2024 Vol. 51, No. 2
Article Contents

REN Rui, CHAO Xu, ZHANG Lijun, ZHI Qian, XU Cuiling, LING Dandan, MA Yumei, CHEN Jiping, QIAO Xinxing, DU Shaoxi. 2024. Establishment and application of evaluation system for development and utilization of selenium−rich land: A case study in Lintong District, Xi'an[J]. Geology in China, 51(2): 676-688. doi: 10.12029/gc20230813003
Citation: REN Rui, CHAO Xu, ZHANG Lijun, ZHI Qian, XU Cuiling, LING Dandan, MA Yumei, CHEN Jiping, QIAO Xinxing, DU Shaoxi. 2024. Establishment and application of evaluation system for development and utilization of selenium−rich land: A case study in Lintong District, Xi'an[J]. Geology in China, 51(2): 676-688. doi: 10.12029/gc20230813003

Establishment and application of evaluation system for development and utilization of selenium−rich land: A case study in Lintong District, Xi'an

    Fund Project: Supported by Shaanxi Province Public Welfare Geological Survey Projects (No.202201, No.20180307).
More Information
  • Author Bio: REN Rui, female, born in 1984, senior engineer, mainly engaged in agricultural geology, health geological survey and research; E-mail: 877529793@qq.com
  • Corresponding author: DU Shaoxi, male, born in 1970, senior engineer, mainly engaged in mineral geology, health geological survey and research; E-mail: 603107975@qq.com.
  • This paper is the result of agricultural geological survey engineering.

    Objective

    Selenium (Se) intake in the human body primarily originates from the food chain, mostly derived from soil. The research aims to establish a scientific and rational evaluation system for the development and utilization of selenium−rich land due to the limited and valuable selenium−enriched soil resources in China.

    Methods

    This study focuses on the Guanzhong region, particularly Lintong District, integrating geophysical survey findings with assessment criteria reflecting agricultural land's natural conditions and infrastructure levels. The developed evaluation system encompasses five major categories and twelve indicators, including site conditions, soil selenium content, physicochemical properties, soil quality, and land management. Moreover, suitability assessment for selenium-rich land development and utilization was conducted in Lintong District as a case study.

    Results

    The land in Lintong District was categorized into five levels: highly suitable, suitable, moderately unsuitable, unsuitable, and highly unsuitable. The highly suitable and suitable development areas covered 248.35 km2, mainly distributed in the northern areas of Lintong District, as Xinshi Town, Liyang Town, Xuyang Town, Xiangqiao Town, and the central-eastern parts of Hezhai Town. Analysis of wheat Se content and Se enrichment ratios within different suitability evaluation zones revealed a strong correlation between the suitability of selenium-rich land and the degree of selenium enrichment in wheat.

    Conclusions

    The developed evaluation system demonstrates significant scientific guidance and exemplary significance for the utilization of selenium−rich land resources. It underscores the need for a systematic approach to efficiently develop and utilize these resources, emphasizing the critical link between soil suitability and the selenium enrichment of agricultural produce.

  • 加载中
  • [1] Broadley M R, White P J, Bryson R J, Meacham M C, Bowen H C, Johnson S E, Hawkesford M J, McGrath S P, Zhao F J, Breward N, Harriman M, Tucker M. 2006. Biofortification of UK food crops with selenium[J]. Proceedings of the Nutrition Society, 65: 169−181. doi: 10.1079/PNS2006490

    CrossRef Google Scholar

    [2] Dinh Q T, Cui Z W, Huang J, Tran T A T, Wang D, Yang W X, Zhou F, Wang M K, Yu D S, Liang D L. 2018. Selenium distribution in the chinese environment and its relationship with human health: A review[J]. Environment International, 112: 294−309. doi: 10.1016/j.envint.2017.12.035

    CrossRef Google Scholar

    [3] Dumanski J, Pieri C. 2000. Land quality indicators: Research plan[J]. Agriculture Ecosystems & Environment, 81(2): 93−102.

    Google Scholar

    [4] Eswayah A S, Smith T J, Gardiner P H E. 2016. Microbial transformations of selenium species of relevance to bioremediation[J]. Applied and Environmental Microbiology, 82: 4848–4859.

    Google Scholar

    [5] Falco S D, Penov I, Aleksiev A, Van Rensburg T M. 2010. Agrobiodiversity, farm profits and land fragmentation: Evidence from Bulgaria[J]. Land Use Policy, 27(3): 763−771. doi: 10.1016/j.landusepol.2009.10.007

    CrossRef Google Scholar

    [6] Fan Huimin, Xu Mingxiang, Li Binbin, Zhang Rongrong, Zhang Shengmin, Ma Luyang. 2017. Influence of soil physical properties on salt content in soil profile of farmland in Weibei region[J]. Journal of Soil and Water Conservation, 31(4): 198−204 (in Chinese with English abstract).

    Google Scholar

    [7] Fan J X, Zeng Y, Sun J X. 2018. The transformation and migration of selenium in soil under different Eh conditions[J]. Journal of Soils and Sediments, 18: 2935–2947.

    Google Scholar

    [8] Gao Bei, Wei Haiyan, Guo Yanlong, Gu Wei. 2015. Potential distribution of Amorphophallus rivieri in the Qinling mountains based on analytic hierarchy process and geographic information system[J]. Acta Ecologica Sinica, 35(21): 7108−7116 (in Chinese with English abstract).

    Google Scholar

    [9] Ge K, Yang G. 1993. The epidemiology of selenium deficiency in the etiological study of endemic diseases in China[J]. American Journal of Clinical Nutrition, 57(Suppl.): 259−263.

    Google Scholar

    [10] Guo Jinyu, Zhang Zhongbin, Sun Qingyun. 2008. Study and applications of analytic hierarchy process[J]. China Safety Science Joumal, 18(5): 148−153 (in Chinese with English abstract).

    Google Scholar

    [11] Guo Zhaoyuan, Huang Zili, Fenglixiao. 1992. Soil of Shaanxi Province[M]. Beijing: Science Press (in Chinese).

    Google Scholar

    [12] Han Huijie, Xia Xueqi, Wu Haidong, Tang Ming, Jiang Mingliang. 2019. Evaluation of rice planting suitability using GIS and geochemical land quality data: A case study of Qingyang County, Anhui Province[J]. Chinese Journal of Eco−Agriculture, 27(4): 591−600 (in Chinese with English abstract).

    Google Scholar

    [13] Hou Xianhui, Wang Zhanqi, Yang Jun. 2015. Cultivated land quality evaluation using partition in the Selenium−rich Area of Sanyuan, Fujian Province[J]. Resources Science, 37(7): 1367−1375 (in Chinese with English abstract).

    Google Scholar

    [14] Ji Huawei, Ren Rui, Chen Jiping, Zhang Jijun, Li Aorui, Feng Huawei. 2021. Characteristics of selenium content in different soil types in Guanzhong and its influence on selenium content of corn grain[J]. Northwestern Geology, 54(4): 239−249 (in Chinese with English abstract).

    Google Scholar

    [15] Ju Zilong, Hu Shangjun, Chen Si, Yin Meng, Xia Kun, Wan Xiang. 2022. Research progress and evaluation methods of health geological survey[J]. Resources Environment and Engineering, 36(5): 594−603 (in Chinese with English abstract).

    Google Scholar

    [16] Latruffe L, Piet L. 2014. Does land fragmentation affect farm performance? A case study from Brittany, France[J]. Agricultural Systems, 129: 68−80. doi: 10.1016/j.agsy.2014.05.005

    CrossRef Google Scholar

    [17] Li Jiaxi, Huang Huaizeng, Liu Xiaorui. 1999. The application of environmental geochemistry to agriculture and life science[J]. Quaternary Sciences, 19(3): 224−230 (in Chinese with English abstract).

    Google Scholar

    [18] Li Yigeng, Dong Yanxiang, Zheng Jie, Li Yan, Wu Xiaoyong, Zhu Chaohui. 2005. Selenium: Abundant soil survey and assessment in Zhejiang[J]. Quaternary Sciences, 25(3): 323−330 (in Chinese with English abstract).

    Google Scholar

    [19] Li Z, Wu L H, Zhang H, Luo Y M, Christie P. 2015. Effects of soil drying and wetting–drying cycles on the availability of heavy metals and their relationship to dissolved organic matter[J]. Journal of Soils and Sediments, 15: 1510−1519. doi: 10.1007/s11368-015-1090-x

    CrossRef Google Scholar

    [20] Lintong County Annals Compilation Committee of Shaanxi Province. 1991. Lintong County Annals[M]. Shanghai: Shanghai People's Publishing House (in Chinese).

    Google Scholar

    [21] Liu N N, Wang M, Zhou F, Zhai H, Qi M X, Liu Y, Li Y N, Zhang N C, Ma Y Z, Huang J, Ren R, Liang D L. 2021. Selenium bioavailability in soil–wheat system and its dominant influential factors: A field study in Shaanxi Province, China[J]. Science of the Total Environment, 770: 144664. doi: 10.1016/j.scitotenv.2020.144664

    CrossRef Google Scholar

    [22] Liu Zhaoliang. 2013. Study on application of AHP in agricultural system[J]. Guangdong Agricultural Sciences, 40(13): 228−232 (in Chinese with English abstract).

    Google Scholar

    [23] Niu Yingchao, Zhou Zhongfa, Wang Li, Dan Yusheng, Feng Qian. 2018. Comprehensive evaluation of soil nutrients in Guizhou agricultural products areas based on the fractal interpolation model[J]. Environmental Chemistry, 37(10): 2207−2218 (in Chinese with English abstract).

    Google Scholar

    [24] Peng Q, Guo L, Ali F, Li J, Qin S Y, Feng P Y, Liang D L. 2016. Influence of Pak choi plant cultivation on Se distribution speciation and bioavailability in soil[J]. Plant Soil, 403: 331−342. doi: 10.1007/s11104-016-2810-8

    CrossRef Google Scholar

    [25] Peng Q, Wang M K, Cui Z W, Huang J, Chen C, Guo L. 2017. Assessment of bioavailability of selenium in different plant–soil systems by diffusive gradients in thin–films (DGT)[J]. Environmental Pollution, 225: 637−643. doi: 10.1016/j.envpol.2017.03.036

    CrossRef Google Scholar

    [26] Qian Fengkui, Wang Qiubin, Li Na. 2015. High−standard prime farmland planning based on evaluation of farmland quality and site conditions[J]. Transactions of the Chinese Society of Agricultural Engineering, 31(18): 225−232 (in Chinese with English abstract).

    Google Scholar

    [27] Rayman M P. 2012. Selenium and human health[J]. Lancet, 379: 1256−1268. doi: 10.1016/S0140-6736(11)61452-9

    CrossRef Google Scholar

    [28] Ren Rui, Wang Mingxia, Chen Jiping, Chao Xu, Wang Hui, Xie Ying, Meng Qinyu. 2018. Distribution of soil selenium in Guanzhong area and its influencing factors[J]. Mineral Exploration, 9(9): 1827−1833 (in Chinese with English abstract).

    Google Scholar

    [29] Ren Rui, Zhang Zhimin, Wang Hui, Chen Jiping, Qiao Xinxing, Liang Dongli. 2023. Exploring selenium enrichment criteria for soils in the Guanzhong area, Shaanxi Province: A case study of wheat[J]. Geophysical and Geochemical Exploration, 47(5): 1354−1360 (in Chinese with English abstract).

    Google Scholar

    [30] Sklenicka P. 2016. Classification of farmland ownership fragmentation as a cause of land degradation: A review on typology, consequences, and remedies[J]. Land Use Policy, 57: 694−701. doi: 10.1016/j.landusepol.2016.06.032

    CrossRef Google Scholar

    [31] Sun Kuangling. 2021. Focus on genetic quality strengthen agricultural brand[J]. Chinese Brands, 3: 83−85,82 (in Chinese).

    Google Scholar

    [32] Wang D, Zhou F, Yang W X, Peng Q, Man N, Liang D L. 2017. Selenate redistribution during aging different Chinese soils and the dominant influential factors[J]. Chemosphere, 182: 284−292. doi: 10.1016/j.chemosphere.2017.05.014

    CrossRef Google Scholar

    [33] Winkel L H E, Johnson C A, Lenz M, Grundl T, Leupin O X, Amini M, Charlet L. 2012. Environmental selenium research: From microscopic processes to global under–standing[J]. Environmental. Science & Technology, 46: 571–579.

    Google Scholar

    [34] Wu Guanhua. 2019. Evaluation of New Cultivated Land Quality in Land Exploitation at Plot Scale: A Case Study of Fuping County[D]. Beijing: China University of Geosciences (Beijing), 1–99 (in Chinese with English abstract).

    Google Scholar

    [35] Wu Kening, Zhao Rui. 2019. Soil texture classification and its application in China[J]. Acta Pedologica Sinica, 56(1): 227−240 (in Chinese with English abstract).

    Google Scholar

    [36] Xu Xuesheng, Luo Jianlan, Huang Fengqiu, Wang Huanhuan, Xia Xueqi, Lu Jiang, Zhang Zihu, Zhu Lifen. 2022. Construction of the evaluation system for Se−rich arable land and its application in Xinxu Town, Xintian County, Hunan Province[J]. Geology in China, 49(3): 789−801 (in Chinese with English abstract).

    Google Scholar

    [37] Yan Yifan, Liu Jianli, Zhang Jiabao. 2014. Evaluation method and model analysis for productivity of cultivated land[J]. Transactions of the Chinese Society of Agricultural Engineering, 30(5): 204−210 (in Chinese with English abstract).

    Google Scholar

    [38] Yu Jinpeng. 2015. The Applied Research of Different Methods in the Natural Productivity Evaluation of Cultivated Land in Jiangxi Province[D]. Jiangxi: Jiangxi Agricultural University, 1–83 (in Chinese with English abstract).

    Google Scholar

    [39] Zhang Jiangzhou, Li Yizan, Li Ying, Zhang Junling, Zhang Fusuo. 2022. Advances in the indicator system and evaluation approaches of soil health[J]. Acta Pedologica Sinica, 59(3): 603−616 (in Chinese with English abstract).

    Google Scholar

    [40] Zhao Huafu, Wu Kening. 2021. Discussion of soil survey, land type, and cultivated land evaluation: Based on academic thoughtofmr Ni Shaoxiang’s land evaluation[J]. Chinese Journal of Agricultural Resources and Regional Planning, 42(10): 245−252 (in Chinese with English abstract).

    Google Scholar

    [41] Zhao Qiguo, Yin Xuebin, Sun Min, Liu Yongxian, Hou Feifan, Zhang Ning. 2018. A ten−year overview of functional agriculture from 2008 to 2018[J]. Soils, 50(6): 1061−1071 (in Chinese with English abstract).

    Google Scholar

    [42] Zhao Yeting. 2015. Spatial Characteristics and Changes of Soil Nutrients in Cultivated Land of Guanzhong Region in Shaanxi Province Based on GIS[D]. Yangling: Northwest Agriculture & Forestry University, 1–190 (in Chinese with English abstract).

    Google Scholar

    [43] Zhu Yongguan, Li Baozhi, Lin Tao. 2021. Fostering healthy soil to push forward rural revitalization[J]. Science and Technology Review, 39(23): 54−58 (in Chinese with English abstract).

    Google Scholar

    [44] 樊会敏, 许明祥, 李彬彬, 张蓉蓉, 张圣民, 马露洋. 2017. 渭北地区农田土壤物理性质对土壤剖面盐分的影响[J]. 水土保持学报, 31(4): 198−204.

    Google Scholar

    [45] 高蓓, 卫海燕, 郭彦龙, 顾蔚. 2015. 基于层次分析法和GIS的秦岭地区魔芋潜在分布研究[J]. 生态学报, 35(21): 7108−7116.

    Google Scholar

    [46] 郭金玉, 张忠彬, 孙庆云. 2008. 层次分析法的研究与应用[J]. 中国安全科学学报, 18(5): 148−153. doi: 10.3969/j.issn.1003-3033.2008.05.025

    CrossRef Google Scholar

    [47] 郭兆元, 黄自立, 冯立孝. 1992. 陕西土壤[M]. 北京: 科学出版社.

    Google Scholar

    [48] 韩慧杰, 夏学齐, 吴海东, 汤明, 姜明亮. 2019. 基于GIS和土地质量地球化学数据的水稻种植适宜性评价—以安徽省青阳县为例[J]. 中国生态农业学报(中英文), 27(4): 591−600.

    Google Scholar

    [49] 侯现慧, 王占岐, 杨俊. 2015. 富硒区耕地质量评价及利用分区研究—以福建省三元区为例[J]. 资源科学, 37(7): 1367−1375.

    Google Scholar

    [50] 姬华伟, 任蕊, 陈继平, 张继军, 李傲瑞, 冯伟华. 2021. 关中不同类型土壤硒含量特征及其对玉米籽粒硒含量的影响[J]. 西北地质, 54(4): 239−249.

    Google Scholar

    [51] 居字龙, 胡尚军, 陈思, 尹猛, 夏坤, 万翔. 2022. 健康地质调查研究进展及其评价方法[J]. 资源环境与工程, 36(5): 594−603.

    Google Scholar

    [52] 李家煕, 黄怀曾, 刘晓瑞. 1999. 环境地球化学在农业和生命科学上的应用研究[J]. 第四纪研究, 19(3): 224−230. doi: 10.3321/j.issn:1001-7410.1999.03.005

    CrossRef Google Scholar

    [53] 郦逸根, 董岩翔, 郑洁, 李琰, 吴小勇, 朱朝晖. 2005. 浙江富硒土壤资源调查与评价[J]. 第四纪研究, 25(3): 323−330. doi: 10.3321/j.issn:1001-7410.2005.03.008

    CrossRef Google Scholar

    [54] 刘朝亮. 2013. 层次分析法在农业系统中的应用研究[J]. 广东农业科学, 40(13): 228−232. doi: 10.3969/j.issn.1004-874X.2013.13.066

    CrossRef Google Scholar

    [55] 牛颖超, 周忠发, 王历, 但雨生, 冯倩. 2018. 基于分形插值模型的贵州农产品区土壤养分综合评价研究[J]. 环境化学, 37(10): 2207−2218. doi: 10.7524/j.issn.0254-6108.2017112805

    CrossRef Google Scholar

    [56] 钱凤魁, 王秋兵, 李娜. 2015. 基于耕地质量与立地条件综合评价的高标准基本农田划定[J]. 农业工程学报, 31(18): 225−232. doi: 10.11975/j.issn.1002-6819.2015.18.031

    CrossRef Google Scholar

    [57] 任蕊, 王明霞, 陈继平, 晁旭, 王晖, 谢颖, 孟秦宇. 2018. 陕西关中地区土壤硒分布特征及影响因素[J]. 矿产勘查, 9(9): 1827−1833. doi: 10.3969/j.issn.1674-7801.2018.09.023

    CrossRef Google Scholar

    [58] 任蕊, 张志敏, 王晖, 陈继平, 乔新星, 梁东丽. 2023. 陕西关中土壤富硒标准研究与探讨—以小麦为例[J]. 物探与化探, 47(5): 1354−1360.

    Google Scholar

    [59] 陕西省临潼县志编纂委员会. 1991. 临潼县志[M]. 上海: 上海人民出版社.

    Google Scholar

    [60] 孙矿玲. 2021. 聚焦品种品质塑强农业品牌[J]. 中国品牌, 3: 83−85, 82.

    Google Scholar

    [61] 吴冠华. 2019. 地块尺度土地开发的新增耕地质量评价[D]. 北京: 中国地质大学(北京), 1–99.

    Google Scholar

    [62] 吴克宁, 赵瑞. 2019. 土壤质地分类及其在我国应用探讨[J]. 土壤学报, 56(1): 227−240. doi: 10.11766/trxb201803120129

    CrossRef Google Scholar

    [63] 徐雪生, 骆检兰, 黄逢秋, 王欢欢, 夏学齐, 鲁江, 张子虎, 朱丽芬. 2022. 富硒耕地质量评价体系构建及其在湖南省新田县新圩镇的应用[J]. 中国地质, 49(3): 789−801. doi: 10.12029/gc20220308

    CrossRef Google Scholar

    [64] 闫一凡, 刘建立, 张佳宝. 2014. 耕地地力评价方法及模型分析[J]. 农业工程学报, 30(5): 204−210. doi: 10.3969/j.issn.1002-6819.2014.05.026

    CrossRef Google Scholar

    [65] 余锦鹏. 2015. 不同方法在江西省省级耕地地力评价中的应用研究[D]. 江西: 江西农业大学, 1–83.

    Google Scholar

    [66] 张江周, 李奕赞, 李颖, 张俊伶, 张福锁. 2022. 土壤健康指标体系与评价方法研究进展[J]. 土壤学报, 59(3): 603−616.

    Google Scholar

    [67] 赵华甫, 吴克宁. 2021. 试论土壤调查、土地类型与耕地评价—兼论倪绍祥先生的土地评价思想[J]. 中国农业资源与区划, 42(10): 245−252.

    Google Scholar

    [68] 赵其国, 尹雪斌, 孙敏, 刘永贤, 侯非凡, 张宁. 2018. 2008—2018年功能农业的理论发展与实践[J]. 土壤, 50(6): 1061−1071.

    Google Scholar

    [69] 赵业婷. 2015. 基于GIS的陕西省关中地区耕地土壤养分空间特征及其变化研究[D]. 杨凌: 西北农林科技大学, 1–190.

    Google Scholar

    [70] 朱永官, 李宝值, 吝涛. 2021. 培育健康土壤, 助力乡村振兴[J]. 科技导报, 39(23): 54−58.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(9)

Article Metrics

Article views(670) PDF downloads(35) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint