2025 Vol. 52, No. 3
Article Contents

YAO Yuan, ZHAO Yu, LIU San, SU Jing, CHEN Zhenyu, LIANG Nan. 2025. Characteristics of clay minerals in oasis farmland soil and their effects on adsorption of soil nutrients and heavy metal: A case study of the oasis area in the Kaikong river basin, Xinjiang[J]. Geology in China, 52(3): 773-785. doi: 10.12029/gc20230731001
Citation: YAO Yuan, ZHAO Yu, LIU San, SU Jing, CHEN Zhenyu, LIANG Nan. 2025. Characteristics of clay minerals in oasis farmland soil and their effects on adsorption of soil nutrients and heavy metal: A case study of the oasis area in the Kaikong river basin, Xinjiang[J]. Geology in China, 52(3): 773-785. doi: 10.12029/gc20230731001

Characteristics of clay minerals in oasis farmland soil and their effects on adsorption of soil nutrients and heavy metal: A case study of the oasis area in the Kaikong river basin, Xinjiang

    Fund Project: Supported by the project of China Geological Survey(No.DD20230556).
More Information
  • Author Bio: YAO Yuan, male, born in 1997, engineer, mainly engaged in soil geochemistry and ecological geochemistry; E−mail: YaoYuanSF@163.com
  • Corresponding author: ZHAO Yu, male, born in 1988, engineer, mainly engaged in ecological geochemistry; E−mail: Zhaoyu01@mail.cgs.gov.cn
  • This paper is the result of environmental geological survey engineering.

    Objective

    Clay minerals play a crucial role in soil quality regulation. Identifying the clay mineral characteristics of farmland soil in arid oasis areas is of great significance to soil quality control and agricultural development.

    Methods

    This study focused on the farmland soil in the arid oasis area of the Kaidu−Kongque River Basin, Bayingolin Mongolian Autonomous Prefecture, Xinjiang, and explored the characteristics of clay minerals composition, provenance evolution, soil−forming climatic conditions and their influence on soil quality through systematic analysis methods including X−ray diffraction pattern analysis, correlation analysis, triangular diagram analysis and weathering index analysis.

    Results

    The dominant clay mineral types in the study area are 2:1 illite, illite/smectite mixed−layer minerals, and chlorite, with a minor presence of kaolinite. The evolution sequence of the clay minerals, which originate from granite, is illite→illite/smectite mixed−layer mineral→chlorite and kaolinite. The illite crystallinity (IC value) ranges from 0.35 to 0.62, with an average of 0.44. The chemical alteration index (CIA value) ranges from 51.29% to 62.57%, averaging 58.24%. The compositional variation index (ICV value) ranges from 1.09 to 3.69, averaging 2.65. These indicators suggest a pedogenesis environment with low temperatures, aridity, and relatively weak weathering intensity. The total clay mineral content in the study area shows a positive correlation with soil nutrients and heavy metal elements.

    Conclusions

    The clay minerals assemblage in the oasis area of the Kaidu−Kongque River Basin is of the illite−illite/smectite mixed−layer mineral−chlorite type. Clay minerals play a significant role in enhancing soil nutrient levels and immobilizing heavy metal elements through adsorption, thereby improving soil quality.

  • 加载中
  • [1] Bergaya F, Lagaly G. 2006. General introduction: Clays, clay minerals, and clay science[J]. Developments in Clay Science, 1: 1−18.

    Google Scholar

    [2] Biscaye P E. 1965. Mineralogy and sedimentation of recent deep−sea clay in the Atlantic Ocean and adjacent seas and oceans[J]. Geological Society of America Bulletin, 76(7): 803−832. doi: 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2

    CrossRef Google Scholar

    [3] Cai Jingong, Lu Longfei, Ding Fei, Fan Fu. 2009. Significance of interaction between soluble organic matter and clay minerals in muddy source rocks[J]. Journal of Tongji University (Natural Science), 37(12): 1679−1684 (in Chinese with English abstract).

    Google Scholar

    [4] Chen Tao, Wang Huan, Zhang Zuqing, Wang Hemian. 2003. Clay minerals as indicators of paleoclimate[J]. Acta Petrologica et Mineralogica, 22(4): 416−420 (in Chinese with English abstract).

    Google Scholar

    [5] Celis R, Hermosin M C, Cornejo J. 2000. Heavy metal adsorption by functionalized clays[J]. Environmental Science & Technology, 34(21): 4593−4599.

    Google Scholar

    [6] Cox R, Lowe D R, Cullers R L. 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States[J]. Geochimica et Cosmochimica Acta, 59(14): 2919−2940. doi: 10.1016/0016-7037(95)00185-9

    CrossRef Google Scholar

    [7] Crow S E, Swanston C W, Lajtha K, Brooks J R, Keirstead H. 2007. Density fractionation of forest soils: Methodological questions and interpretation of incubation results and turnover time in an ecosystem context[J]. Biogeochemistry, 85: 69−90.

    Google Scholar

    [8] Collins C R, Ragnarsdottir K V, Sherman D M. 1999. Effect of inorganic and organic ligands on the mechanism of cadmium sorption to goethite[J]. Geochimica et Cosmochimica Acta, 63: 2989−3002. doi: 10.1016/S0016-7037(99)00226-4

    CrossRef Google Scholar

    [9] Dai Shugui, Liu Guangliang, Qian Yun, Sun Yubao. 2001. Development of research on soil multimedia environmental pollution[J]. Soil and Environmental Sciences, 10(1): 1−5 (in Chinese with English abstract).

    Google Scholar

    [10] Deconinck J F, Blanc−Valleron M, Rouchy J, Camoin G, Badaut−Trauth D. 2000. Palaeoenvironmental and diagenetic control of the mineralogy of Upper Cretaceous–Lower Tertiary deposits of the Central Palaeo–Andean basin of Bolivia (Potosi area)[J]. Sedimentary Geology, 132(3): 263−278.

    Google Scholar

    [11] Du Q, Sun Z, Forsling W. 1997. Surface complexation in natural particle suspensions[J]. International Poster Journal of Science & Technology, 2(2): 70−82.

    Google Scholar

    [12] Du Huihui. 2017. Molecular Binding Mechanisms of Cadmium and Lead at the Mineral−organic Interface[D]. Wuhan: Huazhong Agricultural University, 1−125 (in Chinese with English abstract).

    Google Scholar

    [13] Eloussaief M, Hamza W, Kallel N, Benzina M. 2013. Wastewaters decontamination: Mechanisms of Pb(II), Zn(II), and Cd(II) competitive adsorption on tunisian smectite in single and multi−solute systems[J]. Environmental Progress & Sustainable Energy, 32(2): 229−229.

    Google Scholar

    [14] Fedo C M, Wayne Nesbitt H, Young G M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 23(10): 921−924. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2

    CrossRef Google Scholar

    [15] Gier S, Johns W D. 2000. Heavy metal−adsorption on micas and clay minerals studied by X−ray photoelectron spectroscopy[J]. Applied Clay Science, 16(5/6): 289−299.

    Google Scholar

    [16] Gupta S S, Bhattacharyya K G. 2008. Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium[J]. Journal of Environmental Management, 87(1): 46−58. doi: 10.1016/j.jenvman.2007.01.048

    CrossRef Google Scholar

    [17] Hou Qinye, Yang Zhongfang, Yu Tao, Xia Xueqi, Cheng Hangxin, Zhou Guohua. 2020. Soil Geochemical Elements Parameters in China[M]. Beijing: Geological Publishing House, 75−135(in Chinese with English abstract).

    Google Scholar

    [18] Hang Xiaoshuai, Zhou Jianmin, Wang Huoyan, Shen Peiyou. 2007. Remediation of heavy metal contaminated soils using clay minerals[J]. Chinese Journal of Environmental Engineering, 1(9): 113−120 (in Chinese with English abstract).

    Google Scholar

    [19] He Hongping, Guo Longgao, Xie Xiande, Peng Jinlian. 1999. Experimental studies on the selective adsorption of Cu2+, Pb2+, Zn2+, Cd2+, Cr3+ ions on montmorillonite, illite and kaolinite and the influence of medium conditions[J]. Acta Mineralogica Sinica, 19(2): 231−235 (in Chinese with English abstract).

    Google Scholar

    [20] Keller W. 1970. Environmental aspects of clay minerals[J]. Journal of Sedimentary Research, 40(3): 788−813.

    Google Scholar

    [21] Kubler B. 1964. Les argiles, indicateurs de métamorphisme[J]. Revue de l'Institut Franç ais du Pétrol, 19: 1093−1112.

    Google Scholar

    [22] Li Xulong, Zhang Xia, Lin Chunming, Huang Shuya, Li Xin. 2022. Overview of the application and prospect of common chemical weathering indices[J]. Geological Journal of China Universities, 28(1): 51 (in Chinese with English abstract).

    Google Scholar

    [23] Liang Chenghua, Wei Liping, Luo Lei. 2002. Advance in research on mechanisms of potassium releasing and fixing in soils[J]. Advance in Earth Sciences, 17(5): 679 (in Chinese with English abstract).

    Google Scholar

    [24] Lin Z, Puls R W. 2000. Adsorption, desorption and oxidation of arsenic affected by clay minerals and aging process[J]. Environmental Geology, 39: 753−759.

    Google Scholar

    [25] Liu Dongsheng. 2002. Loess and environment[J]. Journal of Xi'an Jiaotong University (Social Sciences), 22(4): 7−12 (in Chinese with English abstract).

    Google Scholar

    [26] Long Hao, Wang Chenhua, Liu Yongping, Ma Haizhou. 2007. Application of clay minerals in paleoenvironment research[J]. Journal of Salt Lake Research, 15(2): 21−25 (in Chinese with English abstract).

    Google Scholar

    [27] Lu Chunxia. 1997. Clay minerals as indicators of paleoenvironment[J]. Journal of Desert Reserch, 17(4): 456−460 (in Chinese with English abstract).

    Google Scholar

    [28] Manning B A, Goldberg S. 1996. Modeling arsenate competitive adsorption on kaolinite, montmorillonite and illite[J]. Clays and Clay Minerals, 44: 609−623. doi: 10.1346/CCMN.1996.0440504

    CrossRef Google Scholar

    [29] Mortland M. 1970. Clay−organic complexes and interactions[J]. Advances in Agronomy, 22: 75−117.

    Google Scholar

    [30] Niu Fangpeng, Li Xinguo, Jin Wangui. 2020. Characteristics of soil salinity in the western lakeside oasis of Bosten Lake[J]. Soil and Fertilizer Sciences in China, (3): 8−15 (in Chinese with English abstract).

    Google Scholar

    [31] Ren Juan. 2021. Coupling Response of Iron Oxide Phase Differentiation and Phosphorus in Soils with Multi−environmental Gradients[D]. Chongqing: Southwest University, 1−136 (in Chinese with English abstract).

    Google Scholar

    [32] Shahmohammadi−Kalalagh S, Babazadeh H, Nazemi A H, Manshouri M. 2010. Isotherm and kinetic studies on adsorption of Pb, Zn and Cu by kaolinite[J]. Caspian Journal of Environmental Sciences, 9: 243−255.

    Google Scholar

    [33] Shi Huanzhi, Li Fuchun, Li Xuhui, Wu Feng, Luo Xupeng, Li Xuelin, Jin Zhangdong. 2011. Distribution of organic carbon in the Luochuan loess/paleosol and its relationship with clay minerals[J]. China Geology, 38(5): 1355−1362 (in Chinese with English abstract).

    Google Scholar

    [34] Schulten H R, Schnitzer M. 1997. The chemistry of soil organic nitrogen: A review[J]. Biology and Fertility of Soils, 26: 1−15. doi: 10.1007/s003740050335

    CrossRef Google Scholar

    [35] Singer A. 1984. The paleoclimatic interpretation of clay minerals in sediments—a review[J]. Earth−Science Reviews, 21(4): 251−293. doi: 10.1016/0012-8252(84)90055-2

    CrossRef Google Scholar

    [36] Tang Yanjie, Jia Jianye, Xie Xiande. 2002. Environment significance of clay minerals[J]. Earth Science Frontiers, 9(2): 337−344 (in Chinese with English abstract).

    Google Scholar

    [37] Thiry M. 2000. Palaeoclimatic interpretation of clay minerals in marine deposits: An outlook from the continental origin[J]. Earth−Science Reviews, 49(1): 201−221.

    Google Scholar

    [38] Tan X, Hu J, Montavon G, Wang X. 2011. Sorption speciation of nickel(II) onto Ca−montmorillonite: Batch, EXAFS techniques and modeling[J]. Dalton Transactions. 40: 10953−10960.

    Google Scholar

    [39] Uddin F. 2018. Montmorillonite: An Introduction to Properties and Utilization[M]. London, UK: Intech Open, 81−87.

    Google Scholar

    [40] Uddin M K. 2017. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade[J]. Chemical Engineering Journal, 308: 438−462. doi: 10.1016/j.cej.2016.09.029

    CrossRef Google Scholar

    [41] Velde B B, Meunier A. 2008. The Origin of Clay Minerals in Soils and Weathered Rocks[M]. Dordrecht, Netherlands: Springer Science & Business Media, 105−120.

    Google Scholar

    [42] Wang Jingguo. 2017. Biogeochemistry: Matter Cycles and Soil Processes[M]. Beijing: China Agricultural University Press, 82−92 (in Chinese with English abstract).

    Google Scholar

    [43] Wefer G, Berger W H, Siedler G, Diekmann B, Petsehick R. 1996. Clay mineral fluctuations in Late Quaternary sediments of the southeastern South Atlantic: Implications for past changes of deep water advection[J]. The South Atlantic: Present and Past Circulation, 621−644.

    Google Scholar

    [44] Yang Shengu. 2004. Three unit clay mineral analytical method and its application[J]. Journal of Jianghan Petroleum Institute, 26(2): 26−28 (in Chinese with English abstract).

    Google Scholar

    [45] Zhao Liwen, Ji Xibin. 2010. Quantification of transpiration and evaporation over agricultural field using the FAO−56 dual crop coefficient approach−a case study of the maize field in an oasis in the middlestream of the Heihe River Basin in Northwest China[J]. Scientia Agricultura Sinica, 43(19): 4016−4026 (in Chinese with English abstract).

    Google Scholar

    [46] Zhao Yu, Zhao Hansen, Liu Tuo, Bai Jin, Wang Lei, Liang Nan, Wang Peng, Yang Shengfei, Wei Jinping, Li Wengming, Zeng Xianhong, Zhang Zhuan, Han Haihui, Zhao Jun, Chen Zhenyu. 2022. Progresses and main achievements of geochemical survey of land quality in Northwest China[J]. Northwestern Geology, 55(3): 140−154 (in Chinese with English abstract).

    Google Scholar

    [47] Zheng Qingfu, Liu Ting, Zhao Lanpo, Feng Jun, Wang Hongbin, Li Chunlin. 2010. Spatial variation and evolution mechanism of clay minerals composition in agric horizon of black soil in Northeast China[J]. Acta Pedologica Sinica, 47(4): 734−746 (in Chinese with English abstract).

    Google Scholar

    [48] 蔡进功, 卢龙飞, 丁飞, 樊馥. 2009. 烃源岩中黏土与可溶有机质相互作用研究展望[J]. 同济大学学报(自然科学版), 37(12): 1679−1684.

    Google Scholar

    [49] 陈涛, 王欢, 张祖青, 王河锦. 2003. 粘土矿物对古气候指示作用浅析[J]. 岩石矿物学杂志, 22(4): 416−420. doi: 10.3969/j.issn.1000-6524.2003.04.022

    CrossRef Google Scholar

    [50] 戴树桂, 刘广良, 钱芸, 孙玉宝. 2001. 土壤多介质环境污染研究进展[J]. 土壤与环境, 10(1): 1−5.

    Google Scholar

    [51] 杜辉辉. 2017. Cd(II)、Pb(II)在土壤矿物−有机互作界面的分子结合机制[D]. 武汉: 华中农业大学, 1−125.

    Google Scholar

    [52] 侯青叶, 杨忠芳, 余涛, 夏学齐, 成杭新, 周国华. 2020. 中国土壤地球化学参数[M]. 北京: 地质出版社, 75−135.

    Google Scholar

    [53] 杭小帅, 周健民, 王火焰, 沈培友. 2007. 粘土矿物修复重金属污染土壤[J]. 环境工程学报, 1(9): 113−120. doi: 10.3969/j.issn.1673-9108.2007.09.025

    CrossRef Google Scholar

    [54] 何宏平, 郭龙皋, 谢先德, 彭金莲. 1999. 蒙脱石等粘土矿物对重金属离子吸附选择性的实验研究[J]. 矿物学报, 19(2): 231−235. doi: 10.3321/j.issn:1000-4734.1999.02.016

    CrossRef Google Scholar

    [55] 李绪龙, 张霞, 林春明, 李鑫. 2022. 常用化学风化指标综述: 应用与展望[J]. 高校地质学报, 28(1): 51.

    Google Scholar

    [56] 梁成华, 魏丽萍, 罗磊. 2002. 土壤固钾与释钾机制研究进展[J]. 地球科学进展, 17(5): 679. doi: 10.3321/j.issn:1001-8166.2002.05.008

    CrossRef Google Scholar

    [57] 刘东生. 2002. 黄土与环境[J]. 西安交通大学学报(社会科学版), 22(4):7−12.

    Google Scholar

    [58] 隆浩, 王晨华, 刘勇平, 马海洲. 2007. 粘土矿物在过去环境变化研究中的应用[J]. 盐湖研究, 15(2): 21−25.

    Google Scholar

    [59] 鲁春霞. 1997. 粘土矿物在古环境研究中的指示作用[J]. 中国沙漠, 17(4): 456−460. doi: 10.3321/j.issn:1000-694X.1997.04.004

    CrossRef Google Scholar

    [60] 牛芳鹏, 李新国, 靳万贵. 2020. 博斯腾湖西岸湖滨绿洲土壤盐分特征[J]. 中国土壤与肥料, (3): 8−15. doi: 10.11838/sfsc.1673-6257.19219

    CrossRef Google Scholar

    [61] 任娟. 2021. 土壤多环境梯度铁氧化物相分异与磷的耦合响应研究[D]. 重庆: 西南大学, 1−136.

    Google Scholar

    [62] 师焕芝, 李福春, 李旭辉, 吴枫, 罗旭鹏, 李学林, 金章东. 2011. 洛川黄土/古土壤中有机碳的分布特征及其与粘土矿物的相关性[J]. 中国地质, 38(5): 1355−1362. doi: 10.3969/j.issn.1000-3657.2011.05.022

    CrossRef Google Scholar

    [63] 汤艳杰, 贾建业, 谢先德. 2002. 粘土矿物的环境意义[J]. 地学前缘, 9(2): 337−344. doi: 10.3321/j.issn:1005-2321.2002.02.011

    CrossRef Google Scholar

    [64] 王敬国. 2017. 生物地球化学: 物质循环与土壤过程[M]. 北京: 中国农业大学出版社, 82−92.

    Google Scholar

    [65] 杨申谷. 2004. 三端元粘土矿物分析方法及应用[J]. 江汉石油学院学报, 26(2): 26−28.

    Google Scholar

    [66] 赵丽雯, 吉喜斌. 2010. 基于FAO−56双作物系数法估算农田作物蒸腾和土壤蒸发研究——以西北干旱区黑河流域中游绿洲农田为例[J]. 中国农业科学, 43(19): 4016−4026. doi: 10.3864/j.issn.0578-1752.2010.19.014

    CrossRef Google Scholar

    [67] 赵禹, 赵寒森, 刘拓, 白金, 王磊, 梁楠, 王鹏, 杨生飞, 魏锦萍, 李文明, 曾宪红, 张转, 韩海辉, 赵君, 陈振宇. 2022. 西北地区土地质量地球化学调查进展与主要成果[J]. 西北地质, 55(3): 140−154.

    Google Scholar

    [68] 郑庆福, 刘艇, 赵兰坡, 冯君, 王鸿斌, 李春林. 2010. 东北黑土耕层土壤黏粒矿物组成的区域差异及其演化[J]. 土壤学报, 47(4): 734−746. doi: 10.11766/trxb2010470420

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(7)

Article Metrics

Article views(5) PDF downloads(0) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint