Citation: | LI Zhuang, ZHANG Jing, LIU Hongwei, YANG Junquan, MIAO Jinjie, HAN Bo, BAI Yaonan. 2025. Spatial−temporal pattern and influencing factors of vegetation coverage in the northern agro−pastoral ecotone in China from 2000 to 2022[J]. Geology in China, 52(3): 786-800. doi: 10.12029/gc20240116005 |
This paper is the result of ecological geological survey engineering.
This paper systematically studied the spatial and temporal distribution characteristics and change trends of vegetation cover in the northern agro-pastoral ecotone in China from 2000 to 2022, and scientifically revealed the multiple influencing factors and mechanisms of vegetation cover change, which can provide data and theoretical support to carry out the evaluation of ecological quality and the investigation and assessment of important ecological space in this area.
Taking the northern agro-pastoral ecotone as the research area, different types of data were collected, including natural factors (elevation, meteorological data, etc.), human factors (land−use practices, etc.) and MODIS−NDVI remote sensing images. GIS spatial analysis methods and mathematical and statistical methods such as trend analysis, Mann−Kendall non−parametric test and correlation analysis were applied to analyze the spatial-temporal characteristics and influencing factors of vegetation coverage in the agro-pastoral ecotone of northern China from 2000 to 2022.
(1) The average vegetation cover in the northern agro-pastoral ecotone increased by 0.0093/a year from 2000 to 2022. The overall vegetation cover showed a spatial distribution characteristic of "high in the east and low in the west". (2) From 2000 to 2022, the spatial−temporal trends of FVC in the study area was mainly increasing, with the proportion of the area with highly significant and significantly increasing trends being 60.33% and 10.14%. (3) In terms of terrain, when the elevation of the study area was under 2500 m or above 4000 m, the vegetation coverage gradually decreased with the increase of elevation. When the elevation was between 2500 and 4000 m, the vegetation coverage gradually increased with the elevation increasing. In addition, the vegetation cover gradually increases when the slope is between 0° and 45°. In terms of meteorology, vegetation cover was positively correlated with average temperature and negatively correlated with the drought index. In terms of land use, the overall change of vegetation cover was affected by the transformation of quantity, mode and structure of land use types such as grassland, forest land and arable land in different years in the study area.
The vegetation coverage in the study area showed an increasing trend, and the ecological quality increased obviously. The vegetation cover in the study area had a strong correlation with a variety of influencing factors, such as natural factors (topography, meteorology) and human factors (land use).
[1] | Berdimbetov T, Ilyas S, Ma Z, Bilal M, Nietullaeva S. 2021. Climatic change and human activities link to vegetation dynamics in the Aral Sea Basin using NDVI[J]. Earth Systems and Environment, 5: 303−318. doi: 10.1007/s41748-021-00224-7 |
[2] | Buhe, Ulantuya, Siqinchaoketu, Han Shumin, Gaosuriguga, Wu Xiuquan. 2023. Response of vegetation fraction cover change to meteorological drought in Inner Mongolia from 1982 to 2099[J]. Journal of Northwest Forestry University, 38(5): 1−9 (in Chinese with English abstract). |
[3] | Chen Jiahao, Hu Zhongmin, Wu Kai. 2023. Spatiotemporal variations of NDVI and the analysis of its climate driving factors in Hainan Island during 1982−2015[J]. Remote Sensing Technology and Application, 38(5): 1071−1080 (in Chinese with English abstract). |
[4] | Chen Xinming, Pan Yuchun, Xu Yong, Guo Zhendong, Zheng Zhiwei, Dai Qiangyu. 2023. Spatio–temporal variation of fractional vegetation cover and its relationship with climate and topographic factors in southwest China[J]. Southwest China Journal of Agricultural Sciences, 36(6): 1307−1317 (in Chinese with English abstract). |
[5] | Deng Jiang. 2023. Temporal and spatial evolution characteristics and influencing factors of vegetation coverage in Oasis of Makit County from 1990 to 2020[J]. Hubei Agricultural Sciences, 62(5): 35−43 (in Chinese with English abstract). |
[6] | Dong Jiaxian, Zhou Liangti, Li Min. 2023. Analysis of the drought index in Lixianjiang River Basin[J]. Pearl River, 44(S1): 33−36 (in Chinese with English abstract). |
[7] | Enebish B, Dashkhuu D, Renchin M, Russell, Singh P. 2019. Impact of climate on the NDVI of Northern Mongolia[J]. Journal of the Indian Society of Remote Sensing, 48(2): 333−340. |
[8] | Fan Xuefeng, Sun Xinlong, Zhang Yingjie. 2024. Spatiotemporal variation of vegetation coverage and its meteorological causes in Arukhorqin Banner[J]. Grassland and Prataculture, 36(1): 14−18 (in Chinese with English abstract). |
[9] | Gao Jixi, Shi Yunali, Zhang Hongwei, Chen Xuhui, Zhang Wenguo, Shen Wenming, Xiao Tong, Zhang Yuhuan. 2023. China regional 250 m normalized difference vegetation index data set (2000–2022)[DB/OL]. National Tibetan Plateau/Third Pole Environment Data Center, [2024–01–20] (in Chinese with English abstract). https://cstr.cn/18406.11.Terre.tpdc.300328. |
[10] | Gao C, Ren X L, Fan L L, He H L, Zhang L, Zhang X Y, Li Y, Zeng N, Chen X Z. 2023. Assessing the vegetation dynamics and its influencing factors in Central Asia from 2001 to 2020[J]. Remote Sensing, 15(19): 4670. doi: 10.3390/rs15194670 |
[11] | Guo Yongqiang, Wang Naijiang, Chu Xiaosheng, Li Cheng, Luo Xiaoqi, Feng Hao. 2019. Analyzing vegetation coverage changes and its reasons on the Loess Plateau based on Google Earth Engine[J]. China Environmental Science, 39(11): 4804−4811 (in Chinese with English abstract). |
[12] | He Lihuan, Dong Guihua, Wang Weimin, Ming Zhu. 2014. Ecosystem status and change assessment of agro–pastoral ecotone of North China in 2000–2010[J]. Environmental Monitoring in China, 30(5): 63−68 (in Chinese with English abstract). |
[13] | Hong Ziyin, Li Mangen, Duo Linghua, Chen Niannan. 2024. Analysis of 30 years spatio-temporal variation of vegetation cover based on GEE in Anyuan county, Ganzhou[J]. Journal of East China University of Technology (Natural Science), 47(1): 93−100. |
[14] | Kang M P, Zhao C Z, Li X Y, Ma M, Zhao X W. 2023. Temporal and spatial characteristics of vegetation coverage and their influencing factors in the Sugan Lake wetland on the northern margin of the Qinghai–Tibet Plateau[J]. Frontiers in Ecology and Evolution, 11: 1097817. doi: 10.3389/fevo.2023.1097817 |
[15] | Kendall M G. 1949. Rank correlation methods[J]. The Economic Journal, 59(236): 575−577. doi: 10.2307/2226580 |
[16] | Li Jing, Yan Xingguang, Yan Xiaoxiao, Guo Wei, Wang Kewen, Qiao Jian. 2021. Temporal and spatial variation characteristic of vegetation coverage in the Yellow River Basin based on GEE cloud platform[J]. Journal of China Coal Society, 46(5): 1439−1450 (in Chinese with English abstract). |
[17] | Liu Jing, Wen Zhongming, Gang Chengcheng. 2020. Normalized difference vegetation index of different vegetation cover types and its responses to climate change in the Loess Plateau[J]. Acta Ecologica Sinica, 40(2): 678−691 (in Chinese with English abstract). |
[18] | Liu Junhui, Gao Jixi. 2008. Effects of climate and land use change on the changes of vegetation coverage in farming–pastoral ecotone of Northern China[J]. Chinese Journal of Applied Ecology, 19(9): 2016−2022 (in Chinese with English abstract). |
[19] | Liu Ligang, Shi Jinglin. 2017. Calculation of drought index and analysis of water surface evaporation in Manas River basin, Xinjiang[J]. Shaanxi Water Resources, 205(2): 159−160 (in Chinese). |
[20] | Liu Xianfeng, Pan Yaozhong, Zhu Xiufang, Li Shuangshuang. 2015. Spatiotemporal variation of vegetation coverage in Qinling–Daba Mountains in relation to environmental factors[J]. Acta Geographica Sinica, 70(5): 705−716 (in Chinese with English abstract). |
[21] | Liu Yi, Shi Peidong, Liu Miao, Xu Kairan, Zhang Ning, Jiang Peng, Wang Weijia, Jiang Yuge. 2024. Spatial pattern of water conservation function and ecological management suggestions in the catchment area of the upper reaches of Qinhe River in the Yellow River Basin from 1990 to 2020[J]. Geology in China, 51(6): 1917−1929 (in Chinese with English abstract). |
[22] | Luo Hong, Yang Cunjian. 2023. Dynamic change and driving force analysis of vegetation coverage in the upper reaches of the Yangtze River in recent 19 years[J]. Ecological Science, 42(1): 234−241 (in Chinese with English abstract). |
[23] | Ning Hang, Liu Futian, Wang Guoming, Zhang Jing, Zhang Zhuo, Chen Sheming. 2024. Evaluation of groundwater resources and analysis of related geological environment problems in Inner Mongolia Inland River Basin[J]. North China Geology, 47(2): 62−72. |
[24] | Peng Shouzhang. 2019. 1–km monthly mean temperature dataset for china (1901–2022)[DB/OL]. National Tibetan Plateau / Third Pole Environment Data Center, [2024–01–20](in Chinese with English abstract). https://doi.org/10.11888/Meteoro.tpdc.270961. |
[25] | Peng Shouzhang. 2020. 1–km monthly precipitation dataset for China (1901–2022)[DB/OL]. National Tibetan Plateau/Third Pole Environment Data Center, [2024–01–20](in Chinese with English abstract). https://doi.org/10.5281/zenodo.3185722. |
[26] | Propastin P A, Kappas M, Muratova N R. 2008. Inter–annual changes in vegetation activities and their relationship to temperature and precipitation in Central Asia from 1982 to 2003[J]. Journal of Environmental Informatics, 12(2): 75−87. doi: 10.3808/jei.200800126 |
[27] | Sen P K. 1968. Estimates of the regression coefficient based on Kendall's Tau[J]. Journal of the American Statistical Association, 63(324): 1379−1389. doi: 10.1080/01621459.1968.10480934 |
[28] | Shi Peidong, Liu Yaqin, Chen Peng, Xu Kairan, Jiang Yuge, Liu Miao, Zang Mingdong. 2023. Analysis and evaluation of environmental sensitivity in the Qinhe River Basin in the middle reaches of the Yellow River[J]. Geology in China, 50(1): 13–25 in Chinese with English abstract). |
[29] | Shi Song, Li Wen, Yang Ziyi, Yu Ran. 2023. Spatiotemporal variations and topographic differentiation of fractional vegetation cover in Changbai Mountain[J]. Bulletin of Soil and Water Conservation, 43(3): 254−264, 276 (in Chinese with English abstract). |
[30] | Shi Xiaoli, Shi Wenjiao. 2018. Review on boundary shift of farming–pastoral ecotone in northern China and its driving forces[J]. Transactions of the Chinese Society of Agricultural Engineering, 34(20): 1−11 (in Chinese with English abstract). |
[31] | Shobairi S O R, Usoltsev V A, Chasovskikh V P. 2018. Dynamic estimation model of vegetation fractional coverage and drivers[J]. International Journal of Advanced and Applied Sciences, 5(3): 60−66. |
[32] | Song Menglai, Chen Haitao, Ding Han, Cui Naixin, Kang Gelin, Wang Yuqiu. 2023. Temporal and spatial variation characteristic and influencing factors of vegetation coverage in Tianjin during 1990–2020[J]. Research of Soil and Water Conservation, 30(1): 154−163 (in Chinese with English abstract). |
[33] | Su Wei, Liu Xiaoxuan, Luo Qian, Chang Shuqi, Zhang Xiaodong. 2015. Responses of vegetation to change of meteorological factors in agricultural–pastoral area of Northern China[J]. Transactions of the Chinese Society for Agricultural Machinery, 46(11): 352−359 (in Chinese with English abstract). |
[34] | Wang Chong, Zhang Jing, Peng Bo, Wang Jilong, Yu Junjie, Wu Jiayu. 2023. Research on the optimization of land spatial pattern based on "dual evaluation": Taking Anyuan County, Jiangxi Province as an example[J]. North China Geology, 46(2): 69−78 (in Chinese with English abstract). |
[35] | Wang Jianhua, Li Yang, Liang Shuneng, Sun Xiaofei. 2022. The study of land desertification recognition and extraction based on hyperspectral satellite data[J]. North China Geology, 45(4): 60−67 (in Chinese with English abstract). |
[36] | Wang Yi, Hao Lina, Xu Qiang, Li Jiaqin, Chang Hao. 2023. Spatio–temporal variations of vegetation coverage and its geographical factors analysis on the Loess Plateau from 2001 to 2019[J]. Acta Ecologica Sinica, 43(6): 2397−2407 (in Chinese with English abstract). |
[37] | Wei Hongfei, Zhang Wei, Ji Chenjia, Han Songjie. 2024. Spatio–temporal variation characteristics and driving factors of vegetation in Alxa Zuoqi based on GEE[J]. Geospatial Information, 22(2): 55−60 (in Chinese with English abstract). |
[38] | Xu Xinliang, Liu Jiyuan, Zhang Shuwen, Li Rendong, Yan Changzhen, Wu Shixin. 2018. China Multi–period Land Use Remote Sensing Monitoring Dataset (CNLUCC)[DB/OL]. Resource and Environment Science and Data Center, [2024–01–20]. |
[39] | Yang Tao, Yan Xiaojuan, Zhao Hansen, Wang Peng, Zhu Tao, Cai Haojie, Zuo Xugang, Xi Rengang, Zhang Yulian, Wang Lishe, Wu Shuo. 2023. Land use changes of Weihe River Basin and its influence on the ecological spatial pattern[J]. Geology in China, 50(5): 1460−1470 (in Chinese with English abstract). |
[40] | Yao Nan, Dong Guotao, Xue Huazhu. 2024. Analysis on the characteristics of the spatiotemporal change in vegetation coverage on the Loess Plateau using the Google Earth Engine[J]. Research of Soil and Water Conservation, 31(1): 260−268 (in Chinese with English abstract). |
[41] | Yin Zhenliang, Feng Qi, Wang Lingge, Chen Zexia, Chang Yabin, Zhu Rui. 2022. Vegetation coverage change and its influencing factors across the northwest region of China during 2000–2019[J]. Journal of Desert Research, 42(4): 11−21 (in Chinese with English abstract). |
[42] | Zeng Shengxuan. 2018. Analysis of the Spatio–temporal Variability of Water and Energy in the Agricultural–pastoral Ecotone of Northwest China[D]. Lanzhou: Lanzhou University, 1–332 (in Chinese with English abstract). |
[43] | Zhang Liang, Ding Mingjun, Zhang Huamin, Wen Chao. 2018. Spatiotemporal variation of the vegetation coverage in Yangtze River Basin during 1982–2015[J]. Journal of Natural Resources, 33(12): 2084−2097 (in Chinese with English abstract). doi: 10.31497/zrzyxb.20171056 |
[44] | Zhang Yaowen, Zhang Bo, Yao Rongpeng, Wang Libing. 2022. Temporal and spatial changes of vegetation coverage and water production in the Weihe River Basin from 2000 to 2020[J]. Journal of Desert Research, 42(2): 223−233 (in Chinese with English abstract). |
[45] | Zhao Nan, Zhao Yinghui, Zou Haifeng, Bai Xiaohong, Zhen Zhen. 2023. Spatial and temporal trends and drivers of fractional vegetation cover in Heilongjiang Province, China during 1990–2020[J]. Chinese Journal of Applied Ecology, 34(5): 1320−1330 (in Chinese with English abstract). |
[46] | Zhao Weixi, Du Huaming, Dong Tingxu, Xing Yike. 2024. Spatial–temporal variability of the net primary production in the farming–pastoral ecotone of the Northern China[J]. Journal of Mianyang Teachers' College (Science), 43(2): 113−119 (in Chinese with English abstract). |
[47] | Zhao Zhiping, Han Ruiying, Guan Xiao, Xiao Nengwen, Li Junsheng. 2022. Change of vegetation coverage and the driving factor in the Beijing–Tianjin–Hebei region from 2000 to 2019[J]. Acta Ecologica Sinica, 42(21): 8860−8868 (in Chinese with English abstract). |
[48] | 布和, 乌兰图雅, 斯琴朝克图, 韩淑敏, 高苏日固嘎, 吴秀泉. 2023. 1982–2099年内蒙古地区植被覆盖变化对气象干旱的响应[J]. 西北林学院学报, 38(5): 1−9. doi: 10.3969/j.issn.1001-7461.2023.05.01 |
[49] | 陈甲豪, 胡中民, 吴凯. 2023. 1982~2015年海南岛NDVI时空变化及气候驱动力分析[J]. 遥感技术与应用, 38(5): 1071−1080. |
[50] | 陈新明, 盘钰春, 徐勇, 郭振东, 郑志威, 戴强玉. 2023. 西南地区植被覆盖度时空演变及其与气候和地形的相关性[J]. 西南农业学报, 36(6): 1307−1317. |
[51] | 邓江. 2023. 1990—2020年麦盖提绿洲植被覆盖度时空演变特征及影响因素分析[J]. 湖北农业科学, 62(5): 35−43. |
[52] | 董家贤, 周良体, 李敏. 2023. 李仙江流域干旱指数分析[J]. 人民珠江, 44(S1): 33−36. |
[53] | 樊雪丰, 孙新龙, 张迎杰. 2024. 阿鲁科尔沁旗植被覆盖度时空变化及气象原因[J]. 草原与草业, 36(1): 14−18. |
[54] | 高吉喜, 史园莉, 张宏伟, 陈绪慧, 张文国, 申文明, 肖桐, 张玉环. 2023. 中国区域250米归一化植被指数数据集(2000–2022)[DB/OL]. 国家青藏高原科学数据中心, [2024–01–20]. https://cstr.cn/18406.11.Terre.tpdc.300328. |
[55] | 郭永强, 王乃江, 褚晓升, 李成, 罗晓琦, 冯浩. 2019. 基于Google Earth Engine分析黄土高原植被覆盖变化及原因[J]. 中国环境科学, 39(11): 4804−4811. |
[56] | 何立环, 董贵华, 王伟民, 明珠. 2014. 中国北方农牧交错带2000–2010年生态环境状况分析[J]. 中国环境监测, 30(5): 63−68. |
[57] | 洪梓崟, 李满根, 多玲花, 陈念楠. 2024. 基于GEE的赣州安远县30年植被覆盖度时空变化分析[J]. 东华理工大学学报(自然科学版), 47(1): 93−100. |
[58] | 李晶, 闫星光, 闫萧萧, 郭伟, 王科雯, 乔建. 2021. 基于GEE云平台的黄河流域植被覆盖度时空变化特征[J]. 煤炭学报, 46(5): 1439−1450. |
[59] | 刘静, 温仲明, 刚成诚. 2020. 黄土高原不同植被覆被类型NDVI对气候变化的响应[J]. 生态学报, 40(2): 678−691. |
[60] | 刘军会, 高吉喜. 2008. 气候和土地利用变化对中国北方农牧交错带植被覆盖变化的影响[J]. 应用生态学报, 19(9): 2016−2022. |
[61] | 刘利刚, 时京林. 2017. 新疆玛纳斯河流域干旱指数计算及水面蒸发规律分析[J]. 陕西水利, (2): 159−160. |
[62] | 刘宪锋, 潘耀忠, 朱秀芳, 李双双. 2015. 2000–2014年秦巴山区植被覆盖时空变化特征及其归因[J]. 地理学报, 70(5): 705−716. |
[63] | 刘义, 史佩东, 刘淼, 许凯然, 张宁, 姜鹏, 王玮迦, 姜禹戈. 2024. 1990–2020年黄河流域沁河上游汇水区水源涵养功能空间格局与生态治理建议[J]. 中国地质, 51(6): 1917−1929. |
[64] | 罗鸿, 杨存建. 2023. 长江上游近19年植被覆盖度动态变化及驱动力分析[J]. 生态科学, 42(1): 234−241. |
[65] | 宁航, 柳富田, 王国明, 张竞, 张卓, 陈社明. 2024. 内蒙古内陆河流域地下水资源评价及相关地质环境问题分析[J]. 华北地质, 47(2): 62−72. |
[66] | 彭守璋. 2019. 中国1 km分辨率逐月平均气温数据集(1901–2022)[DB/OL]. 国家青藏高原科学数据中心, [2024–01–20]. https://doi.org/10.11888/Meteoro.tpdc.270961. |
[67] | 彭守璋. 2020. 中国1 km分辨率逐月降水量数据集(1901–2022)[DB/OL]. 国家青藏高原数据中心, [2024–01–20]. https://doi.org/10.5281/zenodo.3185722. |
[68] | 史佩东, 刘义, 孙娅琴, 陈彭, 许凯然, 姜禹戈, 刘淼, 臧明东. 2023. 黄河中游沁河流域环境敏感性分析评价[J]. 中国地质, 50(1): 13−25. |
[69] | 石淞, 李文, 杨子仪, 于冉. 2023. 长白山区植被覆盖度时空变化及地形分异研究[J]. 水土保持通报, 43(3): 254−264,276. |
[70] | 石晓丽, 史文娇. 2018. 北方农牧交错带界线的变迁及其驱动力研究进展[J]. 农业工程学报, 34(20): 1−11. |
[71] | 宋梦来, 陈海涛, 丁晗, 崔乃心, 亢戈霖, 王玉秋. 2023. 1990–2020年天津市植被覆盖度时空演变特征及影响因素分析[J]. 水土保持研究, 30(1): 154−163. |
[72] | 苏伟, 刘晓暄, 罗倩, 常书齐, 张晓东. 2015. 北方农牧交错带植被对气象因子变化的响应规律研究[J]. 农业机械学报, 46(11): 352−359. |
[73] | 王冲, 张景, 彭博, 王继龙, 于俊杰, 吴佳瑜. 2023. 基于“双评价”的国土空间格局优化研究—以江西省安远县为例[J]. 华北地质, 46(2): 69−78. |
[74] | 王建华, 李阳, 梁树能, 孙小飞. 2022. 基于高光谱卫星数据的土地沙化识别及提取研究[J]. 华北地质, 45(4): 60−67. |
[75] | 王一, 郝利娜, 许强, 李佳琴, 常浩. 2023. 2001—2019年黄土高原植被覆盖度时空演化特征及地理因子解析[J]. 生态学报, 43(6): 2397−2407. |
[76] | 卫鸿飞, 张唯, 吉宸佳, 韩松洁. 2024. 基于GEE的阿拉善左旗植被时空变化特征及驱动因子分析[J]. 地理空间信息, 22(2): 55−60. |
[77] | 徐新良, 刘纪远, 张树文, 李仁东, 颜长珍, 吴世新. 2018. 中国多时期土地利用遥感监测数据集(CNLUCC)[DB/OL]. 资源环境科学数据注册与出版系统(http://www.resdc.cn/DOI), [2024–01–20]. |
[78] | 杨涛, 阎晓娟, 赵寒森, 王鹏, 朱涛, 蔡浩杰, 左旭刚, 奚仁刚, 张雨莲, 王立社, 吴硕. 2023. 渭河流域土地利用类型转换及其对生态空间格局的影响[J]. 中国地质, 50(5): 1460−1470. doi: 10.12029/gc20220325004 |
[79] | 姚楠, 董国涛, 薛华柱. 2024. 基于Google Earth Engine的黄土高原植被覆盖度时空变化特征分析[J]. 水土保持研究, 31(1): 260−268. |
[80] | 尹振良, 冯起, 王凌阁, 陈泽霞, 常亚斌, 朱睿. 2022. 2000—2019年中国西北地区植被覆盖变化及其影响因子[J]. 中国沙漠, 42(4): 11−21. |
[81] | 曾晟轩. 2018. 典型西北农牧交错带气候水热时空规律研究[D]. 兰州: 兰州大学, 1–332. |
[82] | 张亮, 丁明军, 张华敏, 文超. 2018. 1982—2015年长江流域植被覆盖度时空变化分析[J]. 自然资源学报, 33(12): 2084−2097. |
[83] | 张耀文, 张勃, 姚荣鹏, 王立兵. 2022. 2000—2020年渭河流域植被覆盖度及产水量时空变化[J]. 中国沙漠, 42(2): 223−233. |
[84] | 赵楠, 赵颖慧, 邹海凤, 白晓红, 甄贞. 2023. 1990—2020年黑龙江省植被覆盖度的时空变化趋势及驱动力[J]. 应用生态学报, 34(5): 1320−1330. |
[85] | 赵唯茜, 杜华明, 董廷旭, 邢意珂. 2024. 中国北方农牧交错带净初级生产力时空分异特征[J]. 绵阳师范学院学报, 43(2): 113−119. |
[86] | 赵志平, 汉瑞英, 关潇, 肖能文, 李俊生. 2022. 2000—2019年京津冀地区植被覆盖状况变化及驱动因素[J]. 生态学报, 42(21): 8860−8868. |
Geographical location and topographic map of the northern agro−pastoral ecotone
Long time series characteristics of vegetation coverage in the northern agro−pastoral ecotone from 2000 to 2022
Spatial-temporal distribution of vegetation coverage in the northern agro−pastoral ecotone from 2000 to 2022
Spatial change map of vegetation coverage in the northern agro−pastoral ecotone from 2000 to 2022
Sankey map of graded area transfer matrix of vegetation coverage in the northern agro−pastoral ecotone from 2000 to 2022
Trend slope (a) and significant type (b) of vegetation coverage change in the northern agro−pastoral ecotone from2000 to 2022
Accumulation bar chart of the area proportion of vegetation coverage level in different elevation zones in the northern agro−pastoral ecotone
The area proportion of vegetation coverage grade in different slope zones of the northern agro−pastoral ecotone
Spatial distribution of correlation between climatic factors and vegetation coverage in the northern agro−pastoral ecotone from 2000 to 2022
Accumulation bar chart of area proportion of vegetation cover grade under different land use types