2025 Vol. 52, No. 1
Article Contents

WANG Jian, LIU Zhongrong, WANG Zhongwei, FU Xiugen, FAN Zhiwei, HE Zhiyong, ZENG Shengqiang, YI Jianquan. 2025. Organic geochemical characteristics and hydrocarbon generation potential of Upper Triassic black shales in the North Qiangtang Depression[J]. Geology in China, 52(1): 61-77. doi: 10.12029/gc20230902001
Citation: WANG Jian, LIU Zhongrong, WANG Zhongwei, FU Xiugen, FAN Zhiwei, HE Zhiyong, ZENG Shengqiang, YI Jianquan. 2025. Organic geochemical characteristics and hydrocarbon generation potential of Upper Triassic black shales in the North Qiangtang Depression[J]. Geology in China, 52(1): 61-77. doi: 10.12029/gc20230902001

Organic geochemical characteristics and hydrocarbon generation potential of Upper Triassic black shales in the North Qiangtang Depression

    Fund Project: Supported by the National Natural Science Foundation of China (No.42372129; No.42241202, No.91955204), project of the Science and Technology Department of China Petroleum and Chemical Corporation (No.P22197), and Sinopec exploration company (No.35450003−22−ZC0607−0022).
More Information
  • Author Bio: WANG Jian, male, born in 1962, professor, engaged in sedimentary basin analysis and oil−gas resource evaluation research; E-mail: w1962jian@163.com
  • Corresponding author: Wang Zhongwei, male, born in 1990, associate professor, mainly engaged in oil and gas resource evaluation in Qiangtang Basin; E-mail: wzwcdg@sina.com
  • This paper is the result of oil and gas exploration engineering.

    Objective

    Geological investigations of petroleum potential suggest that the Upper Triassic black shales represent the most significant source rock interval in the Qiangtang Basin. However, the organic geochemical characteristics and hydrocarbon generation potential of these source rocks in the deep basin are still under ongoing research due to the lack of deep drilling activities.

    Methods

    The well QZ−16, located in the eastern part of the North Qiangtang Depression, has encountered the deepest Upper Triassic strata in the basin to date, revealing significant gas anomalies and a substantial amount of bitumen. This provides a new opportunity to enhance the understanding of deep basin source rocks. Here, organic geochemical analyses of the Upper Triassic black shales were conducted to investigate the organic matter quality, quantity, and levels of thermal maturity as well as the oil−source relationship between the source rock and bituminous oil.

    Results

    The TOC content of the Upper Triassic black shales in the well QZ−16 is generally poor to fair organic matter richness, ranging from 0.12% to 1.09%, with an average of 0.47%. These values are higher than the average TOC limit (0.3%) of over−mature source rocks with type II kerogen. The degree of thermal maturity is suggested to be in the over−mature stage based on significantly high Tmax (536−602 ℃) and vitrinite reflectance values (Ro = 2.44%−2.77%). The chloroform asphalt A and hydrocarbon generation potential (S1+S2) may not reliably reflect the organic matter abundance due to the source rocks being in the over−mature stage. Kerogen type index (8.75−18.5), Ph/nC18 (0.65−1.06), Pr/nC17 (0.34−0.61) and C27−C28−C29 sterane characteristics indicate a mixed organic matter source comprising of lower plankton and higher terrestrial plants of Type II2 kerogen. Most source rock intervals were deposited under strongly reducing conditions, exhibiting a brown−black kerogen color, which align with biomarker parameters, indicating that the thermal evolution of the black shale is over mature. The oil source correlation parameters reveal a strong affinity between the Triassic bituminous oil seedling and black shale in the well QZ−16, which is self−generated and self−stored.

    Conclusions

    The Upper Triassic black shales in the North Qiangtang Depression are mature source rocks with certain hydrocarbon generation potential. The results of this study provide a new reference for evaluating source rocks and analyzing hydrocarbon generation potential in the Qiangtang Basin.

  • 加载中
  • [1] Chen Wenbin, Fu Xiugen, Tan Fuwen, Fen Xinglei. 2014. Geochemical characteristics of biomarkers of the Upper Triassic source rocks from Tumengela Formation in Qiangtang Basin of Tibet[J]. Geoscience, 28(1): 216−223 (in Chinese).

    Google Scholar

    [2] Chen Zhijun, Zhang Chunming, He Yonghong, Wen Zhigang, Ma Fangxia, Li Wei, Gao Yiwen, Chen Yiguo, Zhang Huiyuan, Wei Dongtao. 2022. Characteristics and geochemical indication of over−mature source rocks in the Paleozoic, Yingen−Ejinaqi Basin[J]. Oil & Gas Geology, 43(3): 682−695 (in Chinese with English abstract).

    Google Scholar

    [3] Cranwell P A. 1973. Chain length distribution of n−alkanes from lake sediments in relation to postglacial environmental change[J]. Freshwater Biology, 3: 259−265. doi: 10.1111/j.1365-2427.1973.tb00921.x

    CrossRef Google Scholar

    [4] Didyk B M, Simoneit B R T, Brassell S C, Eglinton G. 1978. Organic geochemical indicators of palaeoenvironmental conditions of sedimentation[J]. Nature, 272(5650): 216−222. doi: 10.1038/272216a0

    CrossRef Google Scholar

    [5] Ding L, Yang D, Cai F L, Pullen A, Kapp P, Gehrels G E, Zhang L Y, Zhang Q H, Lai Q Z, Yue Y H, Shi R D. 2013. Provenance analysis of the Mesozoic Hoh−Xil− Songpan−Ganzi turbidites in northern Tibet: Implications for the tectonic evolution of the eastern Paleo−Tethys Ocean[J]. Tectonics, 32: 34−48. doi: 10.1002/tect.20013

    CrossRef Google Scholar

    [6] Eglinton G, Gonzales A G, Hamilton R J, Raphael R A. 1962. Hydrocarbon constituents of wax coatings of plant leaves: A taxonomic survey[J]. Phytochemistry, 1: 89−102. doi: 10.1016/S0031-9422(00)88006-1

    CrossRef Google Scholar

    [7] Farrimond P, Bevan C J, Bishop A N. 1999. Tricyclic terpane maturity parameters: response to heating by an igneous intrusion[J]. Organic Geochemistry, 30: 1011e1019.

    Google Scholar

    [8] Fu X G, Wang J, Tan F W, Feng X L, Wang D, He J L. 2013. Gas hydrate formation and accumulation potential in the Qiangtang Basin, northern Tibet, China[J]. Energy Conversion and Management, 73: 186−194. doi: 10.1016/j.enconman.2013.04.020

    CrossRef Google Scholar

    [9] Fu Xiugen, Chen Wenbin, Zeng Shengqiang, Sun Wei, Wang Jian. 2020. Petroleum Geological Characteristics of Qiangtang Basin−Information from Geological Survey Drilling[M]. Beijing: Science Press (in Chinese).

    Google Scholar

    [10] Hou Dujie, Feng Zihui. 2011. Oil and Gas Geochemistry[M]. Beijing: Petroleum Industry Press, 79 (in Chinese).

    Google Scholar

    [11] Kapp P, Yin A, Manning C E, Harrison T M, Taylor M H, Ding L. 2003. Tectonic evolution of the early Mesozoic blueschist−bearing Qiangtang metamorphic belt, central Tibet[J]. Tectonics, 22: 1043.

    Google Scholar

    [12] Li Yong, Wang Chengshan, Yi Haisheng. 2003. The Late Triassic collision and sedimentary responses at western segment of Jinshajiang suture, Tibet[J]. Acta Sedimentologica Sinica, 21(2): 191−197 (in Chinese with English abstract).

    Google Scholar

    [13] Liang Xiao. 2020. The Deep Marine Hydrocarbon Accumulation Process under Complex Tectonic Background in the Northern Segment of Western Sichuan Depression[D]. Chengdu: Chendu University of Technology, 1−152 (in Chinese with English abstract).

    Google Scholar

    [14] Lin Fei, Fu Xiugen, Wang Jian, Song Chunyan. 2023. Mechanism of organic matter accumulation in a marine-terrestrial transitional residual bay environment: A case of Early Cretaceous organic-rich shales in the QiangtangBasin[J]. Geology in China, 50(4): 1093-1106(in Chinese with English abstract).

    Google Scholar

    [15] Liu Zhongrong, Yang Ping, Zhang Guochang, Fan Zhiwei, Han Jing, Tan Fuwen, Zhan Wangzhong, Zeng Shengqiang, Wei Hongwei, He Lei, He Jiale. 2022. Sedimentary model and its implications for oil and gas exploration of Upper Triassic in Northern Qiangtang depression[J]. Sedimentary Geology and Tethyan Geology, 42(3): 465−480 (in Chinese with English abstract).

    Google Scholar

    [16] Moldowan J M, Seifert W K, Gallegos E J. 1985. Relationship between petroleum composition and depositional environment of petroleum source rocks[J]. AAPG Bulletin, 69(8): 1255−1268.

    Google Scholar

    [17] Pang Xiongqi, Li Qianwen, Chen Jianfa, Li Maowen, Pang Hong. 2014. Recovery method of original TOC and its application in source rocks at high mature−over mature stage in deep petroliferous basins[J]. Journal of Palaeogeography, 16(6): 769−789 (in Chinese with English abstract).

    Google Scholar

    [18] Peter K E, Moldowan J M. 1991. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum[J]. Organic Geochemistry, 17: 47−61.

    Google Scholar

    [19] Peters K E, Walters C C, Moldowan J M. 2005. The Biomarker Guide, Volumes 1 and 2: Biomarkers and Isotopes in Petroleum Exploration and Earth History, Seconded[M]. Cambridge, Cambridge University Press, USA.

    Google Scholar

    [20] Ruebsam W, Mattioli E, Schwark L. 2022. Molecular fossils and calcareous nannofossils reveal recurrent phytoplanktonic events in the Early Toarcian[J]. Global and Planetary Change, 212: 103812. doi: 10.1016/j.gloplacha.2022.103812

    CrossRef Google Scholar

    [21] Shen L J, Zhang J Y, Xiong S Y, Wang J, Fu X G, Zheng B, Wang Z W. 2023. Evaluation of the oil and gas preservation conditions, source rocks, and hydrocarbon−generating potential of the Qiangtang Basin: New evidence from the scientific drilling project[J] China Geology, 6, 187−207.

    Google Scholar

    [22] Sinninghe Damsté J S, Kenig F, Koopmans M P, Köster J, Schouten S, Hayes J M, de Leeuw J W. 1995. Evidence for gammacerane as an indicator of water column stratification[J]. Geochimica et Cosmochimica Acta, 59: 1895−1900. doi: 10.1016/0016-7037(95)00073-9

    CrossRef Google Scholar

    [23] Song Chunyan, Wang Jian, Fu Xiugen, Chen Wenbin, Xie Shangke, He Li. 2018. Geochemical characteristics and the significance of the Upper Triassic hydrocarbon source rocks of the Bagong Formation in Eastern Qiangtang Basin[J]. Journal of Northeast Petroleum University, 42(5): 104−114 (in Chinese with English abstract).

    Google Scholar

    [24] Tan Furong, Yang Chuang, Chen Fuyan, Du Fangpeng, Liu Zhiwu, Xu Jiang, Li Juyun, Chen Yingtao, Luo Tingting, Luo Zheng, Fan Yuhai. 2020. Sedimentary facies and its control over petroleum and other resources of the Upper Triassic Bagong Formation in Baqing area, southeastern Qiangtang Basin[J]. Geology in China, 47(1): 57−71 (in Chinese with English abstract).

    Google Scholar

    [25] Tao S Z, Wang C Y, Du J G, Liu L, Chen Z. 2015. Geochemical application of tricyclic and tetracyclic terpanes biomarkers in crude oils of NW China[J]. Marine and Petroleum Geology, 67: 460−467. doi: 10.1016/j.marpetgeo.2015.05.030

    CrossRef Google Scholar

    [26] Tissot B P, Welte D H. 1984. Petroleum Formation and Occurrence[M]. Berlin, Heidelberg, New York: Springer−Verlag. Germany, 643−644.

    Google Scholar

    [27] Tulipani S, Grice K, Greenwood P F, Haines P W, Sauer P E, Schimmelmann A, Summons R E, Foster C B, Böttcher M E, Playton T, Schwark L. 2015. Changes of palaeoenvironmental conditions recorded in Late Devonian reef systems from the Canning basin, Western Australia: A biomarker and stable isotope approach[J]. Gondwana Research, 28: 1500−1515. doi: 10.1016/j.gr.2014.10.003

    CrossRef Google Scholar

    [28] Volkman J K. 2003. Sterols in microorganisms[J]. Applied Microbiology and Biotechnology, 60: 495−506. doi: 10.1007/s00253-002-1172-8

    CrossRef Google Scholar

    [29] Volkman J K. 2005. Sterols and other triterpenoids: Source specificity and evolution of biosynthetic pathways[J]. Organic Geochemistry, 36: 139−159. doi: 10.1016/j.orggeochem.2004.06.013

    CrossRef Google Scholar

    [30] Wang Chengshan, Yi Haisheng, Li Yong. 2001. Geological Evolution and Prospective Evaluation for Oil and Gas of the Qiangtang Basin, Tibet[M]. Beijing: Geological Publishing House (in Chinese).

    Google Scholar

    [31] Wang J, Fu X G, Wei H Y, Shen L J, Wang Z, Li K Z. 2022. Late Triassic basin inversion of the Qiangtang basin in northern Tibet: Implications for the closure of the Paleo−Tethys and expansion of the Neo−Tethys[J]. Journal of Asian Earth Sciences, 227: 105119. doi: 10.1016/j.jseaes.2022.105119

    CrossRef Google Scholar

    [32] Wang Jian, Ding Jun, Wang Chengshan, Tan Fuwen. 2009. Investigation and Evaluation on Oil and Gas Resource Strategic Area Selection of Qinghai−Tibet Plateau[M]. Beijing: Geological Publishing House (in Chinese).

    Google Scholar

    [33] Wang Jian, Fu Xiugen, Tan Fuwen. 2020. Geological Survey of the Hydrocarbon Resources in Qiangtang Basin[M]. Beijing: Science Press (in Chinese).

    Google Scholar

    [34] Wang Jian, Song Chunyan, Fu Xiugen, Tan Fuwen, Dong Weizhe. 2022b. Scientific Drilling Project of Qiangke 1 Well in Qinghai−Tibet Plateau[M]. Beijing: Science Press (in Chinese).

    Google Scholar

    [35] Wang Jian, Tan Fuwen, Li Yalin, Li Yongtie, Chen Ming, Wang Chengshan, Guo Zujun, Wang Xiaolong, Du Baiwei, Zhu Zhongfa. 2004. The Potential of the Oil and Gas Resources in Major Sedimentary Basins on the Qinghai−Xizang Plateau[M]. Beijing: Geological Publishing House (in Chinese).

    Google Scholar

    [36] Wang Jian, Wang Zhongwei, Fu Xiugen, Tan Fuwen, Wei Hengye. 2022a. Progress on the first petroleum scientific drilling (QK−1) of the Qiangtang Basin, Tibetan Plateau[J]. Chinese Science Bulletin, 67(3): 321−328 (in Chinese with English abstract). doi: 10.1360/TB-2021-1048

    CrossRef Google Scholar

    [37] Wang Zhongwei, Xiao Yang, Zhan Wangzhong, Yu Fei. 2022. Geochemical characteristics of the Upper Triassic Bagong Formation mudstones in Eastern Qiangtang basin and its petroleum geological significance[J]. Journal of Northeast Petroleum University, 46(2): 1−12,131 (in Chinese with English abstract).

    Google Scholar

    [38] Wang Z W, Wang J, Yu F, Fu X G, Chen W B, Zhan W Z, Song C Y. 2021b. Geochemical characteristics of Upper Triassic black mudstones in the Eastern Qiangtang basin, Tibet: Implications for petroleum potential and depositional environment[J]. Journal of Petroleum Science and Engineering, 207: 109180. doi: 10.1016/j.petrol.2021.109180

    CrossRef Google Scholar

    [39] Wang Z W, Yu F, Wang J, Fu X G, Chen W B, Zeng S Q, Song C Y. 2021a. Palaeoenvironment evolution and organic matter accumulation of the Upper Triassic mudstones from the eastern Qiangtang basin (Tibet), eastern Tethys[J]. Marine and Petroleum Geology, 130: 105113. doi: 10.1016/j.marpetgeo.2021.105113

    CrossRef Google Scholar

    [40] Wu Xinhe, Wang Chengshan, Yi Haisheng, Liu Guifeng. 2005. Discussion on Mesozoic source rock of Qiangtang basin in Tibet[J]. Northwestern Geology, 38(4): 78−85 (in Chinese with English abstract).

    Google Scholar

    [41] Xiao Rui, Zhang Shuai, Zhu Youhai, Wang Pingkang, Pang Shouji. 2021. Organic geochemistry and significance of oil seepages in the Quse Formation in the Qiangtang Basin[J]. Sedimentary Geology and Tethyan Geology, 41(4): 544−553 (in Chinese with English abstract).

    Google Scholar

    [42] Yi Haisheng, Chen Zhiyong, Ji Changjun, Yang Xiaoping, Xia Guoqing, Wu Chihua. 2014. New evidence for deep burial origin of sucrosic dolomites from Middle Jurrasic Buqu Formation in southern Qiangtang basin[J]. Acta Petrologica Sinica, 30(3): 737−746 (in Chinese with English abstract).

    Google Scholar

    [43] Yin A, Harrison T M. 2000. Geologic evolution of the himalayan−Tibetan orogeny[J]. Annual Review of Earth and Planetary Sciences, 28: 211−280. doi: 10.1146/annurev.earth.28.1.211

    CrossRef Google Scholar

    [44] Zeng Y H, Fu X G, Zeng S Q, Du G. 2013. Upper Triassic potential source rocks in the Qiangtang basin, Tibet: Organic geochemical characteristics[J]. Journal Petroleum Geology, 36: 237−255. doi: 10.1111/jpg.12554

    CrossRef Google Scholar

    [45] Zhai Q G, Jahn B M, Zang R Y, Wang J, Su L. 2011. Triassic subduction of the Paleo−Tethys in northern Tibet, China: Evidence from the geochemical and isotopic characteristics of eclogites and blueschists of the Qiangtang Block[J]. Journal of Asian Earth Sciences, 42: 1356−1370. doi: 10.1016/j.jseaes.2011.07.023

    CrossRef Google Scholar

    [46] Zhan Wangzhong, Tan Fuwen. 2020. Lithofacies palaeogeography and source rock of the Late Triassic in the Qiangtang Basin[J]. ActaSedimentologica Sinica, 38(4): 876−885 (in Chinese with English abstract).

    Google Scholar

    [47] Zhang K J, Cai J X, Zhang Y X, Zhao T P. 2006. Eclogites from central Qiangtang, northern Tibet (China) and tectonic implications[J]. Earth and Planetary Science Letters, 245: 722−729. doi: 10.1016/j.jpgl.2006.02.025

    CrossRef Google Scholar

    [48] Zhang Shuai, Zhu Youhai, Wang Pingkang, Fu Xiugen, Wang Dayong, Wu Xinhe, Pang Shouji, Xiao Rui. 2020. Analysis of the gas hydrate accumulation condition in Quemocuo Area of Qiangtang Basin[J]. Geological Survey of China, 7(4): 10−19 (in Chinese with English abstract).

    Google Scholar

    [49] 陈文彬, 付修根, 谭富文, 冯兴雷. 2014. 羌塘盆地上三叠统土门格拉组烃源岩生物标志物地球化学特征[J]. 现代地质, 28(1): 216−223. doi: 10.3969/j.issn.1000-8527.2014.01.024

    CrossRef Google Scholar

    [50] 陈治军, 张春明, 贺永红, 文志刚, 马芳侠, 李渭, 高怡文, 陈义国, 张慧元, 魏东涛. 2022. 银额盆地古生界过成熟烃源岩特征及其地球化学意义[J]. 石油与天然气地质, 43(3): 682−695. doi: 10.11743/ogg20220316

    CrossRef Google Scholar

    [51] 付修根, 陈文彬, 曾胜强, 孙伟, 王剑. 2020. 羌塘盆地石油地质特征—来自地质调查钻井的信息[M]. 北京: 科学出版社.

    Google Scholar

    [52] 侯读杰, 冯子辉. 2011. 油气地球化学[M]. 北京: 石油工业出版社.

    Google Scholar

    [53] 李勇, 王成善, 伊海生. 2003. 西藏金沙江缝合带西段晚三叠世碰撞作用与沉积响应[J]. 沉积学报, 21(2): 191−197. doi: 10.3969/j.issn.1000-0550.2003.02.001

    CrossRef Google Scholar

    [54] 梁霄. 2020. 川西坳陷北段复杂地质构造背景下深层海相油气成藏过程研究[D]. 成都: 成都理工大学, 1−152.

    Google Scholar

    [55] 林飞, 付修根, 王剑, 宋春彦. 2023. 残留海湾环境有机质富集影响因素分析——以羌塘盆地早白垩世富有机质页岩为例[J]. 中国地质, 50(4): 1093-1106.

    Google Scholar

    [56] 刘中戎, 杨平, 张国常, 范志伟, 韩京, 谭富文, 占王忠, 曾胜强, 卫红伟, 何磊, 何佳乐. 2022. 北羌塘拗陷坳陷上三叠统沉积模式及对油气勘探的启示[J]. 沉积与特提斯地质, 42(3): 465−480.

    Google Scholar

    [57] 庞雄奇, 李倩文, 陈践发, 黎茂稳, 庞宏. 2014. 含油气盆地深部高过成熟烃源岩古TOC恢复方法及其应用[J]. 古地理学报, 16(6): 769−789. doi: 10.7605/gdlxb.2014.06.062

    CrossRef Google Scholar

    [58] 宋春彦, 王剑, 付修根, 陈文彬, 谢尚克, 何利. 2018. 北羌塘拗陷东部上三叠统巴贡组烃源岩特征及意义[J]. 东北石油大学学报, 42(5): 104−114, 11−12. doi: 10.3969/j.issn.2095-4107.2018.05.011

    CrossRef Google Scholar

    [59] 谭富荣, 杨创, 尘福艳, 杜芳鹏, 刘志武, 许将, 李居云, 陈应涛, 罗婷婷, 雒铮, 范玉海. 2020. 羌塘盆地巴青地区上三叠统巴贡组沉积相及其对油气等资源的控制[J]. 中国地质, 47(1): 57−71. doi: 10.12029/gc20200105

    CrossRef Google Scholar

    [60] 王成善, 伊海生, 李勇. 2001. 羌塘盆地地质演化与油气远景评价[M]. 北京: 地质出版社.

    Google Scholar

    [61] 王剑, 谭富文, 李亚林, 李永铁, 陈明, 王成善, 郭祖军, 王小龙, 杜佰伟, 朱忠发. 2004. 青藏高原重点沉积盆地油气资源潜力分析[M]. 北京: 地质出版社.

    Google Scholar

    [62] 王剑, 丁俊, 王成善, 谭富文. 2009. 青藏高原油气资源战略选区调查与评价[M]. 北京: 地质出版社.

    Google Scholar

    [63] 王剑, 付修根, 谭富文. 2020. 羌塘盆地油气资源战略调查[M]. 北京: 科学出版社.

    Google Scholar

    [64] 王剑, 王忠伟, 付修根, 谭富文, 韦恒叶. 2022a. 青藏高原羌塘盆地首口油气科探井(QK−1)新发现[J]. 科学通报, 67(3): 321−328.

    Google Scholar

    [65] 王剑, 宋春彦, 付修根, 谭富文, 董维哲. 2022b. 青藏高原羌科1井科学钻探工程[M]. 北京: 科学出版社.

    Google Scholar

    [66] 王忠伟, 肖杨, 占王忠, 余飞. 2022. 北羌塘拗陷东部上三叠统巴贡组泥岩特征及油气地质意义[J]. 东北石油大学学报, 46(2): 1−12, 131. doi: 10.3969/j.issn.2095-4107.2022.02.001

    CrossRef Google Scholar

    [67] 伍新和, 王成善, 伊海生, 刘桂凤. 2005. 西藏羌塘盆地中生界烃源岩探讨[J]. 西北地质, 38(4): 78−85. doi: 10.3969/j.issn.1009-6248.2005.04.012

    CrossRef Google Scholar

    [68] 肖睿, 张帅, 祝有海, 王平康, 庞守吉. 2021. 羌塘盆地侏罗系曲色组油苗有机地球化学特征及意义[J]. 沉积与特提斯地质, 41(4): 544−553.

    Google Scholar

    [69] 伊海生, 陈志勇, 季长军, 杨晓萍, 夏国清, 吴驰华. 2014. 羌塘盆地南部地区布曲组砂糖状白云岩埋藏成因的新证据[J]. 岩石学报, 30(3): 737−746.

    Google Scholar

    [70] 占王忠, 谭富文. 2020. 羌塘盆地晚三叠世岩相古地理特征与烃源岩[J]. 沉积学报, 38(4): 876−885.

    Google Scholar

    [71] 张帅, 祝有海, 王平康, 付修根, 王大勇, 伍新和, 庞守吉, 肖睿. 2020. 羌塘盆地雀莫错地区天然气水合物成藏条件分析[J]. 中国地质调查, 7(4): 10−19.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(4)

Article Metrics

Article views(76) PDF downloads(27) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint