Citation: | YAN Beibei, WEI Qianqian, LI Xinfeng, SUN Xiangyu, JIANG Xing, WANG Min, ZHANG Ruilin, GAO Zongjun, LIU Jiutan. 2025. Source analysis and health risk assessment of potential toxic elements in soil of Tengzhou City Marginal Area[J]. Geology in China, 52(4): 1454-1468. doi: 10.12029/gc20231103003 |
This paper is the result of environmental geological survey engineering.
To investigate the contamination characteristics, sources, and ecological risk status of potentially toxic elements (PTEs) in soils around urban fringe areas.
Soil samples were collected from 456 surface layers (0-20 cm) around the fringe area of Tengzhou City, and As, Cd, Cr, Cu, Hg, Ni, Pb and Zn contents were determined. The geo-accumulation index method and potential ecological risk index method were used to assess the pollution characteristics of urban PTEs, the Absolute Principal Component Score-Multiple Linear Regression (APCS-MLR) model and Positive Matrix Factorization (PMF) were used to quantitatively resolve the sources of PTEs pollutants, and the health risk index model was used to assess the risk to human health.
The ecological risk of surface topsoil is relatively low, Hg pollution is the most serious, and Hg pollution is characterized by large spatial variations, aggregation of pollution, and serious influence by human activities. Source analysis showed that soil PTEs in the edge area of Tengzhou originated from natural, industrial, transportation and agricultural sources, which accounted for 39.59%, 29.48%, 25.17% and 5.77% in the APCS-MLR model, and 29.64%, 15.38%, 28.03% and 26.93% in the PMF model. The human health risk evaluation showed that non-carcinogenic risk for adults was low, the non-carcinogenic risk for children and the total carcinogenic risk for population were high, and As and Cr had some carcinogenic hazards.
The main source of surface soil PTEs is the geological background, and attention should be paid to Hg, As and Cr monitoring and treatment. It is recommended that the monitoring of drinking water resources be strengthened, and that traffic pollution emissions be reduced and the regulation of factory waste emissions be strengthened.
[1] | Abdelhalim A, Howard G, Howden N J K, Ahmed M, Ismail E. 2023. Carcinogenic and non-carcinogenic health risk assessment of heavy metals contamination in groundwater in the west of Minia area, Egypt[J]. Human and Ecological Risk Assessment: HERA, 29(2): 571−596. doi: 10.1080/10807039.2022.2153010 |
[2] | Ahmed S, Khurshid S, Qureshi F, Hussain A, Bhattacharya A. 2019. Heavy metals and geo-accumulation index development for groundwater of Mathura City, Uttar Pradesh[J]. Desalination and Water Treatment, 138: 291−300. doi: 10.5004/dwt.2019.23322 |
[3] | Cai Ziyan, Li Junqi, Ma Teng, Liu Nian, Gong Xuezi, Yao Xiang, Ma Chuanming, Liao Yuan. 2023. Source analysis and ecological health risk assessment of soil heavy metal pollution in Tian’ezhou of the middle reaches of Yangtze River[J/OL]. Geology in China: 1–21[2023–11–24] (in Chinese with English abstract). |
[4] | Chen Y, Rich D Q, Hopke P K. 2022. Long–term PM2.5 source analyses in New York City from the perspective of dispersion normalized PMF[J]. Atmospheric Environment (Oxford, England: 1994), 272(118949): 118949. |
[5] | Chen Yali, Weng Liping, Ma Jie, Wu Xiaojuan, Li Yongtao. 2019. Review on the last ten years of research on source identification of heavy metal pollution in soils[J]. Journal of Agro–Environment Science, 38(10): 2219−2238 (in Chinese with English abstract). |
[6] | Chen Z F, Ding Y F, Jiang X Y, Duan H J, Ruan X L, Li Z H, Li Y P. 2022. Combination of unmix, pmf model and Pb–Zn–Cu isotopic compositions for quantitative source apportionment of heavy metals in suburban agricultural soils[J]. Ecotoxicology and Environmental Safety, 234: 113369−113369. doi: 10.1016/j.ecoenv.2022.113369 |
[7] | Dai Qianjin, Feng Xinbin, Tang Guiping. 2002. The geochemical behavior of mercury in soil and its pollution control[J]. Earth and Environment, (4): 75−79 (in Chinese with English abstract). |
[8] | Fang Jia, He Ying, Huang Naitao, Zhi Yuyou, Fu Weijun. 2023. Integrated analysis on source–exposure risk of heavy metals in farmland soil based on PMF Model: a case study in the e–waste dismantling area in Zhejiang province[J]. Environmental Science, 44(7): 4027−4038 (in Chinese with English abstract). |
[9] | Han Cunliang, Luo Bingsheng, Chang Chunying, Deng Yirong, Xiong Jian, Wang Jun, Li Zhaohui. 2022. Identifying the source of soil heavy metal pollution in regional agricultural area based on multiple methods[J]. Journal of Ecology and Rural Environment, 38(2): 176−183 (in Chinese with English abstract). |
[10] | Jiang Xin, Ma Yiqi, Tu Chunlin, Huang An, Hu Yaojun, Ye Lei, He Chengzhong, Li Shiyu. 2024. Ecological risk and source analysis of soil heavy metals in typical coal mining areas of Eastern Yunnan Province[J]. Geology in China, 51(1): 327−340 (in Chinese with English abstract). |
[11] | Kumar V, Sharma A, Kaur P, Sidhu G P S, Bali A S, Bhardwaj R, Thukral A K, Cerda A. 2018. Pollution assessment of heavy metals in soils of india and ecological risk assessment: A state–of–the–art[J]. Chemosphere, 216: 449−462. |
[12] | Ljung K, Otabbong E, Selinus O. 2006. Natural and anthropogenic metal inputs to soils in urban uppsala, sweden[J]. Environ Geochem Health, 28(4): 353−64. doi: 10.1007/s10653-005-9031-z |
[13] | Li Jianfeng, Feng Lixiao. 2023. Health risk assessment of heavy metal pollution in soil of a tin mining area in Hunan Province[J]. Geology in China, 50(3): 897−910 (in Chinese with English abstract). |
[14] | Li Jun, Li Xu, Gao Shigang, Li Kaiming, Jiao Liang, Zang Fei, Pan Wenhui, Tai Xisheng. 2023. contamination characteristics and source apportionment of potentially toxic elements in soil around the coal–fired power plant using APCS–MLR and PMF models[J]. Environmental Science, 44(10): 5689−5703 (in Chinese with English abstract). |
[15] | Liu X W, Chen S Y, Yan X L, Liang T, Yang X, Ali El–Naggar, Liu J, Chen H B. 2021. Evaluation of potential ecological risks in potential toxic elements contaminated agricultural soils: Correlations between soil contamination and polymetallic mining activity[J]. Journal of Environmental Management, 300: 113679−113679. doi: 10.1016/j.jenvman.2021.113679 |
[16] | Lü Yujuan, Wang Qiuyue, Sun Xuemei, Zhang Zhiwei, Zhang Yimin, Gao Yuexiang. 2023. Pollution characteristics and source identification of heavy metals in farmland soils around a tailing pond in Zhejiang Province[J]. Journal of Environmental Engineering Technology, 13(4): 1464−1475 (in Chinese with English abstract). |
[17] | Ma Jie, Shen Zhijie, Zhang Pingping, Liu Ping, Liu Jinzhao, Sun Jing, Wang Lingling. 2023. Pollution characteristics and source apportionment of heavy metals in farmland soils around the gangue heap of coal mine based on APCS–MLR and PMF receptor model[J]. Environmental Science, 44(4): 2192−2203 (in Chinese with English abstract). |
[18] | Ministry of Environmental Protection. 2014. The national soil contamination survey report[J]. China Environmental Protection Industry, (5): 10−11. |
[19] | Mosallaei S, Abbasi S, Jalaliyan E, Hoda A, Mohammad H. 2023. Heavy metals in edible red soil of the rainbow island in the persian gulf: Concentration and health risk assessment[J]. Chemosphere, 331: 138778−138778. doi: 10.1016/j.chemosphere.2023.138778 |
[20] | Nanos N, Martin J A R. 2012. Multiscale analysis of heavy metal contents in soils: Spatial variability in the Duero river basin (Spain)[J]. Geoderma, 189–190: 554–562. |
[21] | Pang Xugui, Dai Jierui, Chen Lei, Liu Huafeng, Yu Chao, Han Liu, Ren Tianlong, Hu Xueping, Wang Hongjin, Wang Zenghui, Zhao Xiqiang, Zeng Xiandong, Ren Wenkai, Wang Cunlong. 2019. Soil geochemical background value of 17 cities in Shandong Province[J]. Shandong Land and Resources, 35(1): 46−56 (in Chinese with English abstract). |
[22] | Pang Xugui, Dai Jierui, Hu Xueping, Song Zhiyong, Yu Chao, Chen Lei, Zhang Huaping, Liu Huafeng, Wang Hongjin, Wang Zenghui, Zhao Xiqiang, Zeng Xiandong, Ren Wenkai. 2018. Background values of soil geochemistry in Shandong Province[J]. Shandong Land and Resources, 34(1): 39−43 (in Chinese with English abstract). |
[23] | Peng Chaoyue, Ren Chong, Shen Haoxin, Wang Yanfeng, Duan Haijing, Wang Yulong, Li Xuhui, Liu Dexin, Ma Jianhua. 2023. Soil heavy metal contamination, sources, and health risk of typical drinking water sources in the suspended reach of the lower Yellow River[J]. Environmental Science, 44(12): 6710−6719 (in Chinese with English abstract). |
[24] | Qin Pengyi, Wang Min, Yin Guoqiang, Wang Bingshun, Gao Zongjun, Feng Jianguo, Pang Xugui, Dai Jierui. 2019. Enrichment characteristics and influential factors of selenium content in topsoil of Tengzhou[J]. Soils, 51(2): 279−283 (in Chinese with English abstract). |
[25] | Qu M K, Wang Y, Huang B, Zhao Y C. 2018. Source apportionment of soil heavy metals using robust absolute principal component scores–robust geographically weighted regression (RAPCS–RGWR) receptor model[J]. The Science of the Total Environment, 626: 203−210. doi: 10.1016/j.scitotenv.2018.01.070 |
[26] | Sai Ninggang, Qi Juan, Jia Yanwei, Che Meimei, Yang Juandi, Wang Xiaojuan, Xu Changlin. 2022. Evaluation of soil heavy metal pollution under different land use patterns in the eastern Qilian Mountains[J]. Acta Prataculturae Sinica, 31(10): 99−109 (in Chinese with English abstract). |
[27] | Shi Y J, Xu X B, Li Q F, Zhang M, Li J, Liu Y L, Liang R Y, Zheng X Q, Shao X Q. 2018. Integrated regional ecological risk assessment of multiple metals in the soils: A case in the region around the Bohai Sea and the Yellow Sea[J]. Environmental Pollution, 242(11): 288−297. |
[28] | Sun Houyun, Wei Xiaofeng, Sun Xiaoming, Zhang Huiqiong, Yin Zhiqiang. 2023. An overview of evaluation criteria and model for heavy metal pollution ecological risk in small–scale drainage catchment of mountainous area[J]. Geology in China, 50(1): 36−51 (in Chinese with English abstract). |
[29] | Tu Chunlin, Yang Kun, He Chengzhong, Zhang Liankai, Li Bo, Wei Zong, Jiang Xin, Yang Minghua. 2023. Sources and risk assessment of heavy metals in sediments of small watersheds in typical coal mining areas of Eastern Yunnan[J]. Geology in China, 50(1): 206−221 (in Chinese with English abstract). |
[30] | Wang J, Zhang X X, Chen A F, Wang B, Zhao Q B, Liu G N, Xiao X, Cao J N. 2022. Source analysis and risk evaluation of heavy metal in the river sediment of polymetallic mining area: Taking the Tonglüshan skarn type Cu–Fe–Au deposit as an example, Hubei section of the Yangtze River Basin, China[J]. China Geology, 5(4): 649−661. |
[31] | Wang Min, Yan Beibei, Qin Pengyi, Gao Zongjun, Feng Guoping, Pang Xugui. 2020. Accumulation characteristics and sources analysis of heavy metals in topsoil of Tengzhou[J]. Journal of Henan Polytechnic University(Natural Science), 39(1): 60−67 (in Chinese with English abstract). |
[32] | Wang Renqi, Tan Keyan, Sun Qian, Li Hang, Zhang Longlong, Wang Yu, Yuan Xin, Zhu Xiaohua, Cai Jingyi. 2024. Health risk assessment of heavy metals in typical oats production region of Bashang area in Zhangjiakou, Hebei Province[J]. Geology in China, 51(1): 264−275 (in Chinese with English abstract). |
[33] | Wang X P, Zong Z, Tian C G, Chen Y J, Luo C L, Li J, Luo Y M. 2017. Combining positive matrix factorization and radiocarbon measurements for source apportionment of PM2.5 from a national background site in North China[J]. Scientific Reports, 7(1): 10648. doi: 10.1038/s41598-017-10762-8 |
[34] | Wang Zhifeng, Tang Liling, Ma Shengming, Hu Shuqi. 2014. Modes of occurrence of Hg in hg pollution soil of cities[J]. Geophysical and Geochemical Exploration, 38(2): 345−348 (in Chinese with English abstract). |
[35] | Xi Chaozhuang, Wu Linfeng, Zhang Pengfei, Yang Mingtai, Fan Yunfei, Xia Haodong, Deng Huijuan. 2023. Characteristics and sources of Cd and As trace elements in soil–irrigation–rainwater–atmospheric dust–fall in Huishui County, Guizhou Province[J]. Geology in China, 50(1): 192−205 (in Chinese with English abstract). |
[36] | Xie T Y, Shi Z M, Gao Y W, Tan L, Meng L. 2021. Modeling analysis of the characteristics of selenium–rich soil in heavy metal high background area and its impact on main crops[J]. Ecological Informatics, 66: 101420. |
[37] | Yang Ling, Tian Lei, Bai Guangyu, Pei Shengliang, Zhang Deqiang. 2022. Ecological risk assessments and source analysis of heavy metals in the soil of Xin Barag Youqi, Inner Mongolia[J]. Geology in China, 49(6): 1970−1983 (in Chinese with English abstract). |
[38] | Yang Shaona, Jin Gaoqi, Fang Qijun, Liao Shiyan, Luo Wenxuan, Jia Junwei, Ma Jiawei, Ye Zhengqian, Liu Dan. 2020. Analysis and comment on China's soil heavy metal pollution sources in the past 10 years(2009—2018)[J]. Jiangsu Agricultural Sciences, 48(20): 17−24 (in Chinese with English abstract). |
[39] | Yi Shiyi, Li Xiaonuo, Chen Xinyue, Chen Weiping. 2024. Source–route–receptor–based spatial zoning study on soil heavy metals pollution risk[J]. Acta Pedologica Sinica, 61(5): 1323−1338 (in Chinese with English abstract). |
[40] | Yu Danyang, Wang Yanhong, Ding Fu, Chen Xin, Wang Jingran. 2021. Comparison of analysis methods of soil heavy metal pollution sources in china in last ten years[J]. Chinese Journal of Soil Science, 52(4): 1000−1008 (in Chinese with English abstract). |
[41] | Zhang Chuanhua, Wang Zhongshu, Liu Li, Liu Yan. 2023. Source analysis of soil heavy metals in agricultural land around the mining area based on APCS–MLR receptor model and geostatistical method[J]. Environmental Science, 44(6): 3500−3508 (in Chinese with English abstract). |
[42] | Zhang Haixia, Cai Angzu, Zhao Haiping, Zhao Yawei, Wang Xiaojian, Wang Litao, Tian Shulei. 2022. Source apportionment of metals in atmospheric deposition of a typical industrial city based on PMF and APCS–MLR and comprehensive pollution assessment[J]. Chinese Journal of Environmental Engineering, 16(11): 3816−3827 (in Chinese with English abstract). |
[43] | Zhang Yuchao. 2020. Geochemical Distribution of Potentially Harmful Elements in Multi–media of Energy–Based City Yulin and Children's Exposure Risk[D]. Xi’an: Shaanxi Normal University, 1–119 (in Chinese with English abstract). |
[44] | Zhang Ziliang, Lin Jian, Dong Mingyue, Dong Jinlong, Duan Zengqiang. 2022. Survey of cadmium and mercury pollution and assessment of health risk of crops in polluted farmland in southern Jiangsu[J]. Soils, 54(1): 206−210 (in Chinese with English abstract). |
[45] | Zhao Dashuang, Jiang Chunlu, Zhao Qi, Chen Xing, Li Chang, Zheng Liugen, Chen Yuanping. 2022. Distribution characteristics and source apportionment of polycyclic aromatic hydrocarbons in groundwater of a coal mining area based on PMF and PCA–APCS–MLR model[J]. Earth and Environment, 50(5): 721−732 (in Chinese with English abstract). |
[46] | Zhao Liyuan, Kong Linghao, Zhao Zhigang, Zhou Wenhui, Qiu Jiandong, Huang Jianhua, Geng Baili, Yang Maosen, Han Xiangcai, Li Yachao, Gu Songsong, Zhao Mingjie, Shan Kai. 2024. Pollution characteristics, source analysis and risk assessment of heavy metals in soil around a gold mine in Jiaodong Peninsula[J]. Geology in China, 51(5): 1485−1500 (in Chinese with English abstract). |
[47] | Zhou Dehua, Zhou Beibei, Chen Xiaopeng, Yang Qiang, Li Xiaoqing, Guo Jiang, Yang Yang. 2023. Soil heavy metal pollution characteristics and health risk assessment in Dafanshan abandoned alum mining area of Anhui, China[J]. Journal of Earth Sciences and Environment, 45(4): 966−977 (in Chinese with English abstract). |
[48] | 蔡子延, 李俊琦, 马腾, 刘念, 龚学梓, 姚湘, 马传明, 廖媛. 2023. 长江中游天鹅洲地区土壤重金属生态健康风险评价及其来源解析[J/OL]. 中国地质: 1–21 [2023–11–24]. |
[49] | 陈雅丽, 翁莉萍, 马杰, 武晓娟, 李永涛. 2019. 近十年中国土壤重金属污染源解析研究进展[J]. 农业环境科学学报, 38(10): 2219−2238. doi: 10.11654/jaes.2018-1449 |
[50] | 戴前进, 冯新斌, 唐桂萍. 2002. 土壤汞的地球化学行为及其污染的防治对策[J]. 地质地球化学, (4): 75−79. |
[51] | 方嘉, 何影, 黄乃涛, 支裕优, 傅伟军. 2023. 基于PMF模型的农田土壤重金属源暴露风险综合评价: 以浙江省某电子垃圾拆解区为例[J]. 环境科学, 44(7): 4027−4038. |
[52] | 韩存亮, 罗炳圣, 常春英, 邓一荣, 熊键, 王俊, 李朝晖. 2022. 基于多种方法的区域农业土壤重金属污染成因分析研究[J]. 生态与农村环境学报, 38(2): 176−183. |
[53] | 环境保护部. 2014. 全国土壤污染状况调查公报[J]. 中国环保产业, (5): 10−11. |
[54] | 姜昕, 马一奇, 涂春霖, 黄安, 胡要君, 叶雷, 和成忠, 李世玉. 2024. 滇东典型煤矿区土壤重金属生态风险及来源解析[J]. 中国地质, 51(1): 327−340. doi: 10.12029/gc20230228004 |
[55] | 李剑锋, 冯李霄. 2023. 湖南某锡矿区土壤重金属污染及健康风险评价[J]. 中国地质, 50(3): 897−910. doi: 10.12029/gc20220825003 |
[56] | 李军, 李旭, 高世刚, 李开明, 焦亮, 臧飞, 潘文惠, 台喜生. 2023. 基于APCS–MLR和PMF模型的燃煤电厂周边土壤潜在有毒元素(PTEs)污染特征与来源解析[J]. 环境科学, 44(10): 5689−5703. |
[57] | 吕玉娟, 王秋月, 孙雪梅, 张志伟, 张毅敏, 高月香. 2023. 浙江省某尾矿库周边农田土壤重金属污染特征及来源解析[J]. 环境工程技术学报, 13(4): 1464−1475. doi: 10.12153/j.issn.1674-991X.20221193 |
[58] | 马杰, 沈智杰, 张萍萍, 刘萍, 刘今朝, 孙静, 王玲灵. 2023. 基于APCS–MLR和PMF模型的煤矸山周边耕地土壤重金属污染特征及源解析[J]. 环境科学, 44(4): 2192−2203. |
[59] | 庞绪贵, 代杰瑞, 陈磊, 刘华峰, 喻超, 韩鎏, 任天龙, 胡雪平, 王红晋, 王增辉, 赵西强, 曾宪东, 任文凯, 王存龙. 2019. 山东省17市土壤地球化学背景值[J]. 山东国土资源, 35(1): 46−56. |
[60] | 庞绪贵, 代杰瑞, 胡雪平, 宋志勇, 喻超, 陈磊, 张华平, 刘华峰, 王红晋, 王增辉, 赵西强, 曾宪东, 任文凯. 2018. 山东省土壤地球化学背景值[J]. 山东国土资源, 34(1): 39−43. doi: 10.3969/j.issn.1672-6979.2018.01.005 |
[61] | 彭超月, 任翀, 申浩欣, 王艳锋, 段海静, 王玉龙, 李旭辉, 刘德新, 马建华. 2023. 黄河下游悬河段饮用水源地土壤重金属污染、来源及健康风险[J]. 环境科学, 44(12): 6710−6719. |
[62] | 秦鹏一, 王敏, 殷国强, 王秉顺, 高宗军, 冯建国, 庞绪贵, 代杰瑞. 2019. 滕州表层土壤硒异常特征及来源分析[J]. 土壤, 51(2): 279−283. |
[63] | 赛宁刚, 祁娟, 贾燕伟, 车美美, 杨娟弟, 王晓娟, 徐长林. 2022. 东祁连山不同土地利用方式下土壤重金属污染评价[J]. 草业学报, 31(10): 99−109. doi: 10.11686/cyxb2021394 |
[64] | 孙厚云, 卫晓锋, 孙晓明, 张会琼, 殷志强. 2023. 山区小流域矿集区土壤重金属污染生态风险评价基准与模型[J]. 中国地质, 50(1): 36−51. doi: 10.12029/gc20200916001 |
[65] | 涂春霖, 杨坤, 和成忠, 张连凯, 李博, 魏总, 姜昕, 杨明花. 2023. 滇东典型煤矿区小流域沉积物重金属来源及风险评价[J]. 中国地质, 50(1): 206−221. doi: 10.12029/gc20220221002 |
[66] | 王敏, 阎蓓蓓, 秦鹏一, 高宗军, 冯国平, 庞绪贵. 2020. 滕州表层土壤重金属累积特征及来源分析[J]. 河南理工大学学报(自然科学版), 39(1): 60−67. |
[67] | 王仁琪, 谭科艳, 孙倩, 李航, 张隆隆, 王玉, 袁欣, 朱晓华, 蔡敬怡. 2024. 河北省张家口坝上典型莜麦产区重金属元素健康风险评价[J]. 中国地质, 51(1): 264−275. doi: 10.12029/gc20221228002 |
[68] | 王之峰, 汤丽玲, 马生明, 胡树起. 2014. 城市汞污染土壤中Hg的形态特征[J]. 物探与化探, 38(2): 345−348. |
[69] | 息朝庄, 吴林锋, 张鹏飞, 杨茗钛, 范云飞, 夏浩东, 邓会娟. 2023. 贵州省惠水土壤–灌溉水–雨水–大气降尘中Cd、As等微量元素特征及来源讨论[J]. 中国地质, 50(1): 192−205. doi: 10.12029/gc20210308003 |
[70] | 杨玲, 田磊, 白光宇, 裴圣良, 张德强. 2022. 内蒙古新巴尔虎右旗土壤重金属生态风险与来源分析[J]. 中国地质, 49(6): 1970−1983. doi: 10.12029/gc20220619 |
[71] | 杨梢娜, 金皋琪, 方琪钧, 廖诗彦, 骆文轩, 贾军伟, 马嘉伟, 叶正钱, 柳丹. 2020. 我国近10年土壤重金属污染源解析评述(2009—2018)[J]. 江苏农业科学, 48(20): 17−24. |
[72] | 易诗懿, 李笑诺, 陈欣悦, 陈卫平. 2024. 基于“源–径–汇”关系的土壤重金属污染风险空间区划研究[J]. 土壤学报, 61(5): 1323−1338. |
[73] | 于旦洋, 王颜红, 丁茯, 陈欣, 王镜然. 2021. 近十年来我国土壤重金属污染源解析方法比较[J]. 土壤通报, 52(4): 1000−1008. |
[74] | 张传华, 王钟书, 刘力, 刘燕. 2023. 基于APCS–MLR受体模型和地统计法的矿区周边农用地土壤重金属来源解析[J]. 环境科学, 44(6): 3500−3508. |
[75] | 张海霞, 蔡昂祖, 赵海萍, 赵亚伟, 王小剑, 王丽涛, 田书磊. 2022. 基于PMF和APCS–MLR模型的工业城市大气降尘金属源解析及综合污染评价[J]. 环境工程学报, 16(11): 3816−3827. doi: 10.12030/j.cjee.202205110 |
[76] | 张钰超. 2020. 能源型城市榆林多介质潜在有害元素地球化学分布与儿童暴露风险[D]. 西安: 陕西师范大学, 1–119. |
[77] | 张梓良, 林健, 冬明月, 董金龙, 段增强. 2022. 苏南某区污染耕地农产品镉汞状况调查及健康风险评价[J]. 土壤, 54(1): 206−210. |
[78] | 赵大双, 姜春露, 赵琦, 陈星, 李畅, 郑刘根, 陈园平. 2022. 基于PMF和PCA–APCS–MLR模型的煤矿区地下水多环芳烃分布特征及来源解析[J]. 地球与环境, 50(5): 721−732. |
[79] | 赵莉源, 孔令号, 赵志刚, 周文辉, 仇建东, 黄建桦, 耿百利, 杨茂森, 韩祥才, 李亚超, 顾松松, 赵明杰, 单凯. 2024. 胶东半岛某金矿周边土壤重金属的污染特征、来源分析及风险评价[J]. 中国地质, 51(5): 1485−1500. doi: 10.12029/gc20230622001 |
[80] | 周德华, 周蓓蓓, 陈晓鹏, 杨强, 李晓晴, 郭江, 杨扬. 2023. 安徽大矾山废弃矾矿区土壤重金属污染特征与健康风险评价[J]. 地球科学与环境学报, 45(4): 966−977. |
Location map of soil sampling in Tengzhou
Distribution of PTEs in soils
Box plot of
Pearson correlation coefficient matrix for PTEs in soil
Factor contribution (a) and source contribution (b) of PTEs in surface soils based on APCS-MLR modeling
Factor contribution (a) and source contribution (b) of PTEs in surface soils based on PMF modeling