2024 Vol. 51, No. 3
Article Contents

ZHANG Ying, LIU Jingtao, ZHOU Shiyang, LIU Chunyan, YANG Mingnan, ZHANG Yuxi. 2024. Characteristics, controlling factors and effects on human health of groundwater chemical evolution in Wenzhou Plain, lower Oujiang River catchment[J]. Geology in China, 51(3): 1059-1073. doi: 10.12029/gc20230911002
Citation: ZHANG Ying, LIU Jingtao, ZHOU Shiyang, LIU Chunyan, YANG Mingnan, ZHANG Yuxi. 2024. Characteristics, controlling factors and effects on human health of groundwater chemical evolution in Wenzhou Plain, lower Oujiang River catchment[J]. Geology in China, 51(3): 1059-1073. doi: 10.12029/gc20230911002

Characteristics, controlling factors and effects on human health of groundwater chemical evolution in Wenzhou Plain, lower Oujiang River catchment

    Fund Project: Supported by project of China Geological Survey (No.DD20230507).
More Information
  • Author Bio: ZHANG Ying, female, born in 1986, doctor, mainly engaged in the research of hydrogeochemistry; E-mail: are134598@126.com
  • Corresponding author: ZHOU Shiyang, male, born in 1991, engineer, mainly engaged in the research of hydrogeology; E-mail: 944426438@qq.com
  • This paper is the result of hydrogeological survey engineering.

    Objective

    The study on the characteristics of groundwater chemical evolution and its control factors in coastal zones is of great significance for the sustainable utilization of groundwater resources in coastal cities.

    Methods

    On the basis of field investigation and comprehensive analysis of historical data, the characteristics of groundwater chemical evolution in Wenzhou Plain were systematically analyzed by using hydrochemical diagram, ion proportional relationship, multivariate statistical analysis and environmental isotope methods, and the main controlling factors affecting groundwater chemical evolution were discussed.

    Results

    (1) Phreatic water in Wenzhou Plain was dominated by fresh water, and HCO3, Na+ and Ca2+ were the predominant ions. However, confined water is brackish and salt water, and Cl and Na+ were absolutely dominant ions. (2) From the mountain front to the marine deposition plain, the transition from low−salinity HCO3 type water to high−salinity Cl type water in the study area is mainly controlled by natural processes, and human activities caused abnormalities of local groundwater chemistry. (3) On the ten−year scale, the content of the main components of phreatic water decreased to a certain extent, and the hydrochemical type evolved in the direction of the decrease of Cl and the increase of HCO3. (4) Natural factors such as water−rock interaction, seawater interaction, redox environment and human factors such as industrial and agricultural production and domestic sewage are the main controlling factors of groundwater chemical evolution in Wenzhou Plain.

    Conclusions

    The results of groundwater health risk assessment show that certain potential non−carcinogenic risks of groundwater exist in the area, the non−carcinogenic risk of phreatic water is less than that of confined water, drinking water intake is the main way to harm human body, and the non−carcinogenic risk of children in the same environment is higher than that of adults. Therefore, it is necessary to conduct long−term monitoring of groundwater with health risks and strengthen groundwater resource management and pollution prevention in such areas.

  • 加载中
  • [1] Ahmed A, Clark I. 2016. Groundwater flow and geochemical evolution in the central Flinders Ranges, South Australia[J]. Science of the Total Environment, 572(1): 837−851.

    Google Scholar

    [2] Benadela L, Bekkoussa B, Gaïdi L. 2022. Multivariate analysis and geochemical investigations of groundwater in a semi–arid region, case of Ghriss Basin superficial aquifer North–West Algeria[J]. Journal of Groundwater Science and Engineering, 10(3): 233−249.

    Google Scholar

    [3] Bozau E, Haussler S, van Berk W. 2015. Hydrogeochemical modelling of corrosion effects and barite scaling in deep geothermal wells of the North German Basin using PHREEQC and PHAST[J]. Geothermics, 53: 540−547. doi: 10.1016/j.geothermics.2014.10.002

    CrossRef Google Scholar

    [4] Chebotarev I I. 1955. Metamorphism of natural waters in the crust of weathering–2[J]. Geochimica et Cosmochimica Acta, 8: 137−170. doi: 10.1016/0016-7037(55)90010-7

    CrossRef Google Scholar

    [5] Chen Zongyu, Wan Li, Nie Zhenlong, Shen Jianmei, Chen Jingsheng. 2006. Identification of groundwater recharge in the Heihe Basin using environmental isotopes[J]. Hydrogeology and Engineering Geology, (6): 9−14 (in Chinese with English abstract).

    Google Scholar

    [6] Craig H. 1961. Isotopic variations in meteoric waters[J]. Science, 133: 1702−1703. doi: 10.1126/science.133.3465.1702

    CrossRef Google Scholar

    [7] Cui Jiaqi, Li Xianyue, Shi Haibin, Sun Yanan, An Haijun, Xing Jinping. 2020. Chemical evolution and formation mechanism of groundwater in Hetao Irrigation Area[J]. Environmental Science, 41(9): 4011−4020 (in Chinese with English abstract).

    Google Scholar

    [8] Gan L, Huang G X, Pei L X, Gan Y J, Liu C Y, Yang M N, Han D Y, Song J M. 2022. Distributions, origins, and health–risk assessment of nitrate in groundwater in typical alluvial–pluvial fans, North China Plain[J]. Environmental Science and Pollution Research, 29(2): 17031−17048.

    Google Scholar

    [9] Gibbs R J. 1970. Mechanisms controlling world water chemistry[J]. Science, 170(3962): 1088−1090. doi: 10.1126/science.170.3962.1088

    CrossRef Google Scholar

    [10] Guo Xiaojiao, Wang Huiwei, Shi Jiansheng, Wang Wei. 2022. Hydrochemical characteristics and evolution pattern of groundwater system in Baiyangdian wetland, North China Plain[J]. Acta Geologica Sinica, 96(2): 656−672 (in Chinese with English abstract).

    Google Scholar

    [11] Hu Yunzhuang, Li Hong, Li Ying, Shi Peixin, Yang Jilong, Hu Ziyuan, Liu Hongwei. 2015. Hydrogeochemical recognition of seawater intrusion process at the typical profile in Laizhou Bay[J]. Geological Survey and Research, 38(1): 41−50 (in Chinese with English abstract).

    Google Scholar

    [12] Huang G X, Sun J C, Zhang Y, Chen Z Y, Liu F. 2013. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China[J]. Science of The Total Environment, 463–464(5): 209–221.

    Google Scholar

    [13] Ijumulana J., Ligate F, Bhattacharya P, Mtalo F, Zhang C. 2020. Spatial analysis and GIS mapping of regional hotspots and potential health risk of fluoride concentrations in groundwater of northern Tanzania[J]. Science of the Total Environment, 735: 139584. doi: 10.1016/j.scitotenv.2020.139584

    CrossRef Google Scholar

    [14] Koh D, Mayer B, Lee K, Ko K. 2010. Land–use controls on sources and fate of nitrate in shallow groundwater of an agricultural area revealed by multiple environmental tracers[J]. Journal of Contaminant Hydrology, 118(1/2): 62−78.

    Google Scholar

    [15] Lei Ming, Zhang Shuijun, Zhu Zheng, Ku Hanpeng, Dong Xianzhe, Zhang Zejun. 2019. Characteristics of groundwater isotopes and renewability of groundwater in Jinhua Area[J]. Journal of China Hydrology, 39(6): 59−63 (in Chinese with English abstract).

    Google Scholar

    [16] Li P Y., Wu J H, Qian H. 2016. Preliminary assessment of hydraulic connectivity between river water and shallow groundwater and estimation of their transfer rate during dry season in the Shidi River, China[J]. Environmental Earth Sciences, 75(2): 1−16.

    Google Scholar

    [17] Li Zhuang, Su Jingwen, Dong Changchun, Ye Yonghong, Yang Yang. 2022. Hydrochemistry characteristics and evolution mechanisms of the groundwater in Dangtu area, Ma'anshan City, Anhui Province[J]. Geology in China, 49(5): 1509−1526 (in Chinese with English abstract).

    Google Scholar

    [18] Liu Chunyan, Yu Kaining, Zhang Ying, Jing Jihong, Liu Jingtao. 2023. Characteristics and driving mechanisms of shallow groundwater chemistry in Xining City[J]. Environmental Science, 44(6): 3228−3236 (in Chinese with English abstract).

    Google Scholar

    [19] Lu Xurong, Zhou Aiguo, Wang Maoting, Yang Lei, Lu Hua. 2010. Characteristic analysis of phreatic water equality evolution by Piper diagram in Huaihe river drainage area, Jiangsu Province[J]. Geotechnical Investigation and Surveying, 38(2): 42−47 (in Chinese with English abstract).

    Google Scholar

    [20] Mao H R, Wang G C, Liao F, Shi Z M, Huang X J, Li B, Yan X. 2022. Geochemical evolution of groundwater under the influence of human activities: A case study in the southwest of Poyang Lake Basin[J]. Applied Geochemistry, 140: 105299. doi: 10.1016/j.apgeochem.2022.105299

    CrossRef Google Scholar

    [21] Meng Ruifang, Yang Huifeng, Bai Hua, Xu Buyun. 2023. Analysis of chemical characteristics and evolutionary patterns of groundwater in the Daqing River Plain Area of Haihe Basin[J]. Rock and Mineral Analysis, 42(2): 383−395 (in Chinese with English abstract).

    Google Scholar

    [22] Pavlovskiy I, Selle B. 2015. Integrating hydrogeochemical, hydrogeological, and environmental tracer data to understand groundwater flow for a karstified aquifer systems[J]. Groundwater, 53: 156−165. doi: 10.1111/gwat.12262

    CrossRef Google Scholar

    [23] Pu Junbing, Yuan Daoxian, Jiang Yongjun, Gou Pengfei, Yin Jianjun. 2010. Hydrogeochemistry and environmental meaning of Chongqing subterranean karst streams in China[J]. Advances in Water Science, 21(5): 628−636 (in Chinese with English abstract).

    Google Scholar

    [24] Reddy A G S, Kumar K, Niranjan. 2010. Identification of the hydrogeochemical processes in groundwater using major ion chemistry: A case study of Penna–Chitravathi river basins in Southern India[J]. Environmental Monitoring and Assessment, 170: 365−382. doi: 10.1007/s10661-009-1239-4

    CrossRef Google Scholar

    [25] Said I, Merz C, Salman A E, Schneider M, Winkler A. 2020. Identification of hydrochemical processes using multivariate statistics in a complex aquifer system of Sohag region, Egypt[J]. Environmental Earth Sciences, 79(8): 1−14.

    Google Scholar

    [26] Sun X B, Guo C L, Zhang J, Sun J Q, Cui J, Liu M H. 2023. Spatial–temporal difference between nitrate in groundwater and nitrogen in soil based on geostatistical analysis[J]. Journal of Groundwater Science and Engineering, 11(1): 37−46. doi: 10.26599/JGSE.2023.9280004

    CrossRef Google Scholar

    [27] Ta M M, Zhou X, Guo J, Wang X Y, Xu Y Q. 2020. The evolution and sources of major ions in hot springs in the Triassic Carbonates of Chongqing, China[J]. Water, 12(4): 1194. doi: 10.3390/w12041194

    CrossRef Google Scholar

    [28] USEPA, 2008. User’s Guide: Human Health Risk Assessment[R]. Washington DC: United States Environmental Protection Agency.

    Google Scholar

    [29] Wang H, Jiang X W, Wan L, Han G L, Guo H M. 2015. Hydrogeochemical characterization of groundwater flow systems in the discharge area of a river basin[J]. Journal of Hydrology, 527: 433−441. doi: 10.1016/j.jhydrol.2015.04.063

    CrossRef Google Scholar

    [30] Wu Tong. 2019. Quaternary Strata and Paleoenvironmental Evolution in Coastal Plain of Wenzhou [D]. Chengdu: Chengdu University of Technology, 1–139 (in Chinese with English abstract).

    Google Scholar

    [31] Xi Long, Chen Keheng, Huang Xiangqing, Xia Zhen, Tan Xiaoyu. 2021. Hydrogeochemistry and origin of groundwater in the south coast of Hainan[J]. Geological Bulletin of China, 40(2/3): 350−363 (in Chinese with English abstract).

    Google Scholar

    [32] Xiao Y, Shao J L, Cui Y L, Zhang G, Zhang Q L. 2017. Groundwater circulation and hydrogeochemical evolution in Nomhon of Qaidam Basin, northwest China[J]. Journal of Earth System Science, 126(2): 1−16.

    Google Scholar

    [33] Xiao Guoqiang, Yang Jilong, Hu Yunzhuang, Du Dong, Xu Qinmian, Qin Yafei, Fang Chen. 2014. Hydrogeochemical recognition of seawater intrusion processes in Yang River and Dai River coastal plain of Qinhuangdao City[J]. Safety and Environmental Engineering, 21(2): 32−39 (in Chinese with English abstract).

    Google Scholar

    [34] Xiong G Y, Chen G Q, Wu J C, Wang Z Y, Yu H J, Fu T F, Liu W Q, Xu X Y, Hou G H, Yang Y, Zhu X B. 2022. Identifying the characteristics and potential risk of seawater intrusion for southern China by the SBM–DEA model[J]. Science of the Total Environment, 844: 157205. doi: 10.1016/j.scitotenv.2022.157205

    CrossRef Google Scholar

    [35] Xu Naizheng, Liu Hongying, Weifeng, Yang Hui, Geweiya. 2015. Study on the environmental isotope composition and their evolution in groundwater of Yoco port in Jiangsu Province, China[J]. Acta Scientiae Circumstantiae, 35(12): 3862−3871 (in Chinese with English abstract).

    Google Scholar

    [36] Zhang Jingtao, Shi Zheming, Wang Guangcai, Jiang Jun, Yang Bingchao. 2021. Hydrochemical characteristic and evolution of groundwater in the Dachaidan area, Qaidam Basin[J]. Earth Science Frontiers, 28(4): 194−205 (in Chinese with English abstract).

    Google Scholar

    [37] Zhang Xiaowen, He Jiangtao, Peng Cong, Zhang Changyan, Ni Zehua. 2017. Comparison of identification methods of main component hydrochemical anomalies in groundwater: A case study of Liujiang Basin[J]. Environmental Science, 38(8): 3225−3233 (in Chinese with English abstract).

    Google Scholar

    [38] Zhang Y, Chen Z Y, Huang G X, Yang M N. 2023. Origins of groundwater nitrate in a typical alluvial–pluvial plain of North China Plain: new insights from groundwater age–dating and isotopic fingerprinting[J]. Environmental Pollution, 316: 120592. doi: 10.1016/j.envpol.2022.120592

    CrossRef Google Scholar

    [39] Zhang Y H, Dai Y S, Wang Y, Huang X, Yong X, Pei Q M. 2021 Hydrochemistry, quality and potential health risk appraisal of nitrate enriched groundwater in the Nanchong area, southwestern China[J]. Science of the Total Environment, 784: 147186

    Google Scholar

    [40] Zhou B, Wang Huiwei, Zhang Qianqian. 2021. Assessment of the evolution of groundwater chemistry and its controlling factors in the Huangshui River Basin of Northwestern China, using hydrochemistry and multivariate statistical techniques[J]. International Journal of Environmental Research and Public Health, 18: 7551. doi: 10.3390/ijerph18147551

    CrossRef Google Scholar

    [41] Zhou Yangxiao, Li Wenpeng. 2011. Groundwater Monitoring Information System Model and Sustainable Development[M]. Beijing: Science Press, 45–48 (in Chinese).

    Google Scholar

    [42] 陈宗宇, 万力, 聂振龙, 申建梅, 陈京生. 2006. 利用稳定同位素识别黑河流域地下水的补给来源[J]. 水文地质工程地质, (6): 9−14. doi: 10.3969/j.issn.1000-3665.2006.06.003

    CrossRef Google Scholar

    [43] 崔佳琪, 李仙岳, 史海滨, 孙亚楠, 安海军, 邢进平. 2020. 河套灌区地下水化学演变特征及形成机制[J]. 环境科学, 41(9): 4011−4020.

    Google Scholar

    [44] 郭小娇, 王慧玮, 石建省, 王伟. 2022. 白洋淀湿地地下水系统水化学变化特征及演化模式[J]. 地质学报, 96(2): 656−672. doi: 10.3969/j.issn.0001-5717.2022.02.020

    CrossRef Google Scholar

    [45] 胡云壮, 李红, 李影, 施佩歆, 杨吉龙, 胡自远, 刘宏伟. 2015. 山东莱州湾南岸典型剖面海(咸)水入侵过程的水文地球化学识别[J]. 地质调查与研究, 38(1): 41−50. doi: 10.3969/j.issn.1672-4135.2015.01.006

    CrossRef Google Scholar

    [46] 雷明, 张水军, 珠正, 库汉鹏, 董贤哲, 章泽军. 2019. 金华地区地下水同位素特征及更新能力研究[J]. 水文, 39(6): 59−63.

    Google Scholar

    [47] 李状, 苏晶文, 董长春, 叶永红, 杨洋. 2022. 安徽马鞍山市当涂地区地下水水化学特征及演化机制[J]. 中国地质, 49(5): 1509−1526. doi: 10.12029/gc20220510

    CrossRef Google Scholar

    [48] 刘春燕, 于开宁, 张英, 荆继红, 刘景涛. 2023. 西宁市浅层地下水化学特征及形成机制[J]. 环境科学, 44(6): 3228−3236.

    Google Scholar

    [49] 陆徐荣, 周爱国, 王茂亭, 杨磊, 陆华. 2010. Piper图解淮河流域江苏地区浅层地下水水质演化特征[J] 工程勘查, 38(2): 42−47.

    Google Scholar

    [50] 孟瑞芳, 杨会峰, 白华, 徐步云. 2023. 海河流域大清河平原区地下水化学特征及演化规律分析[J]. 岩矿测试, 42(2): 383−395.

    Google Scholar

    [51] 蒲俊兵, 袁道先, 蒋勇军, 苟鹏飞, 殷建军. 2010. 重庆岩溶地下河水文地球化学特征及环境意义[J]. 水科学进展, 21(5): 628−636.

    Google Scholar

    [52] 宋献方, 刘相超, 夏军, 于静洁, 唐常源. 2007. 基于环境同位素技术的怀沙河流域地表水和地下水转化关系研究[J]. 中国科学(D辑: 地球科学), (1): 102−110.

    Google Scholar

    [53] 王可欣, 楼俊伟, 俞涵婷. 2020. 近50a浙江降水分布的时空特征[J]. 浙江气象, 42(1): 11−16.

    Google Scholar

    [54] 吴同. 2019. 温州沿海平原第四纪地层及古环境演变[D]. 成都: 成都理工大学, 1−139.

    Google Scholar

    [55] 习龙, 陈科衡, 黄向青, 甘华阳, 夏真, 谭晓煜. 2021. 海南南部沿海地下水水文地球化学及成因[J]. 地质通报, 40(2/3): 350−363.

    Google Scholar

    [56] 肖国强, 杨吉龙, 胡云壮, 杜东, 胥勤勉, 秦雅飞, 方成. 2014. 秦皇岛洋−戴河滨海平原海水入侵过程水文化学识别[J]. 安全与环境工程, 21(2): 32−39. doi: 10.3969/j.issn.1671-1556.2014.02.008

    CrossRef Google Scholar

    [57] 许乃政, 刘红樱, 魏峰, 杨辉, 葛伟亚. 2015. 江苏洋口港地区地下水的环境同位素组成及其形成演化研究[J]. 环境科学学报, 35(12): 3862−3871.

    Google Scholar

    [58] 张景涛, 史浙明, 王广才, 姜军, 杨炳超. 2021. 柴达木盆地大柴旦地区地下水水化学特征及演化规律[J]. 地学前缘, 28(4): 194−205.

    Google Scholar

    [59] 张小文, 何江涛, 彭聪, 张昌延, 倪泽华. 2017. 地下水主要组分水化学异常识别方法对比: 以柳江盆地为例[J]. 环境科学, 38(8): 3225−3233.

    Google Scholar

    [60] 周仰效, 李文鹏. 2011. 地下水监测信息系统模型及可持续开发[M]. 北京: 科学出版社, 45−48.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(4)

Article Metrics

Article views(849) PDF downloads(115) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint