2025 Vol. 52, No. 4
Article Contents

JIN Wenzheng, WANG Shanmin, BAI Wankui, YE Zhixu. 2025. Thermochronology of the Meso–Cenozoic uplift and tectonic growth of the Longmenshan Thrust Belt[J]. Geology in China, 52(4): 1528-1542. doi: 10.12029/gc20220306001
Citation: JIN Wenzheng, WANG Shanmin, BAI Wankui, YE Zhixu. 2025. Thermochronology of the Meso–Cenozoic uplift and tectonic growth of the Longmenshan Thrust Belt[J]. Geology in China, 52(4): 1528-1542. doi: 10.12029/gc20220306001

Thermochronology of the Meso–Cenozoic uplift and tectonic growth of the Longmenshan Thrust Belt

    Fund Project: Supported by National Natural Science Foundation of China “Study on the Mechanism of Structural Segmental Deformation in Longmenshan Thrust Belt” (No.41002072), Yunnan Province Science and Technology Plan “Research on Key Technologies for the Development and Utilization of Medium to Deep Geothermal Energy in Yunnan Province” (No. 202302AF080001), Open Fund of the State Key Laboratory of Oil and Gas Resources and Exploration “Thermochronological study on tectonic uplift of Bikou block since Mesozoic in northern Sichuan”(No.PRP/open-1307).
More Information
  • Author Bio: JIN Wenzheng, male, born in 1978, doctor, lecturer, mainly engaged in research of petroleum geology and basin analysis; E-mail: jwz@cugb.edu.cn
  • This paper is the result of geological survey engineering.

    Objective

    This study focuses on the relationship between the vertical tectonic uplift and the lateral tectonic expansion that occurred during the Meso-Cenozoic in the Longmenshan thrust belt. To examine this relationship, low-temperature thermal chronology testing and analysis were conducted.

    Methods

    The characteristics of tectonic evolution were examined by determining and analyzing apatite and zircon fission track ages.

    Results

    The lengths of apatite fission tracks are within the range of (11.4 ± 2.6)–(12.2 ± 2.2) μm. This range effectively reflects the local tectonic uplift history. The thermal history simulation results show that the apatite samples experienced three critical stages: a rapid tectonic uplift, a stable tectonic stage, and a rapid tectonic uplift. The uplifting events occurred earlier in the northern area than in the southern area. The cooling rate of each rock sample was in the range of 1.211–6.053 °C/Ma. From the southeast to the northwest, the tectonic uplift rate increased gradually, while the time of uplifting was gradually delayed.

    Conclusions

    The Longmenshan thrust belt has undergone tectonic deformation characterized by piggyback propagation from northwest to southeast since the Meso−Cenozoic (150 Ma). This deformation continued from the Late Cretaceous to the Eocene (70–50 Ma) and persisted into the Oligocene (approximately 20 Ma). The central and western regions of the Longmenshan thrust belt are characterized by multi-stage tectonic uplift and superposition.

  • 加载中
  • [1] Bai Mingkun, Chevalier M L, Li Haibing, Pan Jiawei, Wu Qiong, Wang Shiguang, Liu Fucai, Jiao Liqing, Zhang Jinjiang, Zhang Lei, Gong Zheng. 2022. Late Quaternary slip rate and earthquake hazard along the Qianning segment, Xianshuihe fault[J]. Acta Geologica Sinica, 96(7): 2312−2332 (in Chinese with English abstract).

    Google Scholar

    [2] Brandon M T. 1996. Probability density plot for fission–track grain–age samples[J]. Radiation Measurements, 26: 663−676. doi: 10.1016/S1350-4487(97)82880-6

    CrossRef Google Scholar

    [3] Burchfiel B C, Chen Zhiliang, Liu Yuping, Royden L H. 1995. Tectonics of the Longmen Shan and adjacent regions, central China[J]. International Geology Review, 37: 661−735. doi: 10.1080/00206819509465424

    CrossRef Google Scholar

    [4] Chen Hongde, Liu Lei, Lin Liangbiao, Wang Xinglong, Wang Zhiwei, Yu Yu, Zeng Jian, Li Pengwei. 2021. Depositional responses of Xujiahe Formation to the uplifting of Longmenshan during the Late Triassic, western Sichuan Depression[J]. Oil & Gas Geology, 42(4): 801−815 (in Chinese with English abstract).

    Google Scholar

    [5] Chen Zhuxin, Jia Dong, Zhang Qie, Wei Guoqi, Li Benliang, Wei Dongtao, Shen Yang. 2005. Balanced cross–section analysis of the fold–thrust belt of the Longmen Mountains[J]. Acta Geologica Sinica, 79(1): 38−45 (in Chinese with English abstract).

    Google Scholar

    [6] Cook K L, Royyden L H, Burchfiel B C, Lee Y H, Tan X. 2013. Constraints on Cenozoic tectonics in the southwestern Longmen Shan from low–temperature thermochronology[J]. Lithosphere, 5(4): 393−406. doi: 10.1130/L263.1

    CrossRef Google Scholar

    [7] Deng Bin, He Yu, Huang Jiaqiang, Yang Rongjun, Zhou Zheng, Lai Dong, Luo Qiang, Zheng Wenxin, Li Zhiwu, Liu Shugen. 2019. Eastward growth of the Longmenshan fold–and–thrust belt: Evidence from the low temperature thermochronometer model[J]. Acta Geologica Sinica, 93(7): 1588−1600 (in Chinese with English abstract).

    Google Scholar

    [8] Deng Bin, Liu Shugen, Li Zhiwu, Liu Shun. 2009. Uplifting characteristics in eastern margin area of Tibetan Plateau: Evidence from low temperature thermochronology[J]. Quaternary Sciences, 29(3): 574−585 (in Chinese with English abstract).

    Google Scholar

    [9] Fan Saihua, Xie Hui, Li Binwen, Liu Yuan, Li Weiping, Xu Weina, Zhao Hu, Mou Lei. 2022. Controlling effect of Shaximiao Formation fault on gas accumulation in eastern slope area of western Sichuan Depression[J]. Geology in China, 49(4): 1275−1284 (in Chinese with English abstract).

    Google Scholar

    [10] Fan Zenghui, Liu Shugen, Fan Cunhui, Hu Linhui, Li Wenjia, Mi Hong, Han Chong, Han Xiaojun. 2018. Analysis of typical seismic profile and balanced cross–section recovery and tectonic evolution in the Longmenshan fold–thrust belt[J]. Geological Review, 64(2): 347−360 (in Chinese with English abstract).

    Google Scholar

    [11] Ge Chenglong, Li Haibing, Leloup P H, Zhang Lei, Zheng Yong, Liu Dongliang, Fellah C, Ye Xiaozhou, Zhang Jinjiang. 2025. Ductile deformation of Wenchuan-Maoxian fault constrain the early uplift of Longmen shan belt[J]. Acta Geologica Sinica, 99(4): 1134−1149 (in Chinese with English abstract).

    Google Scholar

    [12] Ge Jiacheng, Jia Dong, Yin Hongwei, Yan Bing, Chen Zhuxin, Fan Xiaogen, Yang Shuang, Cui Jian, Zhong Cheng. 2023. Physical analogue modeling research on the relationship between Longmenshan fault zone and Longriba fault zone[J]. Geological Journal of China Universities, 29(4): 617−629 (in Chinese with English abstract).

    Google Scholar

    [13] Guo Xusheng. 2010. Litho–paleogeographic evolution in the middle–late Triassic in western Sichuan Province and its significance for petroleum exploration[J]. Oil & Gas Geology, 31(5): 610−620 (in Chinese with English abstract).

    Google Scholar

    [14] Hong Haitao, Tian Xingwang, Sun Yiting, Ma Kui, Li Geng, Wang Yunlong, Yang Dailin, Peng Hanlin, Luo Bing, Zhou Gang, Xue Jiuhuo, Ye Mao, Shan Shujiao. 2020. Hydrocarbon enrichment regularity of marine carbonate in Sichuan Basin[J]. Geology in China, 47(1): 99−110 (in Chinese with English abstract).

    Google Scholar

    [15] Hurford A J, Gleadow A J W. 1977. Calibration of fission track dating parameters[J]. Nuclear Track Detection, 1: 41−48. doi: 10.1016/0145-224X(77)90022-9

    CrossRef Google Scholar

    [16] Jia D, Li Y Q, Yan B, Li Z G, Wang M M, Chen Z X, Zhang Y. 2020. The Cenozoic thrusting sequence of the Longmen Shan fold–and–thrust belt, eastern margin of the Tibetan plateau: Insights from low temperature thermochronology[J]. Journal of Asian Earth Sciences, 198: 104381. doi: 10.1016/j.jseaes.2020.104381

    CrossRef Google Scholar

    [17] Jia Qiupeng, Jia Dong, Zhu Ailan, Chen Zhuxin, Hu Qianwei, Luo Liang, Zhang Yuanyuan, Li Yiquan. 2007. Active tectonics in the Longmen thrust belt to the eastern Qinghai–Tibetan Plateau and Sichuan Basin: Evidence from topography and seismicity[J]. Chinese Journal of Geology (Scientia Geologica Sinica), 42(1): 31−44 (in Chinese with English abstract).

    Google Scholar

    [18] Jin Wenzheng, Wan Guimei, Cui Zehong, Wang Junpeng, Yang Xiaoqun, Bai Wankui. 2012. Key tectonic change epoch and hydrocarbon accumulation periods of continental clastic reservoir in Sichuan Basin[J]. Fault–Block Oil & Gas Field, 19(3): 273−277 (in Chinese with English abstract).

    Google Scholar

    [19] Ketcham R A. 2005. Forward and inverse modeling of low–temperature thermochronometry data[J]. Reviews in Mineralogy & Geochemistry, 58: 275−314.

    Google Scholar

    [20] Laslett G M, Green P F, Duddy I R, Gleadow A J W. 1987. Thermal annealing of fission tracks in apatite; 2: A quantitative analysis[J]. Chemical Geology (Isotope Geoscience Section), 65: 1−13. doi: 10.1016/0168-9622(87)90057-1

    CrossRef Google Scholar

    [21] Li M, Tang L J, Yuan W M. 2015. Middle Miocene–Pliocene activities of the north Altyn fault system: Evidence from apatite fission track data[J]. Arabian Journal of Geosciences, 8: 9043−9054. doi: 10.1007/s12517-015-1873-9

    CrossRef Google Scholar

    [22] Li Yuhang. 2018. A Study on the Lateral Spreading Movement of the Northeastern Tibetan Plateau[D]. Beijing: Institute of Geology, China Earthquake Administration, 1–127 (in Chinese with English abstract

    Google Scholar

    [23] Lin Jinrong, Hu Zhihua, Tao Yi, Wang Yongjian, Wang Feng. 2019. The response of zircon fission track age on the metallogenic thermal events of Zoujiashan uranium deposit in Xiangshan orefield[J]. Uranium Geology, 35(4): 193−198 (in Chinese with English abstract).

    Google Scholar

    [24] Lin Xiaohan, Yan Danping, Qiu Liang, Zhou Zhicheng, Song Huajie, Kong Fei, Du Chao. 2025. Structural and (U-Th)/He thermochronological constraints on the Longmen shan thrusting-gliding klippes, eastern margin of Tibetan Plateau[J]. Science China Earth Sciences, 68(4): 1142−1157. doi: 10.1007/s11430-024-1518-y

    CrossRef Google Scholar

    [25] Liu Fangbin. 2021. Thermochronological Constraints on Cenozoic Exfoliation History in the Southeast Margin of the Qinghai–Tibet Plateau: A Case Study of Lincang Granite Area[D]. Lanzhou: Lanzhou University, 1–220 (in Chinese with English abstract).

    Google Scholar

    [26] Liu He, Yan Danping, Wei Guoping. 2008. Deformation and metamorphism sequence of Bikou terrane in the northwest margin of Yangtze plate: Implications for extension collapse and transition of Songpan–Garze orogenic belt[J]. Acta Geologica Sinica, 82(4): 464−474 (in Chinese with English abstract).

    Google Scholar

    [27] Liu Shugen, Deng Bin, Li Zhiwu, Luba Jansa, Liu Shun, Wang Guozhi, Sun Wei. 2013. Geological evolution of the Longmenshan intracontinental composite orogen and the eastern margin of the Tibetan plateau[J]. Journal of Earth Science, 6: 874−890.

    Google Scholar

    [28] Liu Shugen, Li Zhiwu, Kamp P J J, Ran Bo, Li Jinxi, Deng Bin, Wang Guozhi, Xu Ganqing, Danisik M, Yang Di, Wang Zijian, Li Xianghui, Liu Shun, Li Juchu. 2019. Discovery of the Mesozoic Zoige paleo–plateau in eastern Tibetan plateau and its geological significance[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 46(1): 1–28 (in Chinese with English abstract).

    Google Scholar

    [29] Luo Meng, Zhu Wenbin, Zheng Bihai, Zhu Xiaoqing. 2012. Mesozoic–Cenozoic tectonic evolution of the Kuqa basin: Evidence from apatite fission–track data[J]. Earth Science–Journal of China University of Geosciences, 37(5): 893−902 (in Chinese with English abstract).

    Google Scholar

    [30] Shen Chuanbo, Mei Lianfu, Liu Zhaoqian, Xu Sihuang. 2009. Apatite and zircon fission track data, evidences for the Mesozoic–Cenozoic uplift of Huangling dome, central China[J]. Journal of Mineralogy and Petrology, 29(2): 54−60 (in Chinese with English abstract).

    Google Scholar

    [31] Su Zhe, Wang E, Wang Gang, Fan Chun. 2016. GPS strain rate and seismic activity before the Ludian earthquake (Ms 6.5), northeast Yunnan, China: New implications for eastward Chuan–Dian block extrusion[J]. Terrestrial Atmospheric and Oceanic Sciences, 27(6): 837−851. doi: 10.3319/TAO.2016.02.15.01(TT)

    CrossRef Google Scholar

    [32] Sun Lijing, Zhao Zhongbao, Pan Jiawei, Liang Fenghua, Zhang Lei, Zhang Jinjiang. 2021. The stress and strain state of Yalahe fault in the Kangding segment of the Xianshuihe fault zone and its seismogenic environment[J]. Acta Petrologica Sinica, 37(10): 3225−3240 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.10.15

    CrossRef Google Scholar

    [33] Tan Xibin, Li Yuanxi, Xu Xiwei, Chen Wenyu, Xu Chong, Yu Guihua. 2013. Cenozoic fault activity of the southern segment of the Longmenshan thrust belt: Evidence from low–temperature thermochronology data[J]. Seismology and Geology, 35(3): 506−517 (in Chinese with English abstract).

    Google Scholar

    [34] Tan Xibin, Xu Xiwei, Li Yuanxi, Yuan Renmao, Yu Guihua, Xu Chong. 2015. Differential Late–Cenozoic vertical motions of the Beichuan–Yingxiu fault and the Jiangyou–Guanxian fault in the central Longmenshan range and their tectonic implications[J]. Chinese Journal of Geophysics, 58(1): 143−152 (in Chinese with English abstract).

    Google Scholar

    [35] Tang Y, Qin Y D, Gong X D, Duan Y Y Chen G, Yao H Y, Liao J X, Liao S Y, Wang D B, Wang B D. 2020. Discovery of eclogites in Jinsha River suture zone, Gonjo county, eastern Tibet and its restriction on Paleo–Tethyan evolution[J]. China Geology, 3(1): 83−103. doi: 10.31035/cg2020003

    CrossRef Google Scholar

    [36] Tang Yuan, Wang Peng, Deng Hong, Liu Yuping, Tang Wenqing. 2022. Petrological records of major tectono–magmatic events since Oligocene in the southeastern segment of Xianshuihe fault zone in the eastern margin of Tibetan plateau[J]. Geological Bulletin of China, 41(7): 1121−1143 (in Chinese with English abstract).

    Google Scholar

    [37] Tao Yaling. 2021. Cenozoic Uplift and Exhumation of the Yalong River Thrust Belt on the Eastern Margin of the Qinghai Tibet Plateau and its Implications for Plateau Expansion[D]. Beijing: Institute of Geology, China Earthquake Administration, 1−143 (in Chinese with English abstract).

    Google Scholar

    [38] Tao Yaling, Zhang Huiping, Ge Yukui, Pang Jianzhang, Yu Jingxing, Zhang Jiawei, Zhao Xudong, Ma Zifa. 2020. Cenozoic exhumation and fault activities across the eastern Tibet: Constraints from low–temperature thermochronological data[J]. Chinese Journal of Geophysics, 63(11): 4154−4167 (in Chinese with English abstract).

    Google Scholar

    [39] Tian Y T, Kohn B P, Gleadow A J W, Hu S B. 2013. Constructing the Longmen Shan eastern Tibetan Plateau margin: Insights from low–temperature thermochronology[J]. Tectonics, 32: 576−592. doi: 10.1002/tect.20043

    CrossRef Google Scholar

    [40] Tian Y T, Li R, Tang Y, Xu X, Wang Y J, Zhang P Z. 2018. Thermochronological constraints on the Late Cenozoic morphotectonic evolution of the Min Shan, the eastern margin of the Tibetan plateau[J]. Tectonics, 37: 1733−1749. doi: 10.1029/2017TC004868

    CrossRef Google Scholar

    [41] Tian Y T, Liu Y M, Li R, Sun X L, Zhang Z J, Carter A, Vermeesch P. 2022. Thermochronological constraints on Eocene deformation regime in the Longmenshan: Implications for the eastward growth of the Tibetan plateau[J]. Global and Planetary Change, 21: 103930.

    Google Scholar

    [42] Tian Yuntao, Yao Xinbo, Zhang Guihong, Pan Lili, Liu Yimin, Maimaiti R, Yuan Zhihuang, Li Bojiang, Zhang Zengjie, Zhang Jinjiang, Xiao Wenjiao. 2024. Thermochronometric diagnostics on the tectonic architecture of compressional deformation belts[J]. Chinese Science Bulletin, 69(18): 2518−2533 (in Chinese with English abstract

    Google Scholar

    [43] Tian Yuntao, Yuan Yusong, Hu Shengbiao. 2009. New progress in apatite fission track analysis[J]. Progress in Geophisics, 24(3): 909−920 (in Chinese with English abstract).

    Google Scholar

    [44] Tian Yuntao, Zhu Chuanqing, Xu Ming, Rao Song, Barry P K, Hu Shengbiao. 2011. Post–early Cretaceous denudation history of the northeastern Sichuan Basin: Constraints from low–temperature thermochronology profiles[J]. Chinese Journal of Geophysics, 54(3): 807−816 (in Chinese with English abstract).

    Google Scholar

    [45] Wagner G A, van den Haute P. 1992. Fission Track Dating[M]. Dordrecht: Kluwer Academic Publisher.

    Google Scholar

    [46] Wang E. 2017. Timing of the initial collision between the Indian and Asian continents[J]. Science China Earth Sciences, 60(4): 626−634. doi: 10.1007/s11430-016-5136-3

    CrossRef Google Scholar

    [47] Wang E, Kirby E, Furlong K P, Soest M V, Xu G, Shi X, Kamp P J J, Hodges K V. 2012. Two–phase growth of high topography in eastern Tibet during the Cenozoic[J]. Nature Geoscience, 5: 640−645. doi: 10.1038/ngeo1538

    CrossRef Google Scholar

    [48] Wang Erqi, Meng Qingren. 2008. Discussion on the Mesozoic and Cenozoic tectonic evolution of Longmenshan[J]. Science China (Earth Sciences), 38(10): 1221−1233 (in Chinese).

    Google Scholar

    [49] Wang Erqi, Su Zhe, Xu Guang. 2009. A case study on lateral extrusion occurred along some orogenic belts in China[J]. Chinese Journal of Geology, 44(4): 1266−1288 (in Chinese with English abstract).

    Google Scholar

    [50] Wang Erqi, Meng Kai, Xu Guang, Fan Chun, Su Zhe. 2018. Cenozoic two–stage obduction of the Indian subcontinent: On the interaction between the Indian Ocean, Tethyan and Eurasian plates[J]. Acta Petrologica Sinica, 34(7): 1867−1875 (in Chinese with English abstract).

    Google Scholar

    [51] Wang Erqi, Meng Qingren, Chen Zhiliang, Chen Liangzhong. 2001. Early Mesozoic left–lateral movement along the Longmenshan fault belt and its tectonic implication[J]. Earth Science Frontiers, 8(1): 375−384 (in Chinese with English abstract).

    Google Scholar

    [52] Wang Nan, Zhang Zhiyong, Malusà Marco G, Wu Lin, Chew D, Zhang Jien, Xiang Dunfeng, Xiao Wenjiao. 2021. Pulsed Mesozoic exhumation in Northeast Asia: New constraints from zircon U–Pb and apatite U–Pb, fission track and (U–Th)/He analyses in the Zhangguangcai Range, NE China[J]. Tectonophysics, 5: 229075.

    Google Scholar

    [53] Xu Chenguang, Yan Danping, Gu Shuhang, Meng Xiangkun, Qiu Liang, Wells M L, Wang Jibin, Ma Fang. 2018. Deformation sequence and geochronological constraints on the metamorphism of the Bikou terrane, northwestern margin of the Yangtze Block[J]. Earth Science Frontiers, 25(1): 80−94 (in Chinese with English abstract).

    Google Scholar

    [54] Xu Dongzhuo, Li Shenghu, Meng Xiangang, Zhu Wenwu, Sun Qikai. 2016. The deformation analysis of main fault zone in eastern part of Bayankala block before and after the Lushan earthquake[J]. North China Earthquake Sciences, 34(2): 50−56 (in Chinese with English abstract).

    Google Scholar

    [55] Yan Danping, Li Shubing, Cao Wentao, Zhang Weichen. 2010. Multi layer detachment crustal structure in the Longmen mountains: Evidences from neo–tectonic deformation and geophysical data[J]. Earth Science Frontiers, 17(5): 106−116 (in Chinese with English abstract).

    Google Scholar

    [56] Yan Danping, Sun Ming, Gong Lingxiao, Zhou Meifu, Qiu Liang, Li Shubing, Zhang Sen, Gu Shuhang, Mu Hongxu. 2020. Composite structure and growth of the Longmenshan foreland thrust belt in the eastern margin of the Qinghai–Tibet Plateau[J]. Journal of Geomechanics, 26(5): 615−633 (in Chinese with English abstract).

    Google Scholar

    [57] Yang Li, Yuan Wanming, Zhu Chuanbao, Hong Shujiong, Li Shiyu, Feng Zirui, Zhang Aikui. 2021. Mesozoic uplift exhumation history of East Kunlun[J]. Acta Petrologica Sinica, 37(12): 3781−3796 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.12.11

    CrossRef Google Scholar

    [58] Yang Zhihua, Wu Ruian, Guo Changbao, Zhang Yongshuang, Lan Hengxing, Ren Sanshao, Yan Yiqiu. 2022. Geo– hazard effects and typical landslide characteristics of the Batang fault zone in the western Sichuan[J]. Geology in China, 49(2): 355−368 (in Chinese with English abstract).

    Google Scholar

    [59] Yuan Wanming. 2016. Thermochronological method of revealing conservation and changes of mineral deposits[J]. Acta Petrologica Sinica, 32(8): 2571−2578 (in Chinese with English abstract).

    Google Scholar

    [60] Yuan Wanming, Yang Zhiqiang, Zhang Zhaochong, Deng Jun. 2011. The uplifting and denudation of main Huangshan Mountains, Anhui Province, China[J]. Science China (Earth Sciences), 54: 1168−1176. doi: 10.1007/s11430-011-4187-0

    CrossRef Google Scholar

    [61] Zeitler P K, Tahirkheli R A K, Naeser C W, Johnson N M. 1982. Unroofing history of a suture zone in the Himalaya of Pakistan by means of fission–track annealing ages[J]. Earth and Planetary Science Letters, 57: 227−240. doi: 10.1016/0012-821X(82)90187-X

    CrossRef Google Scholar

    [62] Zhang Jun, Chen Min, He Yong, You Xuejun, Zhao Wei, Ling Maoqian, Zhang Qingui, Zhu Jianhua. 2023. First discovery of the tectono-strata-bound type natural asphalite in the Guangyuan, Sichuan Provience[J]. Geology in China, 50(1): 289−290 (in Chinese with English abstract).

    Google Scholar

    [63] Zhang Shuai, Tian Yuntao, Tian Ye, Liu Yimin, Tang Yuan, Qin Yonghui, Yan Zhaokun, Li Shihu, Shen Zhongshan, Zhang Zengjie. 2021. Early Cenpzoic paleo–stress field in the eastern margin of the Tibetan Plateau: Magnetic fabric records in the southwestern part of Sichuan Basin[J]. Chinese Journal of Geophysics, 64(5): 1643−1653 (in Chinese with English abstract).

    Google Scholar

    [64] Zhang Zhaojie. 2019. Analysis of Inversion Method for Apatite Fission Track Annealing Process[D]. Xi’an: Northwest University, 1–73 (in Chinese with English abstract).

    Google Scholar

    [65] Zhao Jing, Ren Jinwei, Jiang Zaisen, Yue Chong. 2018. Three dimensional deformation characteristics of the Xianshuihe fault zone[J]. Seismology and Geology, 40(4): 818−831 (in Chinese with English abstract).

    Google Scholar

    [66] Zheng Na, He Dengfa, Wang Renfu, Meng Xianwu, Wang Ying. 2024. Analysis of stratified deformation difference in piedmont zone of the middle Longmen Mountain[J]. Chinese Journal of Geology, 59(3): 768−780 (in Chinese with English abstract).

    Google Scholar

    [67] 白明坤, Chevalier M L, 李海兵, 潘家伟, 吴琼, 王世广, 刘富财, 焦利青, 张进江, 张蕾, 龚正. 2022. 鲜水河断裂带乾宁段晚第四纪走滑速率及区域强震危险性研究[J]. 地质学报, 96(7): 2312−2332.

    Google Scholar

    [68] 陈洪德, 刘磊, 林良彪, 王兴龙, 王志伟, 余瑜, 曾剑, 李朋威. 2021. 川西坳陷西部龙门山隆升时期上三叠统须家河组沉积响应[J]. 石油与天然气地质, 42(4): 801−815. doi: 10.11743/ogg20210403

    CrossRef Google Scholar

    [69] 陈竹新, 贾东, 张惬, 魏国齐, 李本亮, 魏东涛, 沈扬. 2005. 龙门山前陆褶皱冲断带的平衡剖面分析[J]. 地质学报, 79(1): 38−45.

    Google Scholar

    [70] 邓宾, 何宇, 黄家强, 杨荣军, 周政, 赖冬, 罗强, 郑文鑫, 李智武, 刘树根. 2019. 龙门山褶皱冲断带扩展生长过程——基于低温热年代学模型证据[J]. 地质学报, 93(7): 1588−1600.

    Google Scholar

    [71] 邓宾, 刘树根, 李智武, 刘顺. 2009. 青藏高原东缘地区隆升作用特征——低温年代学证据[J]. 第四纪研究, 29(3): 574−585.

    Google Scholar

    [72] 范赛华, 谢辉, 李彬文, 刘媛, 李卫平, 许维娜, 赵虎, 牟蕾. 2022. 川西坳陷东坡地区沙溪庙组断裂对天然气富集的控制作用[J]. 中国地质, 49(4): 1275−1284.

    Google Scholar

    [73] 范增辉, 刘树根, 范存辉, 胡林辉, 李文佳, 米鸿, 韩翀, 韩小俊. 2018. 龙门山褶皱冲断带典型地震剖面平衡剖面恢复及构造演化分析[J]. 地质论评, 64(2): 347−360.

    Google Scholar

    [74] 葛成隆, 李海兵, Leloup P H, 张蕾, 郑勇, 刘栋梁, Fellah C, 叶小舟, 张进江. 2025. 青藏高原东缘汶川—茂县断裂韧性变形对龙门山早期隆升的制约[J]. 地质学报, 99(4): 1134−1149.

    Google Scholar

    [75] 葛家成, 贾东, 尹宏伟, 闫兵, 陈竹新, 范小根, 杨双, 崔键, 钟城. 2023. 龙门山断裂带与龙日坝断裂带相互关系的物理模拟实验研究[J]. 高校地质学报, 29(4): 617−629.

    Google Scholar

    [76] 郭旭升. 2010. 川西地区中、晚三叠世岩相古地理演化及勘探意义[J]. 石油与天然气地质, 31(5): 610−620.

    Google Scholar

    [77] 洪海涛, 田兴旺, 孙奕婷, 马奎, 李庚, 王云龙, 杨岱林, 彭瀚霖, 罗冰, 周刚, 薛玖火, 叶茂, 山述娇. 2020. 四川盆地海相碳酸盐岩天然气富集规律[J]. 中国地质, 47(1): 99−110.

    Google Scholar

    [78] 贾秋鹏, 贾东, 朱艾斓, 陈竹新, 胡潜伟, 罗良, 张元元, 李一泉. 2007. 青藏高原东缘龙门山冲断带与四川盆地的现今构造表现: 数字地形和地震活动证据[J]. 地质科学, 42(1): 31−44. doi: 10.3321/j.issn:0563-5020.2007.01.004

    CrossRef Google Scholar

    [79] 金文正, 万桂梅, 崔泽宏, 王俊鹏, 杨孝群, 白万奎. 2012. 四川盆地关键构造变革期与陆相油气成藏期次[J]. 断块油气田, 19(3): 273−277. doi: 10.6056/dkyqt201203001

    CrossRef Google Scholar

    [80] 李煜航. 2018. 青藏高原东北横向扩展运动研究[D]. 北京: 中国地震局地质研究所, 1–127.

    Google Scholar

    [81] 林锦荣, 胡志华, 陶意, 王勇剑, 王峰. 2019. 相山矿田邹家山铀矿床成矿热事件的锆石裂变径迹年龄响应[J]. 铀矿地质, 35(4): 193−198. doi: 10.3969/j.issn.1000-0658.2019.04.001

    CrossRef Google Scholar

    [82] 林霄晗, 颜丹平, 邱亮, 周志成, 宋华杰, 孔霏, 都超. 2025. 青藏高原东缘龙门山推覆—滑覆飞来峰: 构造与(U−Th)/He热年代学约束[J]. 中国科学: 地球科学, 55(4): 1179−1194.

    Google Scholar

    [83] 刘方斌. 2021. 青藏高原东南缘新生代剥露历史的热年代学约束——以临沧花岗岩地区为例[D]. 兰州: 兰州大学, 1–220.

    Google Scholar

    [84] 刘鹤, 颜丹平, 魏国庆. 2008. 扬子板块西北缘碧口地块变形变质作用序列——松潘—甘孜造山带伸展垮塌事件的意义[J]. 地质学报, 82(4): 464−474.

    Google Scholar

    [85] 刘树根, 李智武, Kamp P J J, 冉波, 李金玺, 邓宾, 王国芝, Xu Ganqing, Danisík M, 杨迪, 王自剑, 李祥辉, 刘顺, 李巨初. 2019. 青藏高原东缘中生代若尔盖古高原的发现及其地质意义[J]. 成都理工大学学报(自然科学版), 46(1): 1−28.

    Google Scholar

    [86] 罗梦, 朱文斌, 郑碧海, 朱晓青. 2012. 库车盆地中新生代构造演化: 磷灰石裂变径迹证据[J]. 地球科学(中国地质大学学报), 37(5): 893−902.

    Google Scholar

    [87] 沈传波, 梅廉夫, 刘昭茜, 徐思煌. 2009. 黄陵隆起中—新生代隆升作用的裂变径迹证据[J]. 矿物岩石, 29(2): 54−60.

    Google Scholar

    [88] 孙丽静, 赵中宝, 潘家伟, 梁凤华, 张磊, 张进江. 2021. 鲜水河断裂带康定段雅拉河断裂深部应力应变状态及其孕震环境[J]. 岩石学报, 37(10): 3225−3240.

    Google Scholar

    [89] 谭锡斌, 李元希, 徐锡伟, 陈玟禹, 许冲, 于贵华. 2013. 低温热年代学数据对龙门山推覆构造带南段新生代构造活动的约束[J]. 地震地质, 35(3): 506−517. doi: 10.3969/j.issn.0253-4967.2013.03.005

    CrossRef Google Scholar

    [90] 谭锡斌, 徐锡伟, 李元希, 袁仁茂, 于贵华, 许冲. 2015. 龙门山中段中央断裂和前山断裂的晚新生代垂向活动性差异及其构造意义[J]. 地球物理学报, 58(1): 143−152.

    Google Scholar

    [91] 唐渊, 王鹏, 邓红, 刘宇平, 唐文清. 2022. 青藏高原东缘鲜水河断裂带南东段渐新世以来主要构造岩浆事件的岩石记录[J]. 地质通报, 41(7): 1121−1143.

    Google Scholar

    [92] 陶亚玲. 2021. 青藏高原东缘雅砻江逆冲带新生代隆升剥露及其对高原扩展的启示[D]. 北京: 中国地震局地质研究所, 1−143.

    Google Scholar

    [93] 陶亚玲, 张会平, 葛玉魁, 庞建章, 俞晶星, 张佳伟, 赵旭东, 马字发. 2020. 青藏高原东缘新生代隆升剥露与断裂活动的低温热年代学约束[J]. 地球物理学报, 63(11): 4154−4167.

    Google Scholar

    [94] 田云涛, 姚欣博, 张贵洪, 潘黎黎, 刘一珉, 热孜亚·麦麦提, 袁志煌, 李柏江, 张增杰, 张进江, 肖文交. 2024. 挤压构造带变形样式的热年代学诊断[J]. 科学通报, 69(18): 2518−2533.

    Google Scholar

    [95] 田云涛, 袁玉松, 胡圣标. 2009. 磷灰石裂变径迹分析新进展[J]. 地球物理学进展, 24(3): 909−920.

    Google Scholar

    [96] 田云涛, 朱传庆, 徐明, 饶松, Kohn B P, 胡圣标. 2011. 晚白至世以来川东北地区的剥蚀历史——多类低温热年代学数据综合剖面的制约[J]. 地球物理学报, 54(3): 807−816. doi: 10.3969/j.issn.0001-5733.2011.03.021

    CrossRef Google Scholar

    [97] 王二七, 孟恺, 许光, 樊春, 苏哲. 2018. 印度陆块新生代两次仰冲事件及其构造驱动机制: 论印度洋、特提斯和欧亚板块相互作用[J]. 岩石学报, 34(7): 1867−1875.

    Google Scholar

    [98] 王二七, 孟庆任. 2008. 对龙门山中生代和新生代构造演化的讨论[J]. 中国科学D辑 (地球科学), 38(10): 1221−1233.

    Google Scholar

    [99] 王二七, 孟庆仁, 陈智樑, 陈良忠. 2001. 龙门山断裂带印支期左旋走滑运动及其大地构造成因[J]. 地学前缘, 8(2): 375−384.

    Google Scholar

    [100] 王二七, 苏哲, 许光. 2009. 我国的一些造山带的侧向挤出构造[J]. 地质科学, 44(4): 1266−1288.

    Google Scholar

    [101] 许晨光, 颜丹平, 古术航, 孟祥坤, 邱亮, Wells M L, 王继斌, 马芳. 2018. 扬子板块西北缘碧口地块中—新生代变质、变形与年代限定[J]. 地学前缘, 25(1): 80−94.

    Google Scholar

    [102] 徐东卓, 李胜虎, 孟宪纲, 朱文武, 孙启凯. 2016. 芦山地震前后巴颜喀拉地块东部断裂带形变分析[J]. 华北地震科学, 34(2): 50−56.

    Google Scholar

    [103] 颜丹平, 李书兵, 曹文涛, 张维宸. 2010. 龙门山多层分层拆离地壳结构: 新构造变形与深部构造证据[J]. 地学前缘, 17(5): 106−116.

    Google Scholar

    [104] 颜丹平, 孙铭, 巩凌霄, 周美夫, 邱亮, 李书兵, 张森, 古术航, 木红旭. 2020. 青藏高原东缘龙门山前陆逆冲带复合结构与生长[J]. 地质力学学报, 26(5): 615−633.

    Google Scholar

    [105] 杨莉, 袁万明, 朱传宝, 洪树炯, 李世昱, 冯子睿, 张爱奎. 2021. 东昆仑中生代隆升剥露历史[J]. 岩石学报, 37(12): 3781−3796. doi: 10.18654/1000-0569/2021.12.11

    CrossRef Google Scholar

    [106] 杨志华, 吴瑞安, 郭长宝, 张永双, 兰恒星, 任三绍, 闫怡秋. 2022. 川西巴塘断裂带地质灾害效应与典型滑坡发育特征[J]. 中国地质, 49(2): 355−368.

    Google Scholar

    [107] 袁万明. 2016. 矿床保存变化研究的热年代学技术方法[J]. 岩石学报, 32(8): 2571−2578.

    Google Scholar

    [108] 张君, 陈敏, 贺勇, 游学军, 赵伟, 凌茂前, 张芹贵, 祝建华. 2023. 四川广元地区首次发现构造−层控型天然沥青矿[J]. 中国地质, 2023, 50(1): 289–290.

    Google Scholar

    [109] 张帅, 田云涛, 田野, 刘一珉, 唐苑, 秦咏辉, 颜照坤, 李仕虎, 沈中山, 张增杰. 2021. 青藏高原东缘新生代早期古应力环境: 来自四川盆地西南缘磁组构的记录[J]. 地球物理学报, 64(5): 1643−1653.

    Google Scholar

    [110] 张昭杰. 2019. 磷灰石裂变径迹退火过程反演方法分析[D]. 西安: 西北大学, 1–73.

    Google Scholar

    [111] 赵静, 任金卫, 江在森, 岳冲. 2018. 鲜水河断裂带三维变形特征[J]. 地震地质, 40(4): 818−831. doi: 10.3969/j.issn.0253-4967.2018.04.007

    CrossRef Google Scholar

    [112] 郑娜, 何登发, 汪仁富, 孟宪武, 王莹. 2024. 龙门山山前带中段分层差异变形特征及成因[J]. 地质科学, 59(3): 768−780. doi: 10.12017/dzkx.2024.055

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(7)

Article Metrics

Article views(24) PDF downloads(0) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint