2025 Vol. 52, No. 1
Article Contents

ZHANG Yuehua, LIU Yan, LÜ Qingtian, CHEN Zhaoxi, YAN Jiayong. 2025. Progress and prospect of geophysical monitoring technology for carbon dioxide geological storage[J]. Geology in China, 52(1): 159-179. doi: 10.12029/gc20240122001
Citation: ZHANG Yuehua, LIU Yan, LÜ Qingtian, CHEN Zhaoxi, YAN Jiayong. 2025. Progress and prospect of geophysical monitoring technology for carbon dioxide geological storage[J]. Geology in China, 52(1): 159-179. doi: 10.12029/gc20240122001

Progress and prospect of geophysical monitoring technology for carbon dioxide geological storage

    Fund Project: Supported by the projects of the Chinese Academy of Geological Sciences Centralized Public Welfare Research Institutes Basic Research Operating Expenses Project (No.JKY202416), China Geological Survey (No.DD20242085, No.DD20240079, No.DD20221643) and National Natural Science Foundation of China (No.42174169).
More Information
  • Author Bio: ZHANG Yuehua, female, born in 2000, master candidate, mainly engaged in research on geophysical exploration technology and deep exploration; E-mail: zhangyh27@email.cugb.edu.cn
  • Corresponding author: LIU Yan, female, born in 1975, professor level senior engineer, mainly engaged in geophysical exploration techniques and deep exploration research; E-mail: liuy@cags.ac.cn
  • This paper is the result of CCUS (Carbon Capture Utilization and Storage) engineering.

    Objective

    At present, global warming is one of the most serious challenges in the world. To reduce carbon emissions, carbon dioxide geological storage emerge as an effective way. However, the process may bring a series of impacts on both the reservoir and the cap layer, creating a risk of carbon dioxide leakage. The change of reservoir physical parameters before and after carbon dioxide injection lays a theoretical basis for geophysical monitoring methods such as logging, seismic, electromagnetic and gravity.

    Methods

    This paper firstly outlines the potential risks of carbon dioxide geological storage and the corresponding geophysical monitoring methods, then discusses the research progress of various geophysical monitoring techniques in the field of carbon dioxide geological storage, and finally analyzes the technical challenges and application limitations faced by current geophysical monitoring techniques, while also looking ahead to their future development.

    Results

    In the face of numerous geomechanical difficulties that may develop throughout the carbon dioxide geological storage process, we can use a variety of geophysical monitoring approaches to target them. For example, we can utilize InSAR, microseismic and time−lapse gravity methods for surface deformation; microseismic methods for induced seismicity; and well−logging methods to damage wellbore integrity. For tracking carbon dioxide plume transportation and potential leakage, time−lapse gravity/seismic, microseismic, and resistivity tomography methods can all play important roles. The advancement of geophysical monitoring technology has given us tremendous confidence in practical applications, but the limitations of the technology itself, the complexity of data processing, and the constraints of the field environment remain significant difficulties that must be addressed. With the booming development of artificial intelligence, geophysical monitoring technology also has new development prospects. In addition, the comprehensive utilization of multi−source information will foster innovation and progress in geophysical monitoring technologies.

    Conclusions

    Carbon dioxide geological storage is a new opportunity for the geophysical industry brought by the dual−carbon target, and vigorously developing a suitable long−term and stable monitoring system for carbon dioxide geological storage is an important application field for geophysics to develop new markets. Leveraging the wave of artificial intelligence and integrating multiple geophysical methods to monitor carbon dioxide geologic storage projects is a trend for the future.

  • 加载中
  • [1] Alnes H, Eiken O, Nooner S, Sasagawa G, Stenvold T, Zumberge M. 2011. Results from Sleipner gravity monitoring: Updated density and temperature distribution of the CO2 plume[J]. Energy Procedia, 4: 5504−5511. doi: 10.1016/j.egypro.2011.02.536

    CrossRef Google Scholar

    [2] Alnes H, Eiken O, Stenvold T. 2008. Monitoring gas production and CO2 injection at the Sleipner field using time–lapse gravimetry[J]. Geophysics, 73(6): WA155–WA161.

    Google Scholar

    [3] Alyousuf T, Li Y, Krahenbuhl R. 2022. Machine learning inversion of time–lapse three–axis borehole gravity data for CO2 monitoring[C]//Second International Meeting for Applied Geoscience & Energy. Houston, Texas: Society of Exploration Geophysicists and American Association of Petroleum Geologists, 3099–3103.

    Google Scholar

    [4] Anyosa S, Bunting S, Eidsvik J, Romdhane A, Bergmo P. 2021. Assessing the value of seismic monitoring of CO2 storage using simulations and statistical analysis[J]. International Journal of Greenhouse Gas Control, 105: 103219. doi: 10.1016/j.ijggc.2020.103219

    CrossRef Google Scholar

    [5] Appriou D, Bonneville A, Zhou Q, Gasperikova E. 2020. Time–lapse gravity monitoring of CO2 migration based on numerical modeling of a faulted storage complex[J]. International Journal of Greenhouse Gas Control, 95: 102956. doi: 10.1016/j.ijggc.2020.102956

    CrossRef Google Scholar

    [6] Attias E, Weitemeyer K, Hölz S, Naif S, Minshull T, Best A, Haroon A, Jegen–Kulcsar M, Berndt C. 2018. High–resolution resistivity imaging of marine gas hydrate structures by combined inversion of CSEM towed and ocean–bottom receiver data[J]. Geophysical Journal International, 214(3): 1701−1714. doi: 10.1093/gji/ggy227

    CrossRef Google Scholar

    [7] Ayani M, Grana D, Liu M. 2020. Stochastic inversion method of time–lapse controlled source electromagnetic data for CO2 plume monitoring[J]. International Journal of Greenhouse Gas Control, 100: 103098.

    Google Scholar

    [8] Baumann G, Henninges J, De Lucia M. 2014. Monitoring of saturation changes and salt precipitation during CO2 injection using pulsed neutron–gamma logging at the Ketzin pilot site[J]. International Journal of Greenhouse Gas Control, 28: 134–146.

    Google Scholar

    [9] Bergmann P, Ivandic M, Norden B, Rücker C, Kiessling D, Lüth S, Schmidt–Hattenberger C, Juhlin C. 2014. Combination of seismic reflection and constrained resistivity inversion with an application to 4D imaging of the CO2 storage site, Ketzin, Germany[J]. Geophysics, 79(2): B37−B50. doi: 10.1190/geo2013-0131.1

    CrossRef Google Scholar

    [10] Bhakta T, Paap B, Vandeweijer V, Mannseth T. 2022. Monitoring of CO2 plume movement using time–lapse distributed acoustic sensing (DAS) data[C]//Second International Meeting for Applied Geoscience & Energy. Houston, Texas: Society of Exploration Geophysicists and American Association of Petroleum Geologists, 478–482.

    Google Scholar

    [11] Bickle M J, Stevenson E I, Haese R R. 2020. Sr–isotopic ratios trace mixing and dispersion in CO2 push–pull injection experiments at the CO2CRC Otway Research Facility, Australia[J]. Chemical Geology, 538: 119489.

    Google Scholar

    [12] Black A, Hare J, Macqueen J. 2016. Borehole gravity monitoring in the Aquistore CO2 sequestration well[C]//SEG Technical Program Expanded Abstracts 2016. Dallas, Texas: Society of Exploration Geophysicists, 768–772.

    Google Scholar

    [13] Bonneville A, Black A J, Hare J L, Kelley M E, Place M, Gupta N. 2021. Time–lapse borehole gravity imaging of CO2 injection and withdrawal in a closed carbonate reef[J]. Geophysics, 86(6): G113−G132. doi: 10.1190/geo2020-0650.1

    CrossRef Google Scholar

    [14] Bonneville A, Heggy E, Strickland C, Normand J, Dermond J, Fang Y, Sullivan C. 2015. Geophysical monitoring of ground surface deformation associated with a confined aquifer storage and recovery operation[J]. Water Resources Management, 29(13): 4667−4682. doi: 10.1007/s11269-015-1083-y

    CrossRef Google Scholar

    [15] Börner J H, Wang F, Weißflog J, Bär M, Görz I, Spitzer K. 2015. Multi–method virtual electromagnetic experiments for developing suitable monitoring designs: A fictitious CO2 sequestration scenario in Northern Germany[J]. Geophysical Prospecting, 63(6): 1430−1449. doi: 10.1111/1365-2478.12299

    CrossRef Google Scholar

    [16] Bourne S, Crouch S, Smith M. 2014. A risk–based framework for measurement, monitoring and verification of the Quest CCS Project, Alberta, Canada[J]. International Journal of Greenhouse Gas Control, 26: 109–126.

    Google Scholar

    [17] Braunberger J, Hamling J, Gorecki C, Miller H, Rawson J, Walsh F, Pasternack E, Rowe W, Butsch R, Steadman E, Harju J. 2014. Characterization and time–lapse monitoring utilizing pulsed–neutron well logging: Associated CO2 storage at a commercial CO2 EOR project[J]. Energy Procedia, 63: 3935−3944. doi: 10.1016/j.egypro.2014.11.423

    CrossRef Google Scholar

    [18] Cao W Z, Shi J Q, Durucan S, Korre A. 2021. Evaluation of shear slip stress transfer mechanism for induced microseismicity at In Salah CO2 storage site[J]. International Journal of Greenhouse Gas Control, 107: 103302. doi: 10.1016/j.ijggc.2021.103302

    CrossRef Google Scholar

    [19] Capriotti J, Li Y. 2015. Inversion for permeability distribution from time–lapse gravity data[J]. Geophysics, 80: WA69–WA83.

    Google Scholar

    [20] Celaya A, Denel B, Sun Y, Araya–Polo M, Price A. 2023. Inversion of time–lapse surface gravity data for detection of 3–D CO2 plumes via deep learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 61: 1−11.

    Google Scholar

    [21] Chen Zhaoxi, Meng Xiaohong, Guo Lianghui, Liu Guofeng. 2012. Three–dimensional fast forward modeling and the inversion strategy for large scale gravity and gravimetry data based on GPU[J]. Chinese Journal of Geophysics, 55(12): 4069−4077 (in Chinese with English abstract).

    Google Scholar

    [22] Cheng Y, Liu W, Xu T, ZhangY, Zhang X, Xing Y, Feng B, Xia Y. 2023. Seismicity induced by geological CO2 storage: A review[J]. Earth–Science Reviews, 239: 104369.

    Google Scholar

    [23] Colombo D, Li W, Sandoval–Curiel E, McNeice G W. 2020. Deep–learning electromagnetic monitoring coupled to fluid flow simulators[J]. Geophysics, 85(4): WA1−WA12. doi: 10.1190/geo2019-0428.1

    CrossRef Google Scholar

    [24] Couëslan M L, Ali S, Campbell A, Nutt W L, Leaney W S, Finley R J, Greenberg S E. 2013. Monitoring CO2 injection for carbon capture and storage using time–lapse 3D VSPs[J]. The Leading Edge, 32(10): 1268−1276. doi: 10.1190/tle32101268.1

    CrossRef Google Scholar

    [25] Cui Fangzhi, Zhou Tao, Zhang Bing. 2020. TEM monitoring technology of CO2 injection and transport in coal seam[J]. Geophysical and Geochemical Exploration, 44(3): 573−581 (in Chinese with English abstract).

    Google Scholar

    [26] Davis T L, Terrell M J, Benson R D, Cardona R, Kendall R R, Winarsky R. 2003. Multicomponent seismic characterization and monitoring of the CO2 flood at Weyburn Field, Saskatchewan[J]. The Leading Edge, 22(7): 696−697. doi: 10.1190/1.1599699

    CrossRef Google Scholar

    [27] Diao Yujie, Liu Ting, Wei Ning, Ma Xin, Jin Xiaolin, Fu Lei. 2023. Classification and assessment methodology of carbon dioxide geological storage in deep saline aquifers[J]. Geology in China, 50(3): 943−951 (in Chinese with English abstract).

    Google Scholar

    [28] Dodds K, Daley T, Freifeld B, Urosevic M, Kepic A, Sharma S. 2009. Developing a monitoring and verification plan with reference to the Australian Otway CO2 pilot project[J]. The Leading Edge, 28(7): 812−818. doi: 10.1190/1.3167783

    CrossRef Google Scholar

    [29] Dodds K, Krahenbuhl R, Reitz A, Li Y G, Hovorka S. 2013. Evaluating time–lapse borehole gravity for CO2 plume detection at SECARB Cranfield[J]. International Journal of Greenhouse Gas Control, 18: 421−429. doi: 10.1016/j.ijggc.2013.05.024

    CrossRef Google Scholar

    [30] Duguid A, Guo B, Nygaard R. 2017. Well integrity assessment of monitoring wells at an active CO2–EOR flood[J]. Energy Procedia, 114: 5118−5138. doi: 10.1016/j.egypro.2017.03.1667

    CrossRef Google Scholar

    [31] Eiken O, Ringrose P, Hermanrud C, Nazarian B, Torp T A, Høier L. 2011. Lessons learned from 14 years of CCS operations: Sleipner, In Salah and Snøhvit[J]. Energy Procedia, 4: 5541−5548. doi: 10.1016/j.egypro.2011.02.541

    CrossRef Google Scholar

    [32] Fabriol H, Bitri A, Bourgeois B, Delatre M, Girard J F, Pajot G, Rohmer J. 2011. Geophysical methods for CO2 plume imaging: Comparison of performances[J]. Energy Procedia, 4: 3604−3611. doi: 10.1016/j.egypro.2011.02.290

    CrossRef Google Scholar

    [33] Fan J L, Zhang F, Tian L L, Xiao G P, Zhang H, Fang Q W. 2022. A monitoring CO2 method by the dual cross section pulsed neutron logging technology in heavy oil reservoirs[C]//SPWLA 63rd Annual Symposium Transactions. Society of Petrophysicists and Well Log Analysts.

    Google Scholar

    [34] Fawad M, Mondol N H. 2022. Monitoring geological storage of CO2 using a new rock physics model[J]. Scientific Reports, 12(1): 297.

    Google Scholar

    [35] Feitz A, Radke B, Ricard L, Glubokovskikh S, Kalinowski A, Wang L, Tenthorey E, Schaa R, Tertyshnikov K, Schacht U, Chan K, Jordana S, Vialle S, Harris B, Lebedev M, Pevzner R, Sidenko E, Ziramov S, Urosevic M, Green S, Ennis–King J, Coene E, Laviña M, Abarca E, Idiart A, Silva O, Grandia F, Sainz–García A, Takemura T, Dewhurst D, Credoz A. 2022. The CO2 CRC Otway shallow CO2 controlled release experiment: Fault characterization and geophysical monitoring design[J]. International Journal of Greenhouse Gas Control, 118: 103667. doi: 10.1016/j.ijggc.2022.103667

    CrossRef Google Scholar

    [36] Fibbi G, Del Soldato M, Fanti R, 2023. Review of the monitoring applications involved in the underground storage of natural gas and CO2[J]. Energies, 16(1): 12.

    Google Scholar

    [37] Furre A–K, Eiken O, Alnes H, Vevatne J N, Kiær A F. 2017. 20 Years of monitoring CO2–injection at Sleipner[J]. Energy Procedia, 114: 3916−3926. doi: 10.1016/j.egypro.2017.03.1523

    CrossRef Google Scholar

    [38] Gasperikova E, Appriou D, Bonneville A, Feng Z, Huang L, Gao K, Yang X, Daley T. 2022. Sensitivity of geophysical techniques for monitoring secondary CO2 storage plumes[J]. International Journal of Greenhouse Gas Control, 114: 103585. doi: 10.1016/j.ijggc.2022.103585

    CrossRef Google Scholar

    [39] Gettings P, Chapman D S, Allis R. 2008. Techniques, analysis, and noise in a Salt Lake Valley 4D gravity experiment[J]. Geophysics, 73(6): WA71–WA82.

    Google Scholar

    [40] Glubokovskikh S, Wang R, Ricard L, Bagheri M, Gurevich B, Pevzner R. 2021. Toward automated early detection of risks for a CO2 plume containment from permanent seismic monitoring data[J]. Journal of Geophysical Research: Solid Earth, 126(5): e2020JB021087. doi: 10.1029/2020JB021087

    CrossRef Google Scholar

    [41] Gonzalez K, Misra S. 2022. Unsupervised learning monitors the carbon–dioxide plume in the subsurface carbon storage reservoir[J]. Expert Systems with Applications, 201: 117216.

    Google Scholar

    [42] Goto H, Ishido T, Sorai M, 2020. Numerical study of reservoir permeability effects on gravity changes associated with CO2 geological storage: Implications for gravimetric monitoring feasibility[J]. Greenhouse Gases: Science and Technology, 10(3): 557–566.

    Google Scholar

    [43] Hovorka S, Benson S, Doughty C, Freifeld B, Sakurai S, Daley T, Kharaka Y, Holtz M, Trautz R, Nance H, Myer L, Knauss K. 2006. Measuring permanence of CO2 storage in saline formations: The Frio experiment[J]. Environmental Geosciences, 13: 105−121. doi: 10.1306/eg.11210505011

    CrossRef Google Scholar

    [44] Huang C, Zhu T, Xing G. 2023. Data–assimilated time–lapse visco–acoustic full–waveform inversion: Theory and application for injected CO2 plume monitoring[J]. Geophysics, 88(1): R105–R120.

    Google Scholar

    [45] Issaoui W, Nasr I H, Khaskhoussi S, Inoubli M H. 2023. Monitoring of soil contamination from olive mill wastewater (OMW) using physico–chemical, geotechnical analysis and electrical resistivity tomography (ERT) investigation[J]. Environmental Earth Sciences, 82(13): 331. doi: 10.1007/s12665-023-11020-z

    CrossRef Google Scholar

    [46] Ivandic M, Bergmann P, Kummerow J, Huang F, Juhlin C, Lueth S. 2018. Monitoring CO2 saturation using time–lapse amplitude versus offset analysis of 3D seismic data from the Ketzin CO2 storage pilot site, Germany[J]. Geophysical Prospecting, 66(8): 1568−1585. doi: 10.1111/1365-2478.12666

    CrossRef Google Scholar

    [47] Ivanova A, Kashubin A, Juhojuntti N, Kummerow J, Henninges J, Juhlin C, Lüth S, Ivandic M. 2012. Monitoring and volumetric estimation of injected CO2 using 4D seismic, petrophysical data, core measurements and well logging: A case study at Ketzin, Germany[J]. Geophysical Prospecting, 60(5): 957−973. doi: 10.1111/j.1365-2478.2012.01045.x

    CrossRef Google Scholar

    [48] Jia L Q, Chen X J, Liu Y, Hao Z G. 2023. Progress in carbon capture, utilization and storage of China Geological Survey and other geological exploration entities[J]. China Geology, 6(3): 541−544.

    Google Scholar

    [49] Jung Y, Zhou Q, Birkholzer J T. 2013. Early detection of brine and CO2 leakage through abandoned wells using pressure and surface–deformation monitoring data: Concept and demonstration[J]. Advances in Water Resources, 62: 555–569.

    Google Scholar

    [50] Kabirzadeh H, Kim J W, Sideris M G, Vatankhah S. 2020. Analysis of surface gravity and ground deformation responses of geological CO2 reservoirs to variations in CO2 mass and density and reservoir depth and size[J]. Environmental Earth Sciences, 79(7): 163. doi: 10.1007/s12665-020-08902-x

    CrossRef Google Scholar

    [51] Karaoulis M, Minsley B, Todesco M, Zhang J, Werkema D. 2013. Time–lapse gravity inversion with an active time constraint[J]. Geophysical Journal International, 196(2): 748−759.

    Google Scholar

    [52] Kiessling D, Schmidt–Hattenberger C, Schuett H, Schilling F, Krueger K, Schoebel B, Danckwardt E, Kummerow J, the CO2 SINK Group. 2010. Geoelectrical methods for monitoring geological CO2 storage: First results from cross–hole and surface–downhole measurements from the CO2SINK test site at Ketzin (Germany)[J]. International Journal of Greenhouse Gas Control, 4(5): 816–826.

    Google Scholar

    [53] Kim J, Yu S, Yun S T, Kim K H, Kim J H, Shinn Y J, Chae G. 2019. CO2 leakage detection in the near–surface above natural CO2–rich water aquifer using soil gas monitoring[J]. International Journal of Greenhouse Gas Control, 88: 261−271. doi: 10.1016/j.ijggc.2019.06.015

    CrossRef Google Scholar

    [54] Klokov A, Hardage B. 2017. Seismic characterization and monitoring of a deep CO2 storage reservoir with 3D VSP using direct shear waves[J]. Journal of Petroleum Science and Engineering, 155: 109–119.

    Google Scholar

    [55] Krahenbuhl R A, Li Y, Davis T. 2011. Understanding the applications and limitations of time–lapse gravity for reservoir monitoring[J]. The Leading Edge, 30(9): 1060–1068.

    Google Scholar

    [56] Krahenbuhl R A, Martinez C, Li Y, Flanagan G. 2015. Time–lapse monitoring of CO2 sequestration: A site investigation through integration of reservoir properties, seismic imaging, and borehole and surface gravity data[J]. Geophysics, 80(2): WA15−WA24. doi: 10.1190/geo2014-0198.1

    CrossRef Google Scholar

    [57] Lee H P, Staniewicz S, Chen J, Hennings P, Olson J E. 2023. Subsurface deformation monitoring with InSAR and elastic inversion modeling in west Texas[J]. Geoenergy Science and Engineering, 231: 212299. doi: 10.1016/j.geoen.2023.212299

    CrossRef Google Scholar

    [58] Li D, Peng S, Guo Y, Lu Y, Cui X. 2021a. CO2 storage monitoring based on time–lapse seismic data via deep learning[J]. International Journal of Greenhouse Gas Control, 108: 103336. doi: 10.1016/j.ijggc.2021.103336

    CrossRef Google Scholar

    [59] Li D, Peng S, Huang X, Guo Y, LuY, Cui X. 2021b. Time–lapse full waveform inversion based on curvelet transform: Case study of CO2 storage monitoring[J]. International Journal of Greenhouse Gas Control, 110: 103417. doi: 10.1016/j.ijggc.2021.103417

    CrossRef Google Scholar

    [60] Li D, Peng S, Yang R, Zheng J, Cai Z, Zhang T, Zhang W. 2022. Joint monitoring of CO2–ECBM based on multiple geophysical methods: A case study of Shizhuang Town, Shanxi Province, China[J]. International Journal of Greenhouse Gas Control, 121: 103795. doi: 10.1016/j.ijggc.2022.103795

    CrossRef Google Scholar

    [61] Li Honglei, Chen Shi, Zhuang Jiancang, Zhang Bei, Shi Lei. 2021. Gravity inversion method base on Bayesian–assimilation and its application in constructing crust density model of the Longmenshan region[J]. Chinese Journal of Geophysics, 64(4): 1236−1252 (in Chinese with English abstract).

    Google Scholar

    [62] Li Jianghui, Yu Fengling, Niu Xiongwei, Zhou Tian, Zhang Yunxiu, Li Wenling. 2023. Advances and future development of monitoring technologies for marine carbon storage[J]. Advances in Earth Science, 38(11): 1121−1144 (in Chinese with English abstract).

    Google Scholar

    [63] Li Xiaochun, Yuan Wei, Bai Bing. 2016. A review of numerical simulation methods for geomechanical problemsinduced by CO2 geological storage[J]. Rock and Soil Mechanics, 37(6): 1762–1772 (in Chinese with English abstract).

    Google Scholar

    [64] Liu Yan, Lü Qingtian, Li Xiaobin, Qi Guang, Zhao Jinhua, Yan Jiayong, Deng Zhen. 2015. 3D gravity inversion based on Bayesian method with model order reduction[J]. Chinese Journal of Geophysics, 58(12): 4727−4739 (in Chinese with English abstract).

    Google Scholar

    [65] Ma J, Wang X, Gao R, Zhang X, Wei Y, Wang Z, Ma J, Huang C, Zhao X, Jiang S, Liu L, Li L, Yu H, Wang H. 2014. Jingbian CCS Project, China: Second year of injection, measurement, monitoring and verification[J]. Energy Procedia, 63: 2921−2938. doi: 10.1016/j.egypro.2014.11.315

    CrossRef Google Scholar

    [66] Ma J F, Li L, Wang H F, Tan M Y, Cui S L, Zhang Y Y, Qu Z P, Jia L Y, Zhang S H. 2016. Geophysical monitoring technology for CO2 sequestration[J]. Applied Geophysics, 13(2): 288–306, 417–418.

    Google Scholar

    [67] Ma J F, Li L, Wang H G, Du Y, Ma J J, Zhang X L, Wang Z L. 2022. Carbon capture and storage: History and the road ahead[J]. Engineering, 14: 33–43.

    Google Scholar

    [68] Meng L, Zheng J, Yang R, Peng S, Sun Y, Xie J, Li D. 2023. Microseismic monitoring technology developments and prospects in CCUS Injection Engineering[J]. Energies, 16(7): 3101. doi: 10.3390/en16073101

    CrossRef Google Scholar

    [69] Nakajima T, Wang L, Xue Z. 2019. Utilization of wave attenuation in the time–lapse sonic logging at the Nagaoka site for a near well monitoring of CO2 migration[J]. International Journal of Greenhouse Gas Control, 88: 342−352. doi: 10.1016/j.ijggc.2019.06.022

    CrossRef Google Scholar

    [70] Nakajima T, Xue Z. 2013. Evaluation of a resistivity model derived from time–lapse well logging of a pilot–scale CO2 injection site, Nagaoka, Japan[J]. International Journal of Greenhouse Gas Control, 12: 288–299.

    Google Scholar

    [71] Nakajima T, Xue Z, Watanabe J, Ito Y, Sakashita S. 2013. Assessment of well integrity at Nagaoka CO2 injection site using ultrasonic logging and cement bond log data[J]. Energy Procedia, 37: 5746−5753. doi: 10.1016/j.egypro.2013.06.497

    CrossRef Google Scholar

    [72] Nooner S L, Eiken O, Hermanrud C, Sasagawa G S, Stenvold T, Zumberge M A. 2007. Constraints on the in situ density of CO2 within the Utsira formation from time–lapse seafloor gravity measurements[J]. International Journal of Greenhouse Gas Control, 1(2): 198−214. doi: 10.1016/S1750-5836(07)00018-7

    CrossRef Google Scholar

    [73] Onishi K, Ueyama T, Matsuoka T, Nobuoka D, Saito H, Azuma H, Xue Z. 2009. Application of crosswell seismic tomography using difference analysis with data normalization to monitor CO2 flooding in an aquifer[J]. International Journal of Greenhouse Gas Control, 3(3): 311−321. doi: 10.1016/j.ijggc.2008.08.003

    CrossRef Google Scholar

    [74] Orujov G, Swidinsky A, Streich R. 2022. Do metal infrastructure effects cancel out in time–lapse electromagnetic measurements?[J]. Geophysics: Journal of the Society of Exploration Geophysicists, 87(2): E91− E101.

    Google Scholar

    [75] Paradis S, Goñi M, Masqué P, Durán R, Arjona Camas M, Palanques A, Puig P. 2021. Persistence of biogeochemical alterations of deep‐sea sediments by bottom trawling[J]. Geophysical Research Letters, 48(2): e2020GL091279. doi: 10.1029/2020GL091279

    CrossRef Google Scholar

    [76] Patidar A K, Joshi D, Dristant U, Choudhury T. 2022. A review of tracer testing techniques in porous media specially attributed to the oil and gas industry[J]. Journal of Petroleum Exploration and Production Technology, 12(12): 3339−3356. doi: 10.1007/s13202-022-01526-w

    CrossRef Google Scholar

    [77] Popik S, Pevzner R, Tertyshnikov K, Popik D, Urosevic M, Shulakova V, Glubokovskikh S, Gurevich B. 2020. 4D surface seismic monitoring the evolution of a small CO2 plume during and after injection: CO2CRC Otway Project study[J]. Exploration Geophysics, 51(5): 570−580. doi: 10.1080/08123985.2020.1735934

    CrossRef Google Scholar

    [78] Preston C, Whittaker S, Rostron B, Chalaturnyk R, White D, Hawkesd C, Johnsone J W, Wilkinsona A, Sacuta N. 2009. IEA GHG Weyburn–Midale CO2 monitoring and storage project–moving forward with the Final Phase[J]. Energy Procedia, 1(1): 1743−1750. doi: 10.1016/j.egypro.2009.01.228

    CrossRef Google Scholar

    [79] Qin Jishun, Li Yongliang, Wu Debin, Weng Hui, Wang Gaofeng. 2020. CCUS global progress and China's policy suggestions[J]. Petroleum Geology and Recovery Efficiency, 27(1): 20−28 (in Chinese with English abstract).

    Google Scholar

    [80] Qu Wenzhang, An Zhiguo. 2020. Numerical simulation of time–lapse audio magnetotelluric monitoring[J]. Progress in Geophysics, 35(4): 1595−1604 (in Chinese with English abstract).

    Google Scholar

    [81] Raab T, Weinzierl W, Wiese B, Rippe D, Schmidt–Hattenberger C. 2020. Development of an electrical resistivity tomography monitoring concept for the svelvik CO2 field lab, Norway[C]// Advances in Geosciences. Copernicus GmbH: 41–53.

    Google Scholar

    [82] Ren Shaoran, Ren Bo, Li Yongzhao, Zhang Liang, Kang Wanli, Liu Yuncheng, Chen Guoli, Zhang Hua. 2012. Monitoring techniques of CO2 geological storage and its application analysis[J]. Journal of China University of Petroleum (Edition of Natural Sciences), 36(1): 106−111 (in Chinese with English abstract).

    Google Scholar

    [83] Ringrose P S, Mathieson A S, Wright I W, Selama F, Hansen O, Bissell R, Saoula N, Midgley J. 2013. The In Salah CO2 Storage Project: Lessons learned and knowledge transfer[J]. Energy Procedia, 37: 6226−6236. doi: 10.1016/j.egypro.2013.06.551

    CrossRef Google Scholar

    [84] Rutqvist J. 2012. The geomechanics of CO2 storage in deep sedimentary formations[J]. Geotechnical and Geological Engineering, 30(3): 525−551.

    Google Scholar

    [85] Sambo C, Iferobia C C, Babasafari A A, Rezaei S, Akanni O A. 2020. The role of time lapse(4D) seismic technology as reservoir monitoring and surveillance tool: A Comprehensive review[J]. Journal of Natural Gas Science and Engineering, 80: 103312. doi: 10.1016/j.jngse.2020.103312

    CrossRef Google Scholar

    [86] Sato K, Mito S, Horie T, Ohkuma H, Saito H, Watanabe J, Yoshimura T. 2011. Monitoring and simulation studies for assessing macro– and meso–scale migration of CO2 sequestered in an onshore aquifer: Experiences from the Nagaoka pilot site, Japan[J]. International Journal of Greenhouse Gas Control, 5(1): 125−137. doi: 10.1016/j.ijggc.2010.03.003

    CrossRef Google Scholar

    [87] Sheng H, Wu X, Sun X, Wu L. 2023. Deep learning for characterizing CO2 migration in time–lapse seismic images[J]. Fuel, 336: 126806. doi: 10.1016/j.fuel.2022.126806

    CrossRef Google Scholar

    [88] Sherlock D, Toomey A, Hoversten M, Gasperikova E, Dodds K. 2006. Gravity monitoring of CO2 storage in a depleted gas field: A sensitivity study[J]. Exploration Geophysics, 37(1): 37−43. doi: 10.1071/EG06037

    CrossRef Google Scholar

    [89] Spetzler J, Xue Z, Saito H, Nishizawa O. 2008. Case story: Time–lapse seismic crosswell monitoring of CO2 injected in an onshore sandstone aquifer[J]. Geophysical Journal International, 172(1): 214−225. doi: 10.1111/j.1365-246X.2007.03614.x

    CrossRef Google Scholar

    [90] Strack K, Davydycheva S, Passalacqua H, Smirnov M, Xu X. 2021. Using cloud–based array electromagnetics on the path to zero carbon footprint during the energy transition[J]. Journal of Marine Science and Engineering, 9(8): 906. doi: 10.3390/jmse9080906

    CrossRef Google Scholar

    [91] Su X, Liu S, Zhang L, Liu G, Wang Y, Gan M, Li X. 2023. Wellbore leakage risk management in CO2 geological utilization and storage: A review[J]. Energy Reviews, 2(4): 100049. doi: 10.1016/j.enrev.2023.100049

    CrossRef Google Scholar

    [92] Sugihara M, Nawa K, Nishi Y, Ishido T, Soma N. 2013. Continuous gravity monitoring for CO2 geo–sequestration[J]. Energy Procedia, 37: 4302−4309. doi: 10.1016/j.egypro.2013.06.333

    CrossRef Google Scholar

    [93] Sugihara M, Nawa K, Soma N, Ishido T, Miyakawa A, Nishi Y. 2014. Continuous gravity monitoring for CO2 geo–sequestration (2) a case study at the Farnsworth CO2–EOR Field[J]. Energy Procedia, 63: 4404−4410. doi: 10.1016/j.egypro.2014.11.475

    CrossRef Google Scholar

    [94] Tong Yunxiao, Yang Junquan, Wang Xue, Tan Kun. 2024. Land subsidence monitoring and spatiotemporal evolution characteristics analysis of Datong coalfield, Shanxi Province based on time series InSAR[J]. Geology in China, 51(1): 170−183 (in Chinese with English abstract).

    Google Scholar

    [95] Topham A, Lofts J, Du Z, Espie T, Zett A, Krahenbuhl R, Li Y. 2020. 3–axis borehole gravity: method and application to CO2 storage monitoring and oil/gas production[C]// SPE Annual Technical Conference and Exhibition, 2020. Virtual: SPE: D031S025R004.

    Google Scholar

    [96] Tveit S, Mannseth T, Park J, Sauvin G, Agersborg R. 2020. Combining CSEM or gravity inversion with seismic AVO inversion, with application to monitoring of large–scale CO2 injection[J]. Computational Geosciences, 24(3): 1201−1220. doi: 10.1007/s10596-020-09934-9

    CrossRef Google Scholar

    [97] Um E S, Alumbaugh D, Lin Y, Feng S. 2022. Realtime deep–learning inversion of seismic full waveform data for CO2 saturation and uncertainty in geological carbon storage monitoring[J]. Geophysical Prospecting, 72: 199–212.

    Google Scholar

    [98] Unwin S D, Sadovsky A, Sullivan E C, Anderson R M. 2011. Risk–informed monitoring, verification and accounting (RI–MVA). An NRAP white paper documenting methods and a demonstration model for risk–informed MVA system design and operations in geologic carbon sequestration: PNNL–20808[R]. Pacific Northwest National Lab. (PNNL), Richland, WA (United States).

    Google Scholar

    [99] Uttam S, Sharma P K. 2022. Seasonal groundwater monitoring using surface NMR and 2D/3D ERT[J]. Environmental Earth Sciences, 81(7): 198–198.

    Google Scholar

    [100] Vasco D W, Ferretti A, Novali F. 2008. Reservoir monitoring and characterization using satellite geodetic data: Interferometric synthetic aperture radar observations from the Krechba field, Algeria[J]. Geophysics, 73(6): WA113–WA122.

    Google Scholar

    [101] Verdon J P, Kendall J–M, Stork A L, Chadwick R A, White D J, BissellR C. 2013. Comparison of geomechanical deformation induced by megatonne–scale CO2 storage at Sleipner, Weyburn, and In Salah[J]. Proceedings of the National Academy of Sciences, 110(30): E2762−E2771.

    Google Scholar

    [102] Wang Xiang, Guo Lianghui. 2020. Density interface inversion method in spherical coordinates and its application in the South China mainland[J]. Geophysical and Geochemical Exploration, 44(5): 1161−1171 (in Chinese with English abstract).

    Google Scholar

    [103] Wang Y, Morozov I. 2019. Time–lapse acoustic impedance variations during CO2 injection in Weyburn oilfield, Canada[J]. Geophysics, 85: 1–58.

    Google Scholar

    [104] Wang H, Wang Z, Ma J, Li L, Wang Y, Tan M, Zhang Y, Cui S, Qu Z. 2022. Effective pressure prediction from 4D seismic AVO data during CO2–EOR and storage[J]. International Journal of Greenhouse Gas Control, 113: 103525. doi: 10.1016/j.ijggc.2021.103525

    CrossRef Google Scholar

    [105] Wang H, Xu J, Yu Y. 2023. Status of CCUS research and governance by worldwide geological surveys and organizations[J]. China Geology, 6(3): 536–540.

    Google Scholar

    [106] Wilkinson M, Mouli–Castillo J, Morgan P, Eid R. 2017. Time–lapse gravity surveying as a monitoring tool for CO2 storage[J]. International Journal of Greenhouse Gas Control, 60: 93−99. doi: 10.1016/j.ijggc.2017.03.006

    CrossRef Google Scholar

    [107] Wu Jiang, Ren Siyuan, Sun Yijing, Liu Qizhen. 2022. Research and application of CCUS technology based on "doublecarbon" background[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 50(7): 89−100 (in Chinese with English abstract).

    Google Scholar

    [108] Xue Z, Tanase D, Watanabe J. 2006. Estimation of CO2 saturation from time–lapse CO2 well logging in an onshore aquifer, Nagaoka, Japan[J]. Exploration Geophysics, 37(1): 19–29.

    Google Scholar

    [109] Yang X, Buscheck T A, Mansoor K, Wang Z, Gao K, Huang L, Appriou D, Carroll S A. 2019. Assessment of geophysical monitoring methods for detection of brine and CO2 leakage in drinking water aquifers[J]. International Journal of Greenhouse Gas Control, 90: 102803. doi: 10.1016/j.ijggc.2019.102803

    CrossRef Google Scholar

    [110] Yang X, Chen X, Smith M M. 2022. Deep learning inversion of gravity data for detection of CO2 plumes in overlying aquifers[J]. Journal of Applied Geophysics, 196: 104507.

    Google Scholar

    [111] Yang X, Lassen R N, Jensen K H, Looms M C. 2015. Monitoring CO2 migration in a shallow sand aquifer using 3D crosshole electrical resistivity tomography[J]. International Journal of Greenhouse Gas Control, 42: 534−544. doi: 10.1016/j.ijggc.2015.09.005

    CrossRef Google Scholar

    [112] Yang Yang, Ma Jinfeng, Li Lin. 2015. Research progress of 4D multicomponent seismic monitoring techniquein carbon capture and storage[J]. Advances in Earth Science, 30(10): 1119−1126 (in Chinese with English abstract).

    Google Scholar

    [113] Yu Enyi, Di Yuan, Wu Hui, Cao Xiaopeng, Zhang Qingfu, Zhang Chuanbao. 2023. Numerical simulation on risk analysis of CO2 geological storage under multi–field coupling: A review[J]. Chinese Journal of Theoretical and Applied Mechanics, 55(9): 2075−2090 (in Chinese with English abstract).

    Google Scholar

    [114] Zhang T, Zhang W, Yang R, Liu Y, Jafari M. 2021. CO2 capture and storage monitoring based on remote sensing techniques: A review[J]. Journal of Cleaner Production, 281: 124409. doi: 10.1016/j.jclepro.2020.124409

    CrossRef Google Scholar

    [115] Zhang Xian, Li Yang, Ma Qiao, Liu Lingna. 2021. Development of carbon capture, utilization and storage technology in China[J]. Engineering, 23(6): 70−80 (in Chinese with English abstract).

    Google Scholar

    [116] Zhang Kai, Chen Zhangxing, Lan Haifan, Ma Haoming, Jiang Liangliang, Xue Zhenqian, Zhang Yuming, Cheng Shixuan. 2023. Status and prospects of carbon capture, utilization and storage technology[J]. Special Oil & Gas Reservoirs, 30(2): 1–12 (in Chinese with English abstract).

    Google Scholar

    [117] Zhang Qi, Cui Yongjun, Bu Xuepeng, Chen Qiang. 2011. Analysis of the current development status of CCS monitoring technology[J]. Shenhua Science and Technology, 9(2): 77−82 (in Chinese with English abstract).

    Google Scholar

    [118] Zhang Yang, Sun Jiawen, Zhao Haidong, Qiao Ting. 2022. Path for realization of ecological product value of CO2 geological storagein lnner Mongolia under the carbon peak and carbon neutrality goals[J]. Journal of Arid Land Resources and Environment, 36(11): 19−26 (in Chinese with English abstract).

    Google Scholar

    [119] Zhao Gaishan. 2023. Geophysical monitoring for geological carbon sequestration: Present status, challenges, and future development[J]. Geophysical Prospecting for Petroleum, 62(2): 194−211 (in Chinese with English abstract).

    Google Scholar

    [120] Zhao Haiying, Chen Yuanzhong, Li Yanpeng, Liu Guojun, Li Tao, Xia Shujun, Fan Hanzhou. 2018. CO2 monitoring with time–lapse vertical seismic profile[J]. Rock and Soil Mechanics, 39(8): 3095−3102 (in Chinese with English abstract).

    Google Scholar

    [121] Zhu T, Ajo–Franklin J, Daley T M, Marone C. 2019. Dynamics of geologic CO2 storage and plume motion revealed by seismic coda waves[J]. Proceedings of the National Academy of Sciences, 116(7): 2464−2469. doi: 10.1073/pnas.1810903116

    CrossRef Google Scholar

    [122] 陈召曦, 孟小红, 郭良辉, 刘国峰. 2012. 基于GPU并行的重力、重力梯度三维正演快速计算及反演策略[J]. 地球物理学报, 55(12): 4069−4077. doi: 10.6038/j.issn.0001-5733.2012.12.019

    CrossRef Google Scholar

    [123] 崔方智, 周韬, 张兵. 2020. 煤层中CO2注入运移瞬变电磁法监测技术探索[J]. 物探与化探, 44(3): 573–581.

    Google Scholar

    [124] 刁玉杰, 刘廷, 魏宁, 马鑫, 金晓琳, 付雷. 2023. 咸水层二氧化碳地质封存潜力分级及评价思路[J]. 中国地质, 50(3): 943−951. doi: 10.12029/gc20221030001

    CrossRef Google Scholar

    [125] 李红蕾, 陈石, 庄建仓, 张贝, 石磊. 2021. 贝叶斯同化重力反演方法构建龙门山地壳密度模型[J]. 地球物理学报, 64(4): 1236−1252. doi: 10.6038/cjg2021O0130

    CrossRef Google Scholar

    [126] 李姜辉, 余凤玲, 牛雄伟, 周天, 张运修, 李雯菱. 2023. 海底碳封存监测技术体系研究及未来发展[J]. 地球科学进展, 38(11): 1121−1144. doi: 10.11867/j.issn.1001-8166.2023.071

    CrossRef Google Scholar

    [127] 李小春, 袁维, 白冰. 2016. CO2地质封存力学问题的数值模拟方法综述[J]. 岩土力学, 37(6): 1762–1772.

    Google Scholar

    [128] 刘彦, 吕庆田, 李晓斌, 祈光, 赵金花, 严加永, 邓震. 2015. 基于模型降阶的贝叶斯方法在三维重力反演中的实践[J]. 地球物理学报, 58(12): 4727−4739. doi: 10.6038/cjg20151233

    CrossRef Google Scholar

    [129] 秦积舜, 李永亮, 吴德彬, 翁慧, 王高峰. 2020. CCUS全球进展与中国对策建议[J]. 油气地质与采收率, 27(1): 20−28.

    Google Scholar

    [130] 屈文璋, 安志国. 2020. 时移音频大地电磁监测数值模拟研究[J]. 地球物理学进展, 35(4): 1595–1604.

    Google Scholar

    [131] 任韶然, 任博, 李永钊, 张亮, 康万利, 刘运成, 陈国利, 张华. 2012. CO2地质埋存监测技术及其应用分析[J]. 中国石油大学学报(自然科学版), 36(1): 106−111.

    Google Scholar

    [132] 仝云霄, 杨俊泉, 王雪, 谭琨. 2024. 基于时序InSAR的山西大同煤田地表沉降监测及时空演化分析[J]. 中国地质, 51(1): 170−183. doi: 10.12029/gc20221215001

    CrossRef Google Scholar

    [133] 王祥, 郭良辉. 2020. 球坐标系密度界面反演方法及在华南大陆的应用[J]. 物探与化探, 44(5): 1161–1171.

    Google Scholar

    [134] 吴江, 任思源, 孙一景, 刘启贞. 2022. 基于“双碳”背景的CCUS技术研究与应用[J]. 华中科技大学学报(自然科学版), 50(7): 89−100.

    Google Scholar

    [135] 杨扬, 马劲风, 李琳. 2015. CO2地质封存四维多分量地震监测技术进展[J]. 地球科学进展, 30(10): 1119–1126.

    Google Scholar

    [136] 于恩毅, 邸元, 吴辉, 曹小朋, 张庆福, 张传宝. 2023. CO2地质封存风险分析的多场耦合数值模拟技术综述[J]. 力学学报, 55(9): 2075−2090. doi: 10.6052/0459-1879-23-127

    CrossRef Google Scholar

    [137] 张贤, 李阳, 马乔, 刘玲娜. 2021. 我国碳捕集利用与封存技术发展研究[J]. 中国工程科学, 23(6): 70−80.

    Google Scholar

    [138] 张凯, 陈掌星, 兰海帆, 马浩铭, 姜亮亮, 薛振乾, 张育铭, 程世轩. 2023. 碳捕集、利用与封存技术的现状及前景[J]. 特种油气藏, 30(2): 1–12.

    Google Scholar

    [139] 张琪, 崔永君, 步学朋, 陈强. 2011. CCS监测技术发展现状分析[J]. 神华科技, 9(2): 77−82. doi: 10.3969/j.issn.1674-8492.2011.02.023

    CrossRef Google Scholar

    [140] 张阳, 孙佳文, 赵海东, 乔婷. 2022. 碳达峰碳中和目标下内蒙古CO2地质封存的生态产品价值实现路径[J]. 干旱区资源与环境, 36(11): 19−26.

    Google Scholar

    [141] 赵改善. 2023. 二氧化碳地质封存地球物理监测: 现状、挑战与未来发展[J]. 石油物探, 62(2): 194–211.

    Google Scholar

    [142] 赵海英, 陈沅忠, 李彦鹏, 刘国军, 李陶, 夏淑君, 范含周. 2018. CO2地质封存时移垂直地震监测技术[J]. 岩土力学, 39(8): 3095−3102.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(4)

Article Metrics

Article views(236) PDF downloads(23) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint