of China in 2023[J]. China Mining Magazine, 33(1): 12−19. (in Chinese with English abstract

    Google Scholar

    [27] Harlan T. 2022. Low−carbon Frontier: Renewable energy and the new resource boom in western China[J]. The China Quarterly, 255: 591−610.

    Google Scholar

    [28] Hayden L E, Stalheim D. 2009. ASME b31.12 hydrogen piping and pipeline code design rules and their Interaction with pipeline materials concerns, issues and research [C]//ASME Pressure Vessels and Piping Conference, 43642: 355−361.

    Google Scholar

    [29] Hematpur H, Abdollahi R, Rostami S, Haghighi M, Blunt M J. 2023. Review of underground hydrogen storage: Concepts and challenges[J]. Advances in Geo−Energy Research, 7(2): 111−131. doi: 10.46690/ager.2023.02.05

    CrossRef Google Scholar

    [30] Hong L, Moller B. 2012. Feasibility study of China's offshore wind target by 2020[J]. Energy, 48(1): 268−277. doi: 10.1016/j.energy.2012.03.016

    CrossRef Google Scholar

    [31] Horvath P R B. 2022. Hydrogen storage in the netherlands−latest findings from demonstration project hyStock for underground storage of hydrogen in salt caverns [C]// SMRI Fall 2022 Technical Conference. Chester; Solution Mining Research Institute.

    Google Scholar

    [32] Huang Kuan, Zhang Wanyi, Wang Fengxiang, Luan Zhuoran, Hu Yalu, Chen Ji, Fang Yuan, Song Zefeng, Wang Jian. 2024. Development status of underground space energy storage at home and abroad and geological survey suggestions[J]. Geology in China, 51(1): 105−117. (in Chinese with English abstract

    Google Scholar

    [33] Ishaq H, Dincer I, Crawford C. 2022. A review on hydrogen production and utilization: Challenges and opportunities[J]. International Journal of Hydrogen Energy, 47(62): 26238−26264. doi: 10.1016/j.ijhydene.2021.11.149

    CrossRef Google Scholar

    [34] Jia Shanpo, Zheng Dewen, Jin Fengming, Zhang Hui, Meng Qingchun, Lin Jianpin, Wei Qiang. 2016. Evaluation system of selected target sites for aquifer underground gas storage[J]. Journal of Central South University (Science and Technology), 47(3): 857−867 (in Chinese with English abstract).

    Google Scholar

    [35] Jiang D Y, Yi L, Chen J, Ren S, Li Y P. 2016. Comparison of cavern formation in massive salt blocks with single−well and two−well systems[J]. Journal of the Chinese Institute of Engineers, 39(8): 954−961. doi: 10.1080/02533839.2016.1220266

    CrossRef Google Scholar

    [36] Jiangsu Electric Power Industry Association. 2024. Electric power production and operation data of Jiangsu Province from January to November 2024[EB/OL]. http://www.jsepa.com/report.thtml?cid=10932 (in Chinese).

    Google Scholar

    [37] Jing Wenjun, Yang Chunhe, Li Yingping, Yang Changlai. 2012. Research on site selection evaluation method of salt cavern gas storage with analytic hierarchy process[J]. Rock & Soil Mechanics, 33(9): 2683−2690 (in Chinese with English abstract).

    Google Scholar

    [38] Kanezaki T, Narazaki C, Mine Y, Matsuoka S, Murakami Y. 2008. Effects of hydrogen on fatigue crack growth behavior of austenitic stainless steels[J]. International Journal of Hydrogen Energy, 33(10): 2604−2619. doi: 10.1016/j.ijhydene.2008.02.067

    CrossRef Google Scholar

    [39] Kutchko B G, Strazisar B R, Hawthorne S B, Lopano C, Miller D, Hakala J A, Guthrie G. 2011. H2S−CO2 reaction with hydrated Class H well cement: Acid−gas injection and CO2 Co−sequestration[J]. International Journal of Greenhouse Gas Control, 5(4): 880−888. doi: 10.1016/j.ijggc.2011.02.008

    CrossRef Google Scholar

    [40] Li Guang, Liu Jianjun, Liu Qiang, Ji Youjun. 2016. Review on geological storage of carbon dioxide[J]. Journal of Hunan Ecological Science, 3(4): 41−48 (in Chinese with English abstract).

    Google Scholar

    [41] Li Long, Li Jianjun. 2023. Safety Monitoring Technology of Salt Cavern Gas Storage[M]. Beijing: Petroleum Industry Press, 4–5 (in Chinese).

    Google Scholar

    [42] Li X, Li J L. 2008. Application of no−killing operations in Jintan cavern underground gas storage[J]. Oil Drilling & Production Technology, 30(6): 100−103.

    Google Scholar

    [43] Liebscher A, Wackerl J, Streibel M. 2016. Geologic Storage of Hydrogen-Fundamentals, Processing, and Projects [M]. Weinheim: Wiley-VCH Verlag Gmbh & Co.KGaA, 629−658.

    Google Scholar

    [44] Liu W, Li Q, Yang C H, Shi X L, Wan J F, Jurado M J, Li Y P, Jiang D Y, Chen J, Qiao W B, Zhang X, Fan J Y, Peng T J, He Y X. 2023. The role of underground salt caverns for large−scale energy storage: A review and prospects[J]. Energy Storage Materials, 63: 103045. doi: 10.1016/j.ensm.2023.103045

    CrossRef Google Scholar

    [45] Liu W, Yang S, Mai Y, Wang J M, Jiang S K. 2018. Reflection on domestic and foreign research status of subsurface safety valves and their domestication[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 40(3): 164−174.

    Google Scholar

    [46] Liu Xiaochi, Mei Shengwei, Dung Ruochen, Zhong Shengyuan, Zhang Xianfeng, Xie Ningning, Chang Yong, Zhang Tong. 2023. Current situation, development trend and application prospect of compressed air energy storage engineering projects[J]. Electric Power Automation Equipment, 43(10): 38−47 (in Chinese with English abstract).

    Google Scholar

    [47] Lord A S, Kobos P H, Borns D J. 2014. Geologic storage of hydrogen: Scaling up to meet city transportation demands[J]. International Journal of Hydrogen Energy, 39(28): 15570−15582. doi: 10.1016/j.ijhydene.2014.07.121

    CrossRef Google Scholar

    [48] Loto C A. 2017. Microbiological corrosion: Mechanism, control and impact−a review[J]. The International Journal of Advanced Manufacturing Technology, 92(9/12): 4241−4252. doi: 10.1007/s00170-017-0494-8

    CrossRef Google Scholar

    [49] Lu Jiamin, Xu Junhui, Wang Weidong, Wang Hao, Xu Zijun, Chen Liuping. 2022. Development of large–scale underground hydrogen storage technology[J]. Energy Storage Science and Technology, 11(11): 3699−3707 (in Chinese with English abstract).

    Google Scholar

    [50] Lu Yanan. 2022. Promote the healthy, orderly and sustainable development of the hydrogen energy industry[N]. People's Daily, 2022–03–24(11) (in Chinese).

    Google Scholar

    [51] Luo Miao. 2021. Study on Material Selection of Casing Strings for Injection and Production Wells in Hydrogen Underground Energy Storage[D]. Beijing: China University of Petroleum (Beijing), 1–56 (in Chinese with English abstract).

    Google Scholar

    [52] Ma Bing, Jia Lingxiao, Yu Yang, Wang Huan, Chen Jing, Zhong Shuai, Zhu Jichang. 2021. Geoscience and carbon neutralization: Current status and development direction[J]. Geology in China, 48(2): 347−358 (in Chinese with English abstract).

    Google Scholar

    [53] Marchi C S, Somerday B P. 2014. Technical reference for hydrogen compatibility of materials [R]. United States: Sandia National Laboratories.

    Google Scholar

    [54] Miocic J, Heinemann N, Edlmann K, Scafidi J, Molaei F, Alcalde J. 2023. Underground hydrogen storage: A review [J]. Geological Society, London, Special Publications, 528(1): 73−86.

    Google Scholar

    [55] Moody N R, Robinson S L, Garrison J W M. 1990. Hydrogen effects on the properties and fracture modes of iron−based alloys[J]. Res mechanica, 30(2): 143−206.

    Google Scholar

    [56] Muhammed N S, Haq B, Shehri D A, Ahmed A A, Rahman M M, Zaman E. 2022. A review on underground hydrogen storage: Insight into geological sites, influencing factors and future outlook[J]. Energy Reports, 8: 461−499.

    Google Scholar

    [57] Murakami Y, Matsuoka S. 2010. Effect of hydrogen on fatigue crack growth of metals[J]. Engineering Fracture Mechanics, 77(11): 1926−1940. doi: 10.1016/j.engfracmech.2010.04.012

    CrossRef Google Scholar

    [58] Navaid H B, Emadi H, Watson M. 2023. A comprehensive literature review on the challenges associated with underground hydrogen storage[J]. International Journal of Hydrogen Energy, 48(28): 10603−10635. doi: 10.1016/j.ijhydene.2022.11.225

    CrossRef Google Scholar

    [59] Olabi A G, Bahri A S, Abdelghafar A A, Baroutaji A, Sayed E T, Alami A H, Rezk H, Abdelkareem M A. 2021. Large−vscale hydrogen production and storage technologies: Current status and future directions[J]. International Journal of Hydrogen Energy, 46(45): 23498−23528. doi: 10.1016/j.ijhydene.2020.10.110

    CrossRef Google Scholar

    [60] Oldenburg C M, Pan L. 2013. Porous Media Compressed−Air Energy Storage (PM−CAES): Theory and simulation of the coupled wellbore−reservoir system[J]. Transport in Porous Media, 97(2): 201−221. doi: 10.1007/s11242-012-0118-6

    CrossRef Google Scholar

    [61] Osman A I, Mehta N, Elgarahy A M, Hefny M, Hinai A A, Muhtaseb A A, Rooney D W. 2021. Hydrogen production, storage, utilization and environmental impacts: A review[J]. Environmental Chemistry Letters, 20(1): 153−188.

    Google Scholar

    [62] Patel H, Salehi S, Ahmed R, Teodoriu C. 2019. Review of elastomer seal assemblies in oil & gas wells: Performance evaluation, failure mechanisms, and gaps in industry standards[J]. Journal of Petroleum Science and Engineering, 179: 1046−1062. doi: 10.1016/j.petrol.2019.05.019

    CrossRef Google Scholar

    [63] Pei M, Petajaniemi M, Regnell A, Wijk O. 2020. Toward a fossil free future with Hybrit: Development of iron and steelmaking technology in Sweden and Finland[J]. Metals, 10(7): 972. doi: 10.3390/met10070972

    CrossRef Google Scholar

    [64] Rahman M, Oni A, Kumar A. 2020. Assessment of energy storage technologies: A review[J]. Energy Conversion and Management, 223: 113295. doi: 10.1016/j.enconman.2020.113295

    CrossRef Google Scholar

    [65] Reitenbach V, Ganzer L, Hagemann B. 2015. Influence of added hydrogen on underground gas storage: A review of key issues[J]. Environmental Earth Sciences, 73(11): 6927−6937. doi: 10.1007/s12665-015-4176-2

    CrossRef Google Scholar

    [66] Salehi S, Ezeakacha C P, Kwatia G. 2019. Performance verification of elastomer materials in corrosive gas and liquid conditions[J]. Polymer Testing, 75: 48−63. doi: 10.1016/j.polymertesting.2019.01.015

    CrossRef Google Scholar

    [67] Sambo C, Dudun A, Samuel S A. 2022. A review on worldwide underground hydrogen storage operating and potential fields[J]. International Journal of Hydrogen Energy, 47(54): 22840−22880. doi: 10.1016/j.ijhydene.2022.05.126

    CrossRef Google Scholar

    [68] Shahvali A, Azin R, Zamani A. 2014. Cement design for underground gas storage well completion[J]. Journal of Natural Gas Science and Engineering, 18: 149−154. doi: 10.1016/j.jngse.2014.02.007

    CrossRef Google Scholar

    [69] Shi Jinling. 2020. Evaluation of site selection conditions for salt cavern underground salt cavity gas storage[J]. China Petroleum and Chemical Standard and Quality, 40(18): 5−6 (in Chinese).

    Google Scholar

    [70] Shi Xilin, Wei Xinxing, Yang Chunhe Ma Hongling, Li Yinping. 2023. Problems and countermeasures for construction of China’s salt cavern type strategic oil storage[J]. Bulletin of Chinese Academy of Sciences, 38(1): 99−111 (in Chinese with English abstract).

    Google Scholar

    [71] Song Gangxiang, Lu Yan, Ding Fang, Ju Hao, Xu Bo, Zhang Xinan. 2020. Study on dynamic diagnosis and equilibrium production technology for the gas condensate reservoir with bottom oil[J]. Natural Gas Geoscience, 31(6): 890−894 (in Chinese with English abstract).

    Google Scholar

    [72] Strazisar B, Kutchko B, Huerta N. 2009. Chemical reactions of wellbore cement under CO2 storage conditions: Effects of cement additives[J]. Energy Procedia, 1(1): 3603−3607. doi: 10.1016/j.egypro.2009.02.155

    CrossRef Google Scholar

    [73] Sun X, Yang P, Zhang Z. 2017. A study of earthquakes induced by water injection in the Changning salt mine area, SW China[J]. Journal of Asian Earth Sciences, 136: 102−109. doi: 10.1016/j.jseaes.2017.01.030

    CrossRef Google Scholar

    [74] Szummer A, Jezierska E, Lublinska K. 1999. Hydrogen surface effects in ferritic stainless steels[J]. Journal of Alloys and Compounds, 293(51): 356−360.

    Google Scholar

    [75] Tarkowski R. 2019. Underground hydrogen storage: Characteristics and prospects[J]. Renewable and Sustainable Energy Reviews, 105: 86−94. doi: 10.1016/j.rser.2019.01.051

    CrossRef Google Scholar

    [76] Ugarte E R, Salehi S. 2022. A review on well integrity issues for underground hydrogen storage[J]. Journal of Energy Resources Technology, 144(4): 1−5.

    Google Scholar

    [77] Ursua A, Gandia L M, Sanchis P. 2012. Hydrogen production from water electrolysis: Current status and future trends[J]. Proceedings of the IEEE, 100(2): 410−426. doi: 10.1109/JPROC.2011.2156750

    CrossRef Google Scholar

    [78] Von T H, Reitze A, Crotogino F. 2022. New procedure for tightness tests (MIT) of salt cavern storage wells: Continuous high accuracy determination of relevant parameters, without the need to use radioactive tools [J]. Geological Society, London, Special Publications, 313(1): 129−137.

    Google Scholar

    [79] Wan J, Peng T J, Shen R. 2019. Numerical model and program development of TWH salt cavern construction for UGS[J]. Journal of Petroleum Science and Engineering, 179: 930−940. doi: 10.1016/j.petrol.2019.04.028

    CrossRef Google Scholar

    [80] Wang Pengfei, Jiang Chongxin, Ma Bing. 2021. Hydrogen energy development strategy and its important significance at home and abroad[J]. Geological Survey of China, 8(4): 33−39 (in Chinese with English abstract).

    Google Scholar

    [81] Wang T T, Ma H L, Yang C H, Shi X L, Daemen J J K. 2015. Gas seepage around bedded salt cavern gas storage[J]. Journal of Natural Gas Science and Engineering, 26: 61−71. doi: 10.1016/j.jngse.2015.05.031

    CrossRef Google Scholar

    [82] Wang Y, Guo C H, Zhuang S R, Chen X J, Jia L Q, Chen Z Y. 2021. Major contribution to carbon neutrality by China’ s geosciences and geological technologies[J]. China Geology, 4(2): 329−352.

    Google Scholar

    [83] Wanyan Q Q, Ding G, Zhao Y, Li K, Deng J G, Zheng Y L. 2018. Key technologies for salt−cavern underground gas storage construction and evaluation and their application[J]. Natural Gas Industry B, 5(6): 623−630. doi: 10.1016/j.ngib.2018.11.011

    CrossRef Google Scholar

    [84] Yang Y, Ma C, Pang X L. 2021. Optimal power reallocation of large−scale grid−connected photovoltaic power station integrated with hydrogen production[J]. Journal of Cleaner Production, 298(10): 126830.

    Google Scholar

    [85] Zhang Z X, Jiang D, Liu W, Chen J, Li E B. 2019. Study on the mechanism of roof collapse and leakage of horizontal cavern in thinly bedded salt rocks[J]. Environmental Earth Sciences, 78(10): 292. doi: 10.1007/s12665-019-8292-2

    CrossRef Google Scholar

    [86] Zhang Z X, Liu W, Guo Q, Duan X Y. 2022. Tightness evaluation and countermeasures for hydrogen storage salt cavern contains various lithological interlayers[J]. Journal of Energy Storage, 50: 104454. doi: 10.1016/j.est.2022.104454

    CrossRef Google Scholar

    [87] Zhao Yuchao, Luo Yu, Li Longxin, Zhou Yuan, Li Limin, Wang Xia. 2022. In–situ stress simulation and integrity evaluation of underground gas storage: A case study of the Xiangguosi underground gas storage, Sichuan, SW China[J]. Journal of Geomechanics, 28(4): 523−536 (in Chinese with English abstract).

    Google Scholar

    [88] Zheng Yali, Wanyan Qiqi, Qiu Xiaosong, Kou Yanxia, Ran Lina, Lai Xin, Wu Shuang. 2019. New technologies for site selection and evaluation of salt–cavern underground gas storages[J]. Natrual Gas Industry, 39(6): 123−130 (in Chinese with English abstract).

    Google Scholar

    [89] Zhu Liping. 2022. An overview of monitoring technology for underground natural gas storage[J]. Petroleum Tubular Goods & Instruments, 8(4): 1−7 (in Chinese with English abstract).

    Google Scholar

    [90] Zivar D, Kumar S, Foroozesh J. 2021. Underground hydrogen storage: A comprehensive review[J]. International Journal of Hydrogen Energy, 46(45): 23436−23462. doi: 10.1016/j.ijhydene.2020.08.138

    CrossRef Google Scholar

    [91] Zou C, Ma F, Pan S Q. 2022. Earth energy evolution, human development and carbon neutral strategy[J]. Petroleum Exploration and Development, 49(2): 468−488. doi: 10.1016/S1876-3804(22)60040-5

    CrossRef Google Scholar

    [92] 丁国生, 谢萍. 2006. 中国地下储气库现状与发展展望[J]. 天然气工业, 26(6): 111−113.

    Google Scholar

    [93] 丁国生, 张昱文. 2010. 盐穴地下储气库[M]. 北京: 石油工业出版社, 62−63.

    Google Scholar

    [94] 段志祥, 石坤, 胡杭健, 张烟生, 冯异勇. 2023. 我国地下储气(氢)井检测技术进展综述[J]. 中国特种设备安全, 39(6): 1−7.

    Google Scholar

    [95] 顾春生, 杨磊, 闵望, 张其琪, 卢毅, 苏东. 2023. 江苏常州地面沉降监测与发展趋势分析[J]. 中国地质灾害与防治学报, 34(2): 82−91.

    Google Scholar

    [96] 管国兴, 李留荣. 2003. 金坛市配合“西气东输”利用地下溶盐穴建立储气库[J]. 矿产保护与利用, (2): 24.

    Google Scholar

    [97] 郭朝斌, 李采, 杨利超, 刘凯, 阮岳军, 何阳. 2021. 压缩空气地质储能研究现状及工程案例分析[J]. 中国地质调查, 8(4): 109−119.

    Google Scholar

    [98] 郭朝斌, 王志辉, 刘凯, 李采. 2019. 特殊地下空间应用与研究现状[J]. 中国地质, 46(3): 482−492.

    Google Scholar

    [99] 郭娟, 崔荣国, 周起忠, 胡容波. 2024. 2023年中国矿产资源形势回顾与展望[J]. 中国矿业, 33(1): 12−19.

    Google Scholar

    [100] 黄宽, 张万益, 王丰翔, 栾卓然, 胡雅璐, 陈骥, 方圆, 宋泽峰, 王健. 2023. 地下空间储能国内外发展现状及调查建议[J]. 中国地质, 51(1): 105−117.

    Google Scholar

    [101] 贾善坡, 郑得文, 金凤鸣, 张辉, 孟庆春, 林建品, 魏强. 2016. 含水层构造改建地下储气库评价体系[J]. 中南大学学报(自然科学版), 47(3): 857−867.

    Google Scholar

    [102] 江苏省电力行业协会. 2024. 2024年1—11月江苏省电力生产经营数据 [EB/OL]. http://www.jsepa.com/report.thtml?cid=10932.

    Google Scholar

    [103] 井文君, 杨春和, 李银平, 杨长来. 2012. 基于层次分析法的盐穴储气库选址评价方法研究[J]. 岩土力学, 33(9): 2683−2690.

    Google Scholar

    [104] 李光, 刘建军, 刘强, 纪佑军. 2016. 二氧化碳地质封存研究进展综述[J]. 湖南生态科学学报, 3(4): 41−48.

    Google Scholar

    [105] 李龙, 李建军. 2023. 盐穴储气库安全监测技术[M]. 北京: 石油工业出版社, 4−5.

    Google Scholar

    [106] 刘笑驰, 梅生伟, 丁若晨, 钟声远, 张险峰, 谢宁宁, 常勇, 张通. 2023. 压缩空气储能工程现状, 发展趋势及应用展望[J]. 电力自动化设备, 43(10): 38−47.

    Google Scholar

    [107] 陆佳敏, 徐俊辉, 王卫东, 王浩, 徐孜俊, 陈留平. 2022. 大规模地下储氢技术研究展望[J]. 储能科学与技术, 11(11): 3699−3707.

    Google Scholar

    [108] 陆娅楠. 2022. 推进氢能产业健康有序可持续发展[N]. 人民日报, 2022−03−24(011).

    Google Scholar

    [109] 罗淼. 2021. 氢气地下储能库注采井套管选材研究[D]. 北京: 中国石油大学(北京), 1−56.

    Google Scholar

    [110] 马冰, 贾凌霄, 于洋, 王欢, 陈静, 钟帅, 朱吉昌. 2021. 地球科学与碳中和: 现状与发展方向[J]. 中国地质, 48(2): 347−358.

    Google Scholar

    [111] 施金伶. 2020. 盐穴地下盐腔储气库选址条件评价[J]. 中国石油和化工标准与质量, 40(18): 5−6.

    Google Scholar

    [112] 施锡林, 尉欣星, 杨春和, 马洪岭, 李银平. 2023. 中国盐穴型战略石油储备库建设的问题及对策[J]. 中国科学院院刊, 38(1): 99−111.

    Google Scholar

    [113] 宋刚祥, 陆嫣, 丁芳, 鞠颢, 徐博, 张锡楠. 2020. 带底油凝析气藏动态诊断及均衡开采技术[J]. 天然气地球科学, 31(6): 890−894.

    Google Scholar

    [114] 王朋飞, 姜重昕, 马冰. 2021. 国内外氢能发展战略及其重要意义[J]. 中国地质调查, 8(4): 33−39.

    Google Scholar

    [115] 赵昱超, 罗瑜, 李隆新, 周源, 李力民, 王霞. 2022. 地下储气库地应力模拟研究与地质完整性评估——以相国寺为例[J]. 地质力学学报, 28(4): 523−536.

    Google Scholar

    [116] 郑雅丽, 完颜祺琪, 邱小松, 垢艳侠, 冉莉娜, 赖欣, 吴双. 2019. 盐穴地下储气库选址与评价新技术[J]. 天然气工业, 39(6): 123−130.

    Google Scholar

    [117] 朱礼萍. 2022. 国内外地下储气库监测技术概述[J]. 石油管材与仪器, 8(4): 1−7.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(16)

Tables(6)

Article Metrics

Article views(89) PDF downloads(8) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint