2025 Vol. 52, No. 4
Article Contents

LI Yi, ZHOU Fan, WANG Jinsheng, GAI Peng, WANG Hao. 2025. Research on source−sink matching between coal−fired power plants and CO2 saline aquifer storage in sedimentary basins in China[J]. Geology in China, 52(4): 1513-1527. doi: 10.12029/gc20231118003
Citation: LI Yi, ZHOU Fan, WANG Jinsheng, GAI Peng, WANG Hao. 2025. Research on source−sink matching between coal−fired power plants and CO2 saline aquifer storage in sedimentary basins in China[J]. Geology in China, 52(4): 1513-1527. doi: 10.12029/gc20231118003

Research on source−sink matching between coal−fired power plants and CO2 saline aquifer storage in sedimentary basins in China

    Fund Project: Supported by the project of the National Natural Science Foundation of China (No.41902248).
More Information
  • Author Bio: LI Yi, male, born in 1989, associate professor, mainly engaged in the research of subsurface saline aquifers; E-mail: liyi_bnuphd@mail.bnu.edu.cn
  • Corresponding author: WANG Jinsheng, male, born in 1957, professor, mainly engaged in the research of underground water; E-mail: wangjs@bnu.edu.cn
  • This paper is the result of geological survey engineering.

    Objective

    Coal−fired power plants are a major source of CO2 emissions in China. To achieve carbon reduction targets, retrofitting these facilities with Carbon Capture, Utilization, and Storage (CCUS) technology and using saline aquifers for CO2 storage is a viable solution. Currently, there is a lack of detailed and systematic research on the source-sink matching of CO2 emissions from coal-fired power plants and the storage of saline aquifers in sedimentary basins across the country.

    Methods

    This study focuses on the first-order structure of the basin level and an optimization model is developed for matching CO2 sources with potential storage sites. The model considers the entire process and is based on the emission profiles of coal-fired power plants across China.

    Results

    The results show that 99% of these power plants can be matched with a unique storage site. Onshore basins are the preferred option for most power stations, while distinct advantages for offshore basins are shown by coastal match. Over a 10–40 year transformation timeline, the maximal transit distance from power plants to storage sites is projected to be 539.28 km for the decade of 2021–2030, extending to 660.58 km for the subsequent intervals ending in 2040, 2050, and 2060, respectively.

    Conclusions

    Establishing expansive CO2 transportation networks for sequestration appears more feasible in the regions of North, East, Central, and Northwest China compared to the Northeast and South, when considering annual CO2 capture volumes and transportation distances. The economic implications of CCUS technology retrofitting and the associated transportation distances have significant impacts on the source-to-sink matching outcomes. Technological advancements have led to a reduction in the average retrofitting costs from 500 CNY per ton CO2 to below 300 CNY per ton CO2. The findings of this investigation provide a basis for policy formulation regarding the retrofitting of coal−fired power plants with CCUS technology.

  • 加载中
  • [1] Brown S, Mahgerefteh H, Martynov S, Sundara V, Dowell N M. 2015. A multi–source flow model for CCS pipeline transportation networks[J]. International Journal of Greenhouse Gas Control, 43: 108−114. doi: 10.1016/j.ijggc.2015.10.014

    CrossRef Google Scholar

    [2] Cai Bofeng, Li Qi, Zhang Xian. 2021. Annual Report on Carbon Capture, Utilization, and Storage (CCUS) in China (2021): A study of CCUS Pathways in China[R]. Beijing: Chinese Academy of Environmental Planning, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, The Administrative Centre for China's Agenda 21 (in Chinese).

    Google Scholar

    [3] Cao C, Liu H J, Hou Z M, Mehmood F, Feng W T. 2020. A review of CO2 storage in view of safety and cost–effectiveness[J]. Energies, 13(3): 600. doi: 10.3390/en13030600

    CrossRef Google Scholar

    [4] Chen W Y, Huang L Y, Xiang X, Chen J Y, Sun L. 2011. GIS based CCS source–sink matching models and decision support system[J]. Energy Procedia, 4: 5999−6006. doi: 10.1016/j.egypro.2011.02.603

    CrossRef Google Scholar

    [5] Chen Wenhui, Lu Xi. 2022. The optimal layout of CCUS clusters in China's coal–fired power plants towards carbon neutrality[J]. Climate Change Research, 18(3): 261−271 (in Chinese with English abstract).

    Google Scholar

    [6] Dai S X, Dong Y J, Wang F, Xing Z H, Hu P, Yang F. 2022. A sensitivity analysis of factors affecting in geologic CO2 storage in the Ordos Basin and its contribution to carbon neutrality[J]. China Geology, 5(3): 359−371.

    Google Scholar

    [7] Diao Yujie, Liu Ting, Wei Ning, Ma Xin, Jin Xiaolin, Fu Lei. 2023. Classification and assessment methodology of carbon dioxide geological storage in deep saline aquifers[J]. Geology in China, 50(3): 943−951 (in Chinese with English abstract).

    Google Scholar

    [8] Ge Shirong, Wang Bing, Feng Haohao, Jiang Xinru, Li Xue. 2023. Dynamic carbon neutrality mode for coal–based energy systems and effectiveness assessment thereof[J]. Strategic Study of CAE, 25(5): 122−135 (in Chinese with English abstract). doi: 10.15302/J-SSCAE-2023.05.011

    CrossRef Google Scholar

    [9] Guan Y R, Shan Y L, Huang Q, Chen H L, Wang D, Hubacek K. 2021. Assessment to China's recent emission pattern shifts[J]. Earth's Future, 9(11): e2021EF002241. doi: 10.1029/2021EF002241

    CrossRef Google Scholar

    [10] Guo Jianqiang, Wen Dongguang, Zhang Senqi, Jia Xiaofeng, Jin Xiaolin, Fan Jijiao, Peng Xuanming, Li Pengchun, Cao Ke, Diao Yujie, Zhang Hui, Li Xufeng. 2014. The Atlas of Carbon Dioxide Geological Storage Potential and Suitability Assessments of China Maor Sedimentary Basin[M]. Beijing: Geological Publishing House (in Chinese with English abstract).

    Google Scholar

    [11] Hasan M M, Boukouvala F, First E L, Floudas C A. 2014. Nationwide, regional, and statewide CO2 capture, utilization, and sequestration supply chain network optimization[J]. Industrial and Engineering Chemistry Research, 53(18): 7489−7506. doi: 10.1021/ie402931c

    CrossRef Google Scholar

    [12] IEA. 2016. 20 years of carbon capture and storage: Accelerating future deployment[R]. International Energy Agency.

    Google Scholar

    [13] Li Haiyan, Peng Shimi, Xu Mingyang, Luo Chao, Gao Yang. 2013. CO2 storage mechanism in deep saline aquifers[J]. Science and Technology Review, 31(2): 72−79 (in Chinese with English abstract).

    Google Scholar

    [14] Li K, Shen S, Fan J L, Xu M, Zhang X. 2022. The role of carbon capture, utilization and storage in realizing China's carbon neutrality: A source–sink matching analysis for existing coal–fired power plants[J]. Resources, Conservation and Recycling, 178: 106070.

    Google Scholar

    [15] Liu Jun, Yuan Xin, Chen Heng, Pan Peiyuan, Xu Gang, Wang Xiuyan. 2023. Study on economic assessment and improvement for large–scale thermal power CCUS applications[J]. Journal of Chinese Society of Power Engineering, 43(10): 1316−1325 (in Chinese with English abstract).

    Google Scholar

    [16] Liu S Y, Li H Y, Zhang K, Lau H C. 2022. Techno–economic analysis of using carbon capture and storage (CCS) in decarbonizing China's coal–fired power plants[J]. Journal of Cleaner Production, 351: 131384. doi: 10.1016/j.jclepro.2022.131384

    CrossRef Google Scholar

    [17] Liu Wei, Dong Ming. 2011. Research on carbon sequestration network planning model and solution algorithm[J]. Industrial Engineering and Management, 16(6): 128−132 (in Chinese with English abstract).

    Google Scholar

    [18] Middleton R S, Kuby M J, Wei R, Keating G N, Pawar R J. 2012. A dynamic model for optimally phasing in CO2 capture and storage infrastructure[J]. Environmental Modelling and Software, 37: 193−205. doi: 10.1016/j.envsoft.2012.04.003

    CrossRef Google Scholar

    [19] Muratori M, Kheshgi H, Mignone B, Clarke L, Mcjeon H, Edmonds J. 2017. Carbon capture and storage across fuels and sectors in energy system transformation pathways[J]. International Journal of Greenhouse Gas Control, 57: 34−41. doi: 10.1016/j.ijggc.2016.11.026

    CrossRef Google Scholar

    [20] Paltsev S, Morris J, Kheshgi H, Herzog H. 2021. Hard–to–Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation[J]. Applied Energy, 300: 117322. doi: 10.1016/j.apenergy.2021.117322

    CrossRef Google Scholar

    [21] Qin J Z, Zhong Q H, Tang Y, Rui Z H, Qiu S, Chen H Y. 2023. CO2 storage potential assessment of offshore saline aquifers in China[J]. Fuel, 341: 127681. doi: 10.1016/j.fuel.2023.127681

    CrossRef Google Scholar

    [22] Selosse S, Ricci O. 2017. Carbon capture and storage: Lessons from a storage potential and localization analysis[J]. Applied Energy, 188: 32−44. doi: 10.1016/j.apenergy.2016.11.117

    CrossRef Google Scholar

    [23] Shan Y L, Guan D B, Zheng H R, Ou J M, Li Y, Meng J, Mi Z F, Liu Z, Zhang Q. 2018. China CO2 emission accounts 1997–2015[J]. Scientific Data, 5: 170201. doi: 10.1038/sdata.2017.201

    CrossRef Google Scholar

    [24] Shan Y L, Huang Q, Guan D B, Klaus H. 2020. China CO2 emission accounts 2016–2017[J]. Scientific Data, 7(1): 54. doi: 10.1038/s41597-020-0393-y

    CrossRef Google Scholar

    [25] Sun L, Chen W Y. 2013. The improved China CCS decision support system: A case study for Beijing–Tianjin–Hebei Region of China[J]. Applied Energy, 112: 793−799. doi: 10.1016/j.apenergy.2013.05.016

    CrossRef Google Scholar

    [26] Sun L, Chen W Y. 2017. Development and application of a multi–stage CCUS source–sink matching model[J]. Applied Energy, 185: 1424−1432. doi: 10.1016/j.apenergy.2016.01.009

    CrossRef Google Scholar

    [27] Sun L, Chen W Y. 2021. Impact of carbon tax on CCUS source–sink matching: Finding from the improved China CCS DSS[J]. Journal of Cleaner Production, 333: 130027.

    Google Scholar

    [28] Sun Liang, Chen Wenying. 2013. CCUS source–sink matching dynamic programming model based on GAMS[J]. Journal of Tsinghua University (Science and Technology), 53(4): 421−426 (in Chinese with English abstract).

    Google Scholar

    [29] Tang H T, Chen W Y, Zhang S, Zhang Q Z. 2023. China’s multi–sector–shared CCUS networks in a carbon–neutral vision[J]. iScience, 26(4): 106347. doi: 10.1016/j.isci.2023.106347

    CrossRef Google Scholar

    [30] Wang F Y, Wang P T, Wang Q F, Dong L H. 2018. Optimization of CCUS source–sink matching for large coal–fired units: A case of North China[J]. IOP Conference Series Earth and Environmental Science, 170(4): 42−45.

    Google Scholar

    [31] Wang H, Xu J J, Yu Y. 2023. Status of CCUS research and governance by worldwide geological surveys and organizations[J]. China Geology, 6(3): 536−540.

    Google Scholar

    [32] Wang P T, Wei Y M, Yang B, Li J Q, Kang J N, Liu LC, Yu B Y, Hou Y B, Zhang X. 2020. Carbon capture and storage in China's power sector: Optimal planning under the 2°C constraint[J]. Applied Energy, 263: 114694. doi: 10.1016/j.apenergy.2020.114694

    CrossRef Google Scholar

    [33] Wang Zhong, Luo Yuyan, Kuang Jianchao, Mao Yongna. 2016. Research on source–sink matching and optimization in China's large coal–fired power plant[J]. Industrial Engineering and Management, 21(6): 75−83,89 (in Chinese with English abstract).

    Google Scholar

    [34] Wei N, Jiao Z S, Ellett K, Ku A Y, Liu S N, Middleton R, Li X C. 2021. Decarbonizing the coal–fired power sector in China via carbon capture, geological utilization, and storage technology[J]. Environmental Science and Technology, 55(19): 13164−13173.

    Google Scholar

    [35] Wei Ning, Jiang Dalin, Liu Shengnan, Nie Ligong, Li Xiaochun. 2020. Cost competitiveness analysis of retrofitting CCUS to coal–fired power plants[J]. Proceedings of the CSEE, 40(4): 1258−1265 (in Chinese with English abstract).

    Google Scholar

    [36] Zhou Yinbang, Wang Rui, He Yingfu, Zhao Shuxia, Zhou Yuanlong, Zhang Yao. 2023. Analysis and comparison of typical cases of CO2 geological storage in saline aquifer[J]. Petroleum Geology and Recovery Efficiency, 30(2): 162−167 (in Chinese with English abstract).

    Google Scholar

    [37] 蔡博峰, 李琦, 张贤. 2021. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021): 中国CCUS路径研究[R]. 北京: 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心.

    Google Scholar

    [38] 陈文会, 鲁玺. 2022. 碳中和目标下中国燃煤电厂CCUS集群部署优化研究[J]. 气候变化研究进展, 18(3): 261−271.

    Google Scholar

    [39] 刁玉杰, 刘廷, 魏宁, 马鑫, 金晓琳, 付雷. 2023. 咸水层二氧化碳地质封存潜力分级及评价思路[J]. 中国地质, 50(3): 943−951. doi: 10.12029/gc20221030001

    CrossRef Google Scholar

    [40] 葛世荣, 王兵, 冯豪豪, 姜鑫茹, 李雪. 2023. 煤基能源动态碳中和模式及其保供降碳效益评估[J]. 中国工程科学, 25(5): 122−135.

    Google Scholar

    [41] 郭建强, 文冬光, 张森琦, 贾小丰, 金晓琳, 范基姣, 彭轩明, 李鹏春, 珂曹, 刁玉杰, 徽张, 李旭峰. 2014. 中国主要沉积盆地二氧化碳地质储存潜力与适宜性评价图集[M]. 北京: 地质出版社.

    Google Scholar

    [42] 李海燕, 彭仕宓, 许明阳, 罗超, 高阳. 2013. CO2在深部咸水层中的埋存机制研究进展[J]. 科技导报, 31(2): 72−79. doi: 10.3981/j.issn.1000-7857.2013.02.010

    CrossRef Google Scholar

    [43] 刘骏, 袁鑫, 陈衡, 潘佩媛, 徐钢, 王修彦. 2023. 大规模火电CCUS应用的经济性评估及提升研究[J]. 动力工程学报, 43(10): 1316−1325.

    Google Scholar

    [44] 刘巍, 董明. 2011. 碳封存网络的规划模型及求解算法研究[J]. 工业工程与管理, 16(6): 128−132. doi: 10.3969/j.issn.1007-5429.2011.06.022

    CrossRef Google Scholar

    [45] 孙亮, 陈文颖. 2013. 基于GAMS的CCUS源汇匹配动态规划模型[J]. 清华大学学报(自然科学版), 53(4): 421−426.

    Google Scholar

    [46] 王众, 骆毓燕, 匡建超, 毛永娜. 2016. 我国大型燃煤电厂CCS源汇匹配与优化研究[J]. 工业工程与管理, 21(6): 75−83,89.

    Google Scholar

    [47] 魏宁, 姜大霖, 刘胜男, 聂立功, 李小春. 2020. 国家能源集团燃煤电厂CCUS改造的成本竞争力分析[J]. 中国电机工程学报, 40(4): 1258−1265.

    Google Scholar

    [48] 周银邦, 王锐, 何应付, 赵淑霞, 周元龙, 张尧. 2023. 咸水层CO2地质封存典型案例分析及对比[J]. 油气地质与采收率, 30(2): 162−167.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(3)

Article Metrics

Article views(14) PDF downloads(0) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint