Citation: | LI Yi, ZHOU Fan, WANG Jinsheng, GAI Peng, WANG Hao. 2025. Research on source−sink matching between coal−fired power plants and CO2 saline aquifer storage in sedimentary basins in China[J]. Geology in China, 52(4): 1513-1527. doi: 10.12029/gc20231118003 |
This paper is the result of geological survey engineering.
Coal−fired power plants are a major source of CO2 emissions in China. To achieve carbon reduction targets, retrofitting these facilities with Carbon Capture, Utilization, and Storage (CCUS) technology and using saline aquifers for CO2 storage is a viable solution. Currently, there is a lack of detailed and systematic research on the source-sink matching of CO2 emissions from coal-fired power plants and the storage of saline aquifers in sedimentary basins across the country.
This study focuses on the first-order structure of the basin level and an optimization model is developed for matching CO2 sources with potential storage sites. The model considers the entire process and is based on the emission profiles of coal-fired power plants across China.
The results show that 99% of these power plants can be matched with a unique storage site. Onshore basins are the preferred option for most power stations, while distinct advantages for offshore basins are shown by coastal match. Over a 10–40 year transformation timeline, the maximal transit distance from power plants to storage sites is projected to be 539.28 km for the decade of 2021–2030, extending to 660.58 km for the subsequent intervals ending in 2040, 2050, and 2060, respectively.
Establishing expansive CO2 transportation networks for sequestration appears more feasible in the regions of North, East, Central, and Northwest China compared to the Northeast and South, when considering annual CO2 capture volumes and transportation distances. The economic implications of CCUS technology retrofitting and the associated transportation distances have significant impacts on the source-to-sink matching outcomes. Technological advancements have led to a reduction in the average retrofitting costs from 500 CNY per ton CO2 to below 300 CNY per ton CO2. The findings of this investigation provide a basis for policy formulation regarding the retrofitting of coal−fired power plants with CCUS technology.
[1] | Brown S, Mahgerefteh H, Martynov S, Sundara V, Dowell N M. 2015. A multi–source flow model for CCS pipeline transportation networks[J]. International Journal of Greenhouse Gas Control, 43: 108−114. doi: 10.1016/j.ijggc.2015.10.014 |
[2] | Cai Bofeng, Li Qi, Zhang Xian. 2021. Annual Report on Carbon Capture, Utilization, and Storage (CCUS) in China (2021): A study of CCUS Pathways in China[R]. Beijing: Chinese Academy of Environmental Planning, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, The Administrative Centre for China's Agenda 21 (in Chinese). |
[3] | Cao C, Liu H J, Hou Z M, Mehmood F, Feng W T. 2020. A review of CO2 storage in view of safety and cost–effectiveness[J]. Energies, 13(3): 600. doi: 10.3390/en13030600 |
[4] | Chen W Y, Huang L Y, Xiang X, Chen J Y, Sun L. 2011. GIS based CCS source–sink matching models and decision support system[J]. Energy Procedia, 4: 5999−6006. doi: 10.1016/j.egypro.2011.02.603 |
[5] | Chen Wenhui, Lu Xi. 2022. The optimal layout of CCUS clusters in China's coal–fired power plants towards carbon neutrality[J]. Climate Change Research, 18(3): 261−271 (in Chinese with English abstract). |
[6] | Dai S X, Dong Y J, Wang F, Xing Z H, Hu P, Yang F. 2022. A sensitivity analysis of factors affecting in geologic CO2 storage in the Ordos Basin and its contribution to carbon neutrality[J]. China Geology, 5(3): 359−371. |
[7] | Diao Yujie, Liu Ting, Wei Ning, Ma Xin, Jin Xiaolin, Fu Lei. 2023. Classification and assessment methodology of carbon dioxide geological storage in deep saline aquifers[J]. Geology in China, 50(3): 943−951 (in Chinese with English abstract). |
[8] | Ge Shirong, Wang Bing, Feng Haohao, Jiang Xinru, Li Xue. 2023. Dynamic carbon neutrality mode for coal–based energy systems and effectiveness assessment thereof[J]. Strategic Study of CAE, 25(5): 122−135 (in Chinese with English abstract). doi: 10.15302/J-SSCAE-2023.05.011 |
[9] | Guan Y R, Shan Y L, Huang Q, Chen H L, Wang D, Hubacek K. 2021. Assessment to China's recent emission pattern shifts[J]. Earth's Future, 9(11): e2021EF002241. doi: 10.1029/2021EF002241 |
[10] | Guo Jianqiang, Wen Dongguang, Zhang Senqi, Jia Xiaofeng, Jin Xiaolin, Fan Jijiao, Peng Xuanming, Li Pengchun, Cao Ke, Diao Yujie, Zhang Hui, Li Xufeng. 2014. The Atlas of Carbon Dioxide Geological Storage Potential and Suitability Assessments of China Maor Sedimentary Basin[M]. Beijing: Geological Publishing House (in Chinese with English abstract). |
[11] | Hasan M M, Boukouvala F, First E L, Floudas C A. 2014. Nationwide, regional, and statewide CO2 capture, utilization, and sequestration supply chain network optimization[J]. Industrial and Engineering Chemistry Research, 53(18): 7489−7506. doi: 10.1021/ie402931c |
[12] | IEA. 2016. 20 years of carbon capture and storage: Accelerating future deployment[R]. International Energy Agency. |
[13] | Li Haiyan, Peng Shimi, Xu Mingyang, Luo Chao, Gao Yang. 2013. CO2 storage mechanism in deep saline aquifers[J]. Science and Technology Review, 31(2): 72−79 (in Chinese with English abstract). |
[14] | Li K, Shen S, Fan J L, Xu M, Zhang X. 2022. The role of carbon capture, utilization and storage in realizing China's carbon neutrality: A source–sink matching analysis for existing coal–fired power plants[J]. Resources, Conservation and Recycling, 178: 106070. |
[15] | Liu Jun, Yuan Xin, Chen Heng, Pan Peiyuan, Xu Gang, Wang Xiuyan. 2023. Study on economic assessment and improvement for large–scale thermal power CCUS applications[J]. Journal of Chinese Society of Power Engineering, 43(10): 1316−1325 (in Chinese with English abstract). |
[16] | Liu S Y, Li H Y, Zhang K, Lau H C. 2022. Techno–economic analysis of using carbon capture and storage (CCS) in decarbonizing China's coal–fired power plants[J]. Journal of Cleaner Production, 351: 131384. doi: 10.1016/j.jclepro.2022.131384 |
[17] | Liu Wei, Dong Ming. 2011. Research on carbon sequestration network planning model and solution algorithm[J]. Industrial Engineering and Management, 16(6): 128−132 (in Chinese with English abstract). |
[18] | Middleton R S, Kuby M J, Wei R, Keating G N, Pawar R J. 2012. A dynamic model for optimally phasing in CO2 capture and storage infrastructure[J]. Environmental Modelling and Software, 37: 193−205. doi: 10.1016/j.envsoft.2012.04.003 |
[19] | Muratori M, Kheshgi H, Mignone B, Clarke L, Mcjeon H, Edmonds J. 2017. Carbon capture and storage across fuels and sectors in energy system transformation pathways[J]. International Journal of Greenhouse Gas Control, 57: 34−41. doi: 10.1016/j.ijggc.2016.11.026 |
[20] | Paltsev S, Morris J, Kheshgi H, Herzog H. 2021. Hard–to–Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation[J]. Applied Energy, 300: 117322. doi: 10.1016/j.apenergy.2021.117322 |
[21] | Qin J Z, Zhong Q H, Tang Y, Rui Z H, Qiu S, Chen H Y. 2023. CO2 storage potential assessment of offshore saline aquifers in China[J]. Fuel, 341: 127681. doi: 10.1016/j.fuel.2023.127681 |
[22] | Selosse S, Ricci O. 2017. Carbon capture and storage: Lessons from a storage potential and localization analysis[J]. Applied Energy, 188: 32−44. doi: 10.1016/j.apenergy.2016.11.117 |
[23] | Shan Y L, Guan D B, Zheng H R, Ou J M, Li Y, Meng J, Mi Z F, Liu Z, Zhang Q. 2018. China CO2 emission accounts 1997–2015[J]. Scientific Data, 5: 170201. doi: 10.1038/sdata.2017.201 |
[24] | Shan Y L, Huang Q, Guan D B, Klaus H. 2020. China CO2 emission accounts 2016–2017[J]. Scientific Data, 7(1): 54. doi: 10.1038/s41597-020-0393-y |
[25] | Sun L, Chen W Y. 2013. The improved China CCS decision support system: A case study for Beijing–Tianjin–Hebei Region of China[J]. Applied Energy, 112: 793−799. doi: 10.1016/j.apenergy.2013.05.016 |
[26] | Sun L, Chen W Y. 2017. Development and application of a multi–stage CCUS source–sink matching model[J]. Applied Energy, 185: 1424−1432. doi: 10.1016/j.apenergy.2016.01.009 |
[27] | Sun L, Chen W Y. 2021. Impact of carbon tax on CCUS source–sink matching: Finding from the improved China CCS DSS[J]. Journal of Cleaner Production, 333: 130027. |
[28] | Sun Liang, Chen Wenying. 2013. CCUS source–sink matching dynamic programming model based on GAMS[J]. Journal of Tsinghua University (Science and Technology), 53(4): 421−426 (in Chinese with English abstract). |
[29] | Tang H T, Chen W Y, Zhang S, Zhang Q Z. 2023. China’s multi–sector–shared CCUS networks in a carbon–neutral vision[J]. iScience, 26(4): 106347. doi: 10.1016/j.isci.2023.106347 |
[30] | Wang F Y, Wang P T, Wang Q F, Dong L H. 2018. Optimization of CCUS source–sink matching for large coal–fired units: A case of North China[J]. IOP Conference Series Earth and Environmental Science, 170(4): 42−45. |
[31] | Wang H, Xu J J, Yu Y. 2023. Status of CCUS research and governance by worldwide geological surveys and organizations[J]. China Geology, 6(3): 536−540. |
[32] | Wang P T, Wei Y M, Yang B, Li J Q, Kang J N, Liu LC, Yu B Y, Hou Y B, Zhang X. 2020. Carbon capture and storage in China's power sector: Optimal planning under the 2°C constraint[J]. Applied Energy, 263: 114694. doi: 10.1016/j.apenergy.2020.114694 |
[33] | Wang Zhong, Luo Yuyan, Kuang Jianchao, Mao Yongna. 2016. Research on source–sink matching and optimization in China's large coal–fired power plant[J]. Industrial Engineering and Management, 21(6): 75−83,89 (in Chinese with English abstract). |
[34] | Wei N, Jiao Z S, Ellett K, Ku A Y, Liu S N, Middleton R, Li X C. 2021. Decarbonizing the coal–fired power sector in China via carbon capture, geological utilization, and storage technology[J]. Environmental Science and Technology, 55(19): 13164−13173. |
[35] | Wei Ning, Jiang Dalin, Liu Shengnan, Nie Ligong, Li Xiaochun. 2020. Cost competitiveness analysis of retrofitting CCUS to coal–fired power plants[J]. Proceedings of the CSEE, 40(4): 1258−1265 (in Chinese with English abstract). |
[36] | Zhou Yinbang, Wang Rui, He Yingfu, Zhao Shuxia, Zhou Yuanlong, Zhang Yao. 2023. Analysis and comparison of typical cases of CO2 geological storage in saline aquifer[J]. Petroleum Geology and Recovery Efficiency, 30(2): 162−167 (in Chinese with English abstract). |
[37] | 蔡博峰, 李琦, 张贤. 2021. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021): 中国CCUS路径研究[R]. 北京: 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心. |
[38] | 陈文会, 鲁玺. 2022. 碳中和目标下中国燃煤电厂CCUS集群部署优化研究[J]. 气候变化研究进展, 18(3): 261−271. |
[39] | 刁玉杰, 刘廷, 魏宁, 马鑫, 金晓琳, 付雷. 2023. 咸水层二氧化碳地质封存潜力分级及评价思路[J]. 中国地质, 50(3): 943−951. doi: 10.12029/gc20221030001 |
[40] | 葛世荣, 王兵, 冯豪豪, 姜鑫茹, 李雪. 2023. 煤基能源动态碳中和模式及其保供降碳效益评估[J]. 中国工程科学, 25(5): 122−135. |
[41] | 郭建强, 文冬光, 张森琦, 贾小丰, 金晓琳, 范基姣, 彭轩明, 李鹏春, 珂曹, 刁玉杰, 徽张, 李旭峰. 2014. 中国主要沉积盆地二氧化碳地质储存潜力与适宜性评价图集[M]. 北京: 地质出版社. |
[42] | 李海燕, 彭仕宓, 许明阳, 罗超, 高阳. 2013. CO2在深部咸水层中的埋存机制研究进展[J]. 科技导报, 31(2): 72−79. doi: 10.3981/j.issn.1000-7857.2013.02.010 |
[43] | 刘骏, 袁鑫, 陈衡, 潘佩媛, 徐钢, 王修彦. 2023. 大规模火电CCUS应用的经济性评估及提升研究[J]. 动力工程学报, 43(10): 1316−1325. |
[44] | 刘巍, 董明. 2011. 碳封存网络的规划模型及求解算法研究[J]. 工业工程与管理, 16(6): 128−132. doi: 10.3969/j.issn.1007-5429.2011.06.022 |
[45] | 孙亮, 陈文颖. 2013. 基于GAMS的CCUS源汇匹配动态规划模型[J]. 清华大学学报(自然科学版), 53(4): 421−426. |
[46] | 王众, 骆毓燕, 匡建超, 毛永娜. 2016. 我国大型燃煤电厂CCS源汇匹配与优化研究[J]. 工业工程与管理, 21(6): 75−83,89. |
[47] | 魏宁, 姜大霖, 刘胜男, 聂立功, 李小春. 2020. 国家能源集团燃煤电厂CCUS改造的成本竞争力分析[J]. 中国电机工程学报, 40(4): 1258−1265. |
[48] | 周银邦, 王锐, 何应付, 赵淑霞, 周元龙, 张尧. 2023. 咸水层CO2地质封存典型案例分析及对比[J]. 油气地质与采收率, 30(2): 162−167. |
Cost changes at different stages
Location and emission distribution of coal−fired power plants in China
Evaluation of potential and suitability of first-order structure sequestration in basin
Source and sink data of model input
Optimal source−sink matching paths in 2021–2030 scenarios
Optimal source−sink matching paths in 2031–2040 scenarios
Optimal source−sink matching paths in 2041–2050 scenarios
Optimal source−sink matching paths in 2051–2061 scenarios
Comparison of annual capture and transportation distance of plants in different scenario
CO2 storage in the basin under different scenarios
Correlation analysis
Regional cost analysis of coal−fired power plants