2024 Vol. 51, No. 6
Article Contents

LIU Chang, SU Jinbao. 2024. Geothermal distribution and forming mechanism: Insight from 3D numerical simulation on Yangbajing−Ningzhong Basin, Tibet[J]. Geology in China, 51(6): 1868-1882. doi: 10.12029/gc20230601001
Citation: LIU Chang, SU Jinbao. 2024. Geothermal distribution and forming mechanism: Insight from 3D numerical simulation on Yangbajing−Ningzhong Basin, Tibet[J]. Geology in China, 51(6): 1868-1882. doi: 10.12029/gc20230601001

Geothermal distribution and forming mechanism: Insight from 3D numerical simulation on Yangbajing−Ningzhong Basin, Tibet

    Fund Project: Supported by the National Key Research and Development Program of China (No.2023YFC2907105) and the National Natural Science Foundation of China (No.42272236, No.41872074).
More Information
  • Author Bio: LIU Chang, male, born in 1999, master candidate, engaged in numerical simulation research; E-mail: lc1999@hhu.edu.cn
  • Corresponding author: SU Jinbao, male, born in 1980, doctor, associate professor, engaged in structural geology and tectonics research; E-mail: sujinbao@hhu.edu.cn.
  • This paper is the result of hydrogeological survey engineering.

    Objective

    Meteoric water in the mountain areas infiltrates deep underground and circulates to the surface. It involves deep structural and hydrogeochemical processes, and it is one of the fluid source of forming rich geothermal and mineral resources. Predecessors focused on the groundwater source, circulation depth and flow system using methods of hydrochemistry isotope and numerical simulation, and further evaluated the distribution of regional geothermal and mineral resources.

    Methods

    Based on the data of DEM, fault structure, and lithology of the Yangbajing−Ningzhong basin,we establish 3D geometry finite element model. The standard saturated groundwater flow equation is solved using groundwater simulation software, and we analyse the circulation system of the typical hot springsand regional groundwater migration.

    Results

    The simulation results show that the maximum circulation depths of groundwater are respectively 5−7 km, 3.5−4 km, and 3−3.6 km at Yangbajing, Laduogang, and Qucai springs, and the corresponding groundwater circulation times are 23−80, 5−6 and 4−8 years. The groundwater of Nyainqentanglha Mountain seeps down to 10 km depth, where the time spans million years.

    Conclusions

    In general, the circulation depth and the recharge time of hot springs are different due to their different supply sources and circulation paths. Notably, there is no hydraulic connection between the hot springs at Yangbajing, Laduogang, and Qucai, although they are located in the same rift valley. It results in differences in material composition among these springs.

  • 加载中
  • [1] Alsdorf D, Brown L, Nelson K D, Makovsky Y, Klemperer S, Zhao W J. 1998. Crustal deformation of the Lhasa terrane, Tibet plateau from Project INDEPTH deep seismic reflection profiles[J]. Tectonics, 17(4): 501−519.

    Google Scholar

    [2] Armijo R, Tapponnier P, Mercier J L, Han T L. 1986. Quaternary extension in southern Tibet: Field observations and tectonic implications[J]. Journal of Geophysical Research: Solid Earth, 91(B14): 13803−13872. doi: 10.1029/JB091iB14p13803

    CrossRef Google Scholar

    [3] Bossong C R. 2003. Hydrologic Conditions and Assessment of Water Resources in the Turkey Creek Watershed, Jefferson County, Colorado, 1998–2001[M]. US Department of the Interior, US Geological Survey.

    Google Scholar

    [4] Brown L D, Zhao W J, Nelson K D, Hauck M, Alsdorf D, Ross A, Cogan M, Clark M, Liu X W, Che J K. 1996. Bright spots, structure, and magmatism in southern Tibet from INDEPTH seismic reflection profiling[J]. Science, 274(5293): 1688−1690.

    Google Scholar

    [5] Butler R W H, Harris N B W, Whittington A G. 1997. Interactions between deformation, magmatism and hydrothermal activity during active crustal thickening: A field example from Nanga Parbat, Pakistan Himalayas[J]. Mineralogical Magazine, 61(404): 37−52. doi: 10.1180/minmag.1997.061.404.05

    CrossRef Google Scholar

    [6] Caine J S, Manning A H, Verplanck P L, Bove D J. 2006. Well construction information, lithologic logs, water level data, and overview of research in Handcart Gulch, Colorado: An alpine watershed affected by metalliferous hydrothermal alteration[J]. Open–File Report. U. S. Geological Survey.

    Google Scholar

    [7] Cathles L M, Erendi A H J, Barrie T. 1997. How long can a hydrothermal system be sustained by a single intrusive event?[J]. Economic Geology, 92(7/8): 766−771.

    Google Scholar

    [8] Chen J C, Kuang X X, Lancia M, Yao Y Y, Zheng C M. 2021. Analysis of the groundwater flow system in a high–altitude headwater region under rapid climate warming: Lhasa River Basin, Tibetan Plateau[J]. Journal of Hydrology: Regional Studies, 36: 100871. doi: 10.1016/j.ejrh.2021.100871

    CrossRef Google Scholar

    [9] Craw D, Koons P O, Zeitler P K, KIDD W S F. 2005. Fluid evolution and thermal structure in the rapidly exhuming gneiss complex of Namche Barwa–Gyala Peri, eastern Himalayan syntaxis[J]. Journal of Metamorphic Geology, 23(9): 829−845. doi: 10.1111/j.1525-1314.2005.00612.x

    CrossRef Google Scholar

    [10] Diamond L W, Wanner C, Waber H N. 2018. Penetration depth of meteoric water in orogenic geothermal systems[J]. Geology, 46(12): 1063−1066. doi: 10.1130/G45394.1

    CrossRef Google Scholar

    [11] Duo J, Zhao P. 2000. Characteristics and genesis of the Yangbajing geothermal field, Tibet[C]//Proceedings of the world geothermal congress, Kyushu–Tohoku, Japan. 28.

    Google Scholar

    [12] Duo Ji. 2003. The basic characteristics of the Yangbajing geothermal field–A typical high temperature geothermal system[J]. Strategic Study of CAE, 5(1): 42−47 (in Chinese with English abstract).

    Google Scholar

    [13] Fan X P. 2002. Conceptual Model and Assessment of the Yangbajing Geothermal Field, Tibet, China[M]. United Nations University.

    Google Scholar

    [14] Feng Z J, Zhao Y S, Zhou A C, Zhang N. 2012. Development program of hot dry rock geothermal resource in the Yangbajing Basin of China[J]. Renewable Energy, 39(1): 490−495. doi: 10.1016/j.renene.2011.09.005

    CrossRef Google Scholar

    [15] Ge S M, Wu Q B, Lu N, Jiang G L, Ball L. 2008. Groundwater in the Tibet Plateau, western China[J]. Geophysical Research Letters, 35(18): 18403−1−5.

    Google Scholar

    [16] Grasby S E, Hutcheon I. 2001. Controls on the distribution of thermal springs in the southern Canadian Cordillera[J]. Canadian Journal of Earth Sciences, 38(3): 427−440. doi: 10.1139/e00-091

    CrossRef Google Scholar

    [17] Guo Q H, Wang Y X, Liu W. 2007. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China[J]. Journal of Volcanology and Geothermal Research, 166(3/4): 255−268.

    Google Scholar

    [18] Guo Q H. 2012. Hydrogeochemistry of high–temperature geothermal systems in China: A review[J]. Applied Geochemistry, 27(10): 1887−1898. doi: 10.1016/j.apgeochem.2012.07.006

    CrossRef Google Scholar

    [19] Hochstein M P, Regenauer–Lieb K. 1998. Heat generation associated with collision of two plates: The Himalayan geothermal belt[J]. Journal of Volcanology and Geothermal Research, 83(1/2): 75−92.

    Google Scholar

    [20] Kapp P, Taylor M, Stockli D, Ding L. 2008. Development of active low–angle normal fault systems during orogenic collapse: Insight from Tibet[J]. Geology, 36(1): 7−10. doi: 10.1130/G24054A.1

    CrossRef Google Scholar

    [21] Li Zhengqing, Hou Zengqian, Nie Fengjun, Meng Xiangjin. 2005. Characteristic and distribution of the partial melting layers in the upper crust: Evidence from active hydrothermal fluid in the South Tibet[J]. Acta Geologica Sinica, 79(1): 68−77 (in Chinese with English abstract).

    Google Scholar

    [22] Liu Mingliang. 2018. Boron Geochemistry of the Geothermal Waters From Typical Hydrothermal Systems in Tibet[D]. Wuhan: China University of Geosciences, 1–129 (in Chinese with English abstract).

    Google Scholar

    [23] Liu Z C, Wang J G, Liu X C, Liu Y D, Lai Q Z. 2021. Middle Miocene ultrapotassic magmatism in the Himalaya: A response to mantle unrooting process beneath the orogen[J]. Terra Nova, 33(3): 240−251. doi: 10.1111/ter.12507

    CrossRef Google Scholar

    [24] Liu Zhao, Lin Wenjing, Zhang Meng, Xie Ejun, Liu Zhiming, Wang Guiling. 2014. Geothermal fluid genesis and mantle fluids contributions in Nimu–Naqu, Tibet[J]. Earth Science Frontiers, 21(60): 356−371 (in Chinese with English abstract).

    Google Scholar

    [25] Lu Yi, Su Jinbao, Tan Hongbing, Xu Peng, Chen Zhenkun. 2019. Geochemical characteristics and origin of sinters in the southeastern margin of Tibet[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 38(6): 1207–1223 (in Chinese with English abstract).

    Google Scholar

    [26] Marazuela M A, Ayora C, Vázquez–Suñé E, Olivella S, García–Gil A. 2020. Hydrogeological constraints for the genesis of the extreme lithium enrichment in the Salar de Atacama (NE Chile): A thermohaline flow modelling approach[J]. Science of the Total Environment, 739: 139959. doi: 10.1016/j.scitotenv.2020.139959

    CrossRef Google Scholar

    [27] Mejías M, Renard P, Glenz D. 2009. Hydraulic testing of low–permeability formations: A case study in the granite of Cadalso de los Vidrios, Spain[J]. Engineering Geology, 107(3/4): 88−97.

    Google Scholar

    [28] Menzies C D, Teagle D A H, Craw D, Cox S C, Boyce A J, Barrie C D, Roberts S. 2014. Incursion of meteoric waters into the ductile regime in an active orogen[J]. Earth and Planetary Science Letters, 399: 1−13. doi: 10.1016/j.jpgl.2014.04.046

    CrossRef Google Scholar

    [29] Nesbitt B E, Muehlenbachs K, Murowchick J B. 1989. Genetic implications of stable isotope characteristics of mesothermal Au deposits and related Sb and Hg deposits in the Canadian Cordillera[J]. Economic Geology, 84(6): 1489−1506. doi: 10.2113/gsecongeo.84.6.1489

    CrossRef Google Scholar

    [30] Ren Shaoting, Menenti M, Li J, Zhang J, Zhang J X, Li X. 2020. Glacier mass balance in the Nyainqentanglha Mountains between 2000 and 2017 retrieved from ZiYuan–3 stereo images and the SRTM DEM[J]. Remote Sensing, 12(5): 864. doi: 10.3390/rs12050864

    CrossRef Google Scholar

    [31] Shao Zhaogang. 2005. Analysis of the Cenozoic Hydrothermal Metallotectonic System and Evaluation of Ore Resoures in the Yangbajain–Lhunzhunb Region, Tibet[D]. Beijing: Chinese Academy of Geological Sciences, 1–155 (in Chinese with English abstract).

    Google Scholar

    [32] Stober I, Bucher K. 2015. Hydraulic conductivity of fractured upper crust: Insights from hydraulic tests in boreholes and fluid–rock interaction in crystalline basement rocks[J]. Geofiuids, 15(1/2): 161−178.

    Google Scholar

    [33] Stober I, Zhong J S, Zhang L F, Bucher K. 2016. Deep hydrothermal fluid–rock interaction: The thermal springs of Da Qaidam, China[J]. Geofluids, 16(4): 711−728.

    Google Scholar

    [34] Su J B, Tan H B, Chen X. 2020. The groundwater deep circulation and large–scale geothermal deposition in response to the extension of the Yadong–Gulu rift, South Tibet, China[J]. Journal of Volcanology and Geothermal Research, 395: 106836. doi: 10.1016/j.jvolgeores.2020.106836

    CrossRef Google Scholar

    [35] Su J B, Tan H B. 2022. The genesis of rare–alkali metal enrichment in the geothermal anomalies controlled by faults and magma along the northern Yadong–Gulu rift[J]. Ore Geology Reviews, 147: 104987. doi: 10.1016/j.oregeorev.2022.104987

    CrossRef Google Scholar

    [36] Taillefer A, Guillou–Frottier L, Soliva R, Magri F, Lopez S, Courrioux G, Millot R, Ladouche B, Goff E L. 2018. Topographic and faults control of hydrothermal circulation along dormant faults in an orogen[J]. Geochemistry, Geophysics, Geosystems, 19(12): 4972–4995.

    Google Scholar

    [37] Tan H B, Zhang Y F, Zhang W J, Kong N, Zhang Q, Huang J Z. 2014. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes[J]. Applied Geochemistry, 51: 23−32. doi: 10.1016/j.apgeochem.2014.09.006

    CrossRef Google Scholar

    [38] Tapponnier P, Mercier J L, Armijo R, Han T L, Zhou J. 1981. Field evidence for active normal faulting in Tibet[J]. Nature, 294(5840): 410−414. doi: 10.1038/294410a0

    CrossRef Google Scholar

    [39] Tian X B, Chen Y, Tseng T L, Klemperer S L, Thybo Hans, Liu Z, Xu T, Liang X F, Bai Z M, Zhang X, Si S K, Sun C Q, Lan H Q, Wang E C, Teng J W. 2015. Weakly coupled lithospheric extension in southern Tibet[J]. Earth and Planetary Science Letters, 430: 171−177.

    Google Scholar

    [40] Tiedeman C R, Goode D J, Hsieh P A. 1998. Characterizing a ground water basin in a New England mountain and valley terrain[J]. Groundwater, 36(4): 611−620. doi: 10.1111/j.1745-6584.1998.tb02835.x

    CrossRef Google Scholar

    [41] Tong Wei. 2000. Thermal Springs in Tibet[M]. Beijing: Science Press (in Chinese).

    Google Scholar

    [42] Wang Z, Wang J, Yang X Q. 2021. The role of fluids in the 2008 Ms8.0 Wenchuan earthquake, China[J]. Journal of Geophysical Research: Solid Earth, 126(2): e2020JB019959. doi: 10.1029/2020JB019959

    CrossRef Google Scholar

    [43] Wanner C, Waber H N, Bucher K. 2020. Geochemical evidence for regional and long–term topography–driven groundwater flow in an orogenic crystalline basement (Aar Massif, Switzerland)[J]. Journal of hydrology, 581: 124374. doi: 10.1016/j.jhydrol.2019.124374

    CrossRef Google Scholar

    [44] Wei Keqin, Lin Ruifen, Wang Zhixiang. 1983. Hydrogen and oxygen stable isotopic composition and tritium content of waters from Yangbajain geothermal area, Xizang, China[J]. Geochimica, (4): 338−346 (in Chinese with English abstract).

    Google Scholar

    [45] Wickham S M, Peters M T, Fricke H C, O'Neil J R. 1993. Identification of magmatic and meteoric fluid sources and upward–and downward–moving infiltration fronts in a metamorphic core complex[J]. Geology, 21(1): 81−84. doi: 10.1130/0091-7613(1993)021<0081:IOMAMF>2.3.CO;2

    CrossRef Google Scholar

    [46] Wu Zhenhan, Hu Daogong, Liu Qisheng, Ye Peisheng, Wu Zhonghai. 2005. Chronological analyses of the thermal evolution of granite and the uplift process of the Nyainqentanglha range in Central Tibet[J]. Acta Geoscientica Sinica, 26(6): 505−512 (in Chinese with English abstract).

    Google Scholar

    [47] Wu Zhonghai, Ye Peisheng, Wang Chengmin, Zhang Keqi, Zhao Hua, Zheng Yonggang, Yin Jinhui, Li Huhou. 2015. The relics, ages and significance of prehistoric large earthquakes in the Angang Graben in South Tibet[J]. Earth Science, 40(10): 1621−1642 (in Chinese with English abstract).

    Google Scholar

    [48] Yao Y Y, Zheng C M, Andrews C B, Scanlon B R, Kuang X X, Zeng Z Z, Jeong S J, Lancia M, Wu Y P, Li G S. 2021. Role of groundwater in sustaining Northern Himalayan Rivers[J]. Geophysical Research Letters, 48(10): e2020GL092354.

    Google Scholar

    [49] Yao Y Y, Zheng C M, Andrews C B, Zheng Y, Zhang A J, Liu J. 2017. What controls the partitioning between baseflow and mountain block recharge in the Qinghai−Tibet Plateau?[J]. Geophysical Research Letters, 44(16): 8352−8358. doi: 10.1002/2017GL074344

    CrossRef Google Scholar

    [50] Yokoyama T, Nakai S, Wakita H. 1999. Helium and carbon isotopic compositions of hot spring gases in the Tibetan Plateau[J]. Journal of Volcanology And Geothermal Research, 88(1/2): 99−107. doi: 10.1016/S0377-0273(98)00108-5

    CrossRef Google Scholar

    [51] Yong B, Wang C Y, Chen J S, Chen J Q, Barry D A, Wang T, Li L. 2021. Missing water from the Qiangtang Basin on the Tibetan Plateau[J]. Geology, 49(7): 867−872.

    Google Scholar

    [52] Zeng Y C, Tang L S, Wu N Y, Cao Y F. 2018. Numerical simulation of electricity generation potential from fractured granite reservoir using the MINC method at the Yangbajing geothermal field[J]. Geothermics, 75: 122−136.

    Google Scholar

    [53] Zeng Y C, Wu N Y, Su Z, Hu J. 2014. Numerical simulation of electricity generation potential from fractured granite reservoir through a single horizontal well at Yangbajing geothermal field[J]. Energy, 65: 472−487. doi: 10.1016/j.energy.2013.10.084

    CrossRef Google Scholar

    [54] Zhang W J, Tan H B, Zhang Y F, Wei H Z, Dong T. 2015. Boron geochemistry from some typical Tibetan hydrothermal systems: Origin and isotopic fractionation[J]. Applied Geochemistry, 63: 436−445. doi: 10.1016/j.apgeochem.2015.10.006

    CrossRef Google Scholar

    [55] Zhang Xigen. 1998. Sulfur mineralization of modern geothermal system in Yangbajing basin of Xizang[J]. Geology of Chemical Minerals, 20(1): 1−10 (in Chinese with English abstract).

    Google Scholar

    [56] Zhang Z J, Chen Y, Yuan X H, Tian X B, Klemperer S L, Xu T, Bai Z M, Zhang H S, Wu J, Teng J W. 2013. Normal faulting from simple shear rifting in South Tibet, using evidence from passive seismic profiling across the Yadong–Gulu Rift[J]. Tectonophysics, 606: 178−186. doi: 10.1016/j.tecto.2013.03.019

    CrossRef Google Scholar

    [57] Zhao Ping, Duo Ji, Xie Ejun, Jin Jian. 2003. Strontium isotope data for thermal waters in selected high–temperature geothermal fields, China[J]. Acta Petrologica Sinica, 19(30): 569−576 (in Chinese with English abstract).

    Google Scholar

    [58] Zhao Ping, Jin Jian, Zhang Haizheng, Duo Ji, Liang Tingli. 1998. Chemical composition of thermal water in the Yangbajing geothermal field, Tibet[J]. Chinese Journal of Geology, 33(1): 61–72 (in Chinese with English

    Google Scholar

    [59] Zhao Ping, Kennedy M, Duo Ji, Xie Ejun, Du Shaoping, Shuster D, Jin Jian. 2001. Noble gases constraints on the origin and evolution of geothermal fluids from the Yangbajain geothermal field, Tibet[J]. Acta Petrologica Sinica, 17(3): 497−503 (in Chinese with English abstract).

    Google Scholar

    [60] Zhao Ping, Xie Ejun, Duo Ji, Jin Jian, Hu Xiancai, Du Shaoping, Yao Zhonghua. 2002. Geochemical charact eristics of geothermal gases and their geological implications in Tibet[J]. Acta Petrologica Sinica, 18(4): 539−550 (in Chinese with English abstract).

    Google Scholar

    [61] Zhou Li. 2012. Characteristics of the Typical Hot Springs in the Central Tibet[D]. Beijing: China University of Geosciences, 1–79 (in Chinese with English abstract).

    Google Scholar

    [62] Zuo J M, Wu Z H, Ha G H, Hu M M, Zhou C J, Gai H L. 2021. Spatial variation of nearly NS–trending normal faulting in the southern Yadong–Gulu rift, Tibet: New constraints from the Chongba Yumtso fault, Duoqing Co graben[J]. Journal of Structural Geology, 144: 104256. doi: 10.1016/j.jsg.2020.104256

    CrossRef Google Scholar

    [63] 多吉. 2003. 典型高温地热系统—羊八井热田基本特征[J]. 中国工程科学, 5(1): 42−47. doi: 10.3969/j.issn.1009-1742.2003.01.008

    CrossRef Google Scholar

    [64] 李振清, 侯增谦, 聂凤军, 孟祥军. 2005. 藏南上地壳低速高导层的性质与分布: 来自热水流体活动的证据[J]. 地质学报, 79(1): 68−77. doi: 10.3321/j.issn:0001-5717.2005.01.008

    CrossRef Google Scholar

    [65] 刘明亮. 2018. 西藏典型高温水热系统中硼的地球化学研究[D]. 武汉: 中国地质大学 (武汉), 1–129.

    Google Scholar

    [66] 刘昭, 蔺文静, 张萌, 谢鄂军, 刘志明, 王贵玲. 2014. 西藏尼木—那曲地热流体成因及幔源流体贡献[J]. 地学前缘, 21(6): 356−371.

    Google Scholar

    [67] 陆艺, 苏金宝, 谭红兵, 徐鹏, 陈振坤. 2019. 西藏东南缘地热泉华的地球化学特征和成因[J]. 矿物岩石地球化学通报, 38(6): 1207−1223.

    Google Scholar

    [68] 邵兆刚. 2005. 西藏羊八井—林周地区新生代水热成矿构造系统分析及资源评价[D]. 北京: 中国地质科学院, 1–155.

    Google Scholar

    [69] 佟伟. 2000. 西藏温泉志[M]. 北京: 科学出版社.

    Google Scholar

    [70] 卫克勤, 林瑞芬, 王志祥. 1983. 西藏羊八井地热水的氢, 氧稳定同位素组成及氚含量[J]. 地球化学, (4): 338−346. doi: 10.3321/j.issn:0379-1726.1983.04.002

    CrossRef Google Scholar

    [71] 吴珍汉, 胡道功, 刘琦胜, 叶培盛, 吴中海. 2005. 念青唐古拉花岗岩热演化历史和山脉隆升过程的热年代学分析[J]. 地球学报, 26(6): 505−512. doi: 10.3321/j.issn:1006-3021.2005.06.004

    CrossRef Google Scholar

    [72] 吴中海, 叶培盛, 王成敏, 张克旗, 赵华, 郑勇刚, 尹金辉, 李虎侯. 2015. 藏南安岗地堑的史前大地震遗迹、年龄及其地质意义[J]. 地球科学, 40(10): 1621−1642.

    Google Scholar

    [73] 张锡根. 1998. 西藏羊八井现代地下热水系统硫矿的成矿作用[J]. 化工矿产地质, 20(1): 1−10.

    Google Scholar

    [74] 赵平, 金建, 张海政, 多吉, 梁廷立. 1998. 西藏羊八井地热田热水的化学组成[J]. 地质科学, 33(1): 61–72.

    Google Scholar

    [75] 赵平, Mack KENNEDY, 多吉, 谢鄂军, 杜少平, David SHUSTER, 金建. 2001. 西藏羊八井热田地热流体成因及演化的惰性气体制约[J]. 岩石学报, 17(3): 497−503. doi: 10.3321/j.issn:1000-0569.2001.03.020

    CrossRef Google Scholar

    [76] 赵平, 谢鄂军, 多吉, 金建, 胡先才, 杜少平, 姚中华. 2002. 西藏地热气体的地球化学特征及其地质意义[J]. 岩石学报, 18(4): 539−550. doi: 10.3969/j.issn.1000-0569.2002.04.013

    CrossRef Google Scholar

    [77] 赵平, 多吉, 谢鄂军, 金建. 2003. 中国典型高温热田热水的锶同位素研究[J]. 岩石学报, 19(3): 569−576. doi: 10.3969/j.issn.1000-0569.2003.03.023

    CrossRef Google Scholar

    [78] 周立. 2012. 西藏中部典型温泉特征[D]. 北京: 中国地质大学 (北京), 1–79.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(1)

Article Metrics

Article views(144) PDF downloads(29) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint