Citation: | DONG Jiaqiu, ZHANG Jun, GU Xiaofan, GAO Haibo, YANG Bo, YANG Xiaodong, ZHAO Chunguang, ZHANG Tiegang, YIN Lihe, WANG Xiaoyong. 2024. Groundwater dependent ecosystems assessment in catchment scale of semi−arid regions: A case study in the Hailiutu catchment of the Ordos Plateau[J]. Geology in China, 51(6): 1855-1867. doi: 10.12029/gc20220526002 |
This paper is the result of hydrogeological survey engineering.
A new evaluation method for catchment scale dependent groundwater ecosystem in semi-arid region was established. The method will include both surface and sub−surface information and provides a technical support to groundwater resources development and ecosystem protection in semi−arid areas.
Taking the Hailiutu catchment in the Ordos Plateau as the study area. Four indicators including depth to water table, soil types, vegetation coverage and evapotranspiration were selected and the spatial distributions of these indicators were determined based on field survey and remote sensing interpretation. Finally, a systematic assessment was performed in a GIS platform to identify the distribution of GDE and the degree of dependency.
The results indicate that the areas very high and high dependent on groundwater accounts for 10.2%. Although the areas are small, biodiversity and bio-mass in such place are much higher with high ecological value than the that of others due to the contribution of groundwater to vegetation growth.
Based on the comparison between this study and site studies, the results have a good agreement and are reliable, indicating that the proposed method is applicable to other similar regions. The sensitivity analysis shows that the most sensitive parameters are soil types and depth to water table that should be paid more attention during data collection in field works.
[1] | Bertrand G, Goldscheider N, Gobat J M, Hunkeler D. 2012. Review: from multi−scale conceptualization to a classification system for inland groundwater−dependent ecosystems[J]. Hydrogeology Journal, 20: 5−25. doi: 10.1007/s10040-011-0791-5 |
[2] | Brown J, Bach L, Aldous A, Wyers A, DeGagné J. 2011. Groundwater−dependent ecosystems in Oregon: An assessment of their distribution and associated threats[J]. Frontiers in Ecology and the Environment, 9(2): 97−102. doi: 10.1890/090108 |
[3] | Cui Xudong, Tao Zhengping, Zhang Jun, Wang Xiaoyong. 2011. Regional evapotranspiration calculation using SEBS method and its reliability analysis: A case study of Hailiutu River in Ordos Plateau[J]. Site Investigation Science and Technology, 4(6): 10−12 (in Chinese with English abstract). |
[4] | Dang Xueya, Lu Na, Gu Xiaofan, Jin Xiaomei. 2019. Groundwater threshold of ecological vegetation in Qaidam Basin[J]. Hydrogeology & Engineering Geology, 46(3): 1−7 (in Chinese with English abstract). |
[5] | Eamus D, Froend R. 2006. Groundwater−dependent ecosystems: The where, what and why of GDEs[J]. Australian Journal of Botany, 54(2): 91−96. doi: 10.1071/BT06029 |
[6] | Eamus D, Froend R, Loomes R, Hose G, Murray B. 2006. A functional methodology for determining the groundwater regime needed to maintain the health of groundwater−dependent vegetation[J]. Australian Journal of Botany, 54(2): 97−114. doi: 10.1071/BT05031 |
[7] | Eamus D, Zolfaghar S, Villalobos−Vega R, Cleverly J, Huete A. 2015. Groundwater−dependent ecosystems: Recent insights from satellite and field−based studies[J]. Hydrology and Earth System Sciences, 19(10): 4229−4256. doi: 10.5194/hess-19-4229-2015 |
[8] | Fang Shibo, Tan Kaiyan, Liu Jiandong, Zhang Xinshi. 2009. Vegetation cover and its relationship with environmental factors at different scales in the Ordos region of China[J]. Chinese Journal of Plant Ecology, 33(1): 25−33 (in Chinese with English abstract). |
[9] | Glanville K, Ryan T, Tomlinson M, Muriuki G, Ronan M, Pollett A. 2016. A method for catchment scale mapping of groundwater−dependent ecosystems to support natural resource management (Queensland, Australia)[J]. Environmental Management, 57(2): 432−449. doi: 10.1007/s00267-015-0612-z |
[10] | Gou S, Gonzales S, Miller G R. 2015. Mapping potential groundwater−dependent ecosystems for sustainable management[J]. Ground Water, 53(1): 99−110. doi: 10.1111/gwat.12169 |
[11] | Hou Guangcai, Zhao Zhenhong. 2017. Groundwater and Ecological Environment of Ordos Energy Base[M]. Beijing: Geological Publishing House (in Chinese). |
[12] | Hou Guangcai, Zhang Maosheng, Wang Yonghe, Zhao Zhenhong, Liang Yongping, Tao Zhengping, Yang Yuncheng, Li Qing, Yin Lihe, Wang Xiaoyong, Wang Dong, Li Ying. 2007. Groundwater resources of the Ordos Basin and its development and utilization[J]. Northwestern Geology, 40(1): 7−34 (in Chinese with English abstract). |
[13] | Howard J, Merrifield M, Maya M A. 2010. Mapping groundwater dependent ecosystems in California[J]. Plos One, 5(6): e11249. doi: 10.1371/journal.pone.0011249 |
[14] | Hute A, Justice C, Leewen W V. 1996. MODIS Vegetation Index (MODIS13) Algorithm Theoretical Basis Document[M]. New York: NASA Press. |
[15] | Iongel D L, José L A, Loretto A. 2022. A new method to map groundwater−dependent ecosystem zones in semi−arid environments: A case study in Chile[J]. Science of the Total Environment, 816: 1−14. |
[16] | Jia W H, Yin L H, Zhang M S, Zhang X X, Zhang J, Tang X P, Dong J Q. 2021. Quantification of groundwater recharge and evapotranspiration along a semi−arid wetland transect using diurnal water table fluctuations[J]. Journal of Arid Land, 13(5): 455−469. |
[17] | Jin Xiaomei, Zhang Qiang, Yang Chunjie. 2013. Research on vegetation distribution and its relationship with topography and groundwater depth in the Hailiutu River Basin[J]. Earth Science Frontiers, 20(3): 227−233 (in Chinese with English abstract). |
[18] | Jin S M, Sader S A. 2005. MODIS time−series imagery for forest disturbance detection and quantification of patch size effects[J]. Remote Sensing and Environment, 99(4): 462−470. doi: 10.1016/j.rse.2005.09.017 |
[19] | Knight J F, Lunetta R S, Ediriwickrema J, Khorram S. 2006. Regional scale land−cover characterization using MODIS−NDVI 250 m multi−temporal imagery: A phenology based approach[J]. Mapping Sciences & Remote Sensing, 43(1): 1−23. |
[20] | King M D, Grerenstone R. 1999. EOS Reference Handbook: A Guide to NASA’s Earth Science Enterprise and the Earth Observing System[M]. Greenbelt: NASA/GSFC. |
[21] | Lei Lei, Wang Shuangming, Huang Jinting, Pan Guixing. 2015. The relationship between the vegetation coverage of growing season and climate factors of Hai Liutu River basin[J]. Journal of Northwest University (Natural Science Edition), 45(2): 327−332 (in Chinese with English abstract). |
[22] | Liu C, Liu H, Yu Y, Zhao W, Yetemen O. 2021. Mapping groundwater−dependent ecosystems in arid Central Asia: Implications for controlling regional land degradation[J]. Science of the Total Environment, 797(10): 149027. |
[23] | Liu Hu, Zhao Wenzhi, Li Zhongkai. 2018. Ecohydrology of groundwater dependent ecosystems: A review[J]. Advances in Earth Science, 33(7): 741−750 (in Chinese with English abstract). |
[24] | Lü J J, Wang X S, Zhou Y X, Qian K Z, Wan L, Eamus D, Tao Z P. 2013. Groundwater−dependent distribution of vegetation in Hailiutu River catchment, a semi−arid region in China[J]. Ecohydrology, 6(1): 142−149. doi: 10.1002/eco.1254 |
[25] | Lü Jingjing. 2013. Effect of Groundwater on Vegetation Index in Hailiutu River Catchment[D]. Beijing: China University of Geosciences, 1−127 (in Chinese with English abstract). |
[26] | Münch Z, Conrad J. 2007. Remote sensing and GIS based determination of groundwater dependent ecosystems in the Western Cape, South Africa[J]. Hydrogeology Journal, 15(1): 19−28. doi: 10.1007/s10040-006-0125-1 |
[27] | Purvis K, Wright V P. 2009. Calcretes related to phreatophytic vegetation from the Middle Triassic Otter Sandstone of South West England[J]. Sedimentology, 38(3): 539−551. |
[28] | Song G, Huang J T, Ning B H, Wang J W, Zeng L. 2021. Effects of groundwater level on vegetation in the arid area of western China[J]. China Geology, 4(3): 527−535. |
[29] | Wang Z, Wang L J, Shen J M, Nie Z L, Meng L Q, Cao L, Wei S B, Zeng X F. 2021. Groundwater characteristics and climate and ecological evolution in the Badain Jaran Desert in the southwest Mongolian Plateau[J]. China Geology, 4(3): 421−432. |
[30] | Wang Xiaoyong, Yin Lihe, Dai Zebing, Gao Feng, Yang Zhong. 2014. A study of evapotranspiration in Hailiutu River Basin, Ordos[J]. Northwestern Geology, 47(1): 244−248 (in Chinese with English abstract). |
[31] | Yang Zeyuan, Wang Wenke, Huang Jinting, Duan Lei. 2006. Research on buried depth of eco−safety about groundwater tablein the blown−sand region of the Northern Shaanxi Province[J]. Journal of Northwest A & F University (Natural Science Edition), 34(8): 67−74 (in Chinese with English abstract). |
[32] | Yin L H, Xu D D, Jia W H, Zhang X X, Zhang J. 2021. Responses of phreatophyte transpiration to falling water table in hyper−arid and arid regions, Northwest China[J]. China Geology, 4(3): 410−420. |
[33] | Yin L H, Zhou Y X, Huang J T, Wenninger J, Zhang E Y, Hou G C, Dong J Q. 2015. Interaction between groundwater and trees in an arid site: Potential impacts of climate variation and groundwater abstraction on trees[J]. Journal of Hydrology, 528: 435−448. doi: 10.1016/j.jhydrol.2015.06.063 |
[34] | Zhang Jun, Zhao Zhenhong, Ma Hongyun, Wang dong. 2014. Study on relationship between groundwater and vegetation in arid and semiarid region based on survival regions of plant species[J]. Research of Soil and Water Conservation, 21(5): 240−243 (in Chinese with English abstract). |
[35] | Zhang Jun, Zhao Zhenhong, Wang Dong, Ma Hongyun, Guo Li. 2013. The quantitative relationship between vegetations and groundwater depth in shallow groundwater area of Ordos Plateau[J]. Journal of Arid Land Resources and Environment, 27(4): 141−145 (in Chinese with English abstract). |
[36] | Zhang Maosheng, Dang Xueya. 2014. Water Resources and Environmental Problems in Arid and Semi−arid Areas: A Case Study of Yulin Energy and Chemical Industry Base in Northern Shaanxi Province [M]. Beijing: Science Press (in Chinese). |
[37] | Zhang Xucai, Jin Xiaomei, Zhu Xiaoqian, Zhang Jing. 2019. Spatial−temporal characteristics of vegetation index and its impact factors in the Golmud River Basin[J]. Geoscience, 33(2): 461−468 (in Chinese with English abstract). |
[38] | Zhang Yuhang, Wang Xiaolin, Hu Guangcheng. 2012. Evapotranspiration estimation of Hailiutu River Basin based on MODIS data[J]. Earth Science: Journal of China University of Geosciences, 37(2): 375−380 (in Chinese with English abstract). |
[39] | Zhang Zhiqiang, Liu Huan, Zuo Qiting, Yu Jintao, Li Yang. 2021. Spatiotemporal change of fractional vegetation cover in the Yellow River Basin during 2000−2019[J]. Resources Science, 43(4): 849−858 (in Chinese with English abstract). |
[40] | Zhao Ming. 2021. Interaction Mechanism between Subsurface Hydrological Process and Vegetation Ecology in Mu Us Sandy Land[D]. Xi’an: Chang’an University, 1−165 (in Chinese with English abstract). |
[41] | Zhou Shenghui, Liu Tingxi, Duan Limin, Ji Ru, Zhang Chunyu. 2021. Hydrogeological characteristics of underwater aquifer in the Hailiutu River Basin[J]. Journal of Desert Research, 41(5): 103−110 (in Chinese with English abstract). |
[42] | Zhu Li, Xu Guiqing, Li Yan, Tang Lisong, Niu Ziru. 2017. Relationships among plant species diversity, biomass and the groundwater table in the Hailiutu River basin[J]. Acta Ecologica Sinica, 37(6): 1912−1921 (in Chinese with English abstract). |
[43] | 崔旭东, 陶正平, 张俊, 王晓勇. 2011. 基于SEBS方法的蒸散量计算及可靠度分析—以鄂尔多斯高原海流兔河为例[J]. 勘察科学技党术, 4(6): 10−12. |
[44] | 党学亚, 卢娜, 顾小凡, 金晓媚. 2019. 柴达木盆地生态植被的地下水阈值[J]. 水文地质工程地质, 46(3): 1−7. |
[45] | 房世波, 谭凯炎, 刘建栋, 张新时. 2009. 鄂尔多斯植被盖度分布与环境因素的关系[J]. 植物生态学报, 33(1): 25−33. doi: 10.3773/j.issn.1005-264x.2009.01.003 |
[46] | 侯光才, 赵振宏. 2017. 鄂尔多斯能源基地地下水及生态环境[M]. 北京: 地质出版社. |
[47] | 侯光才, 张茂省, 王永和, 赵振宏, 梁永平, 陶正平, 杨郧城, 李清, 尹立河, 王晓勇, 王冬, 李瑛. 2007. 鄂尔多斯盆地地下水资源与开发利用[J]. 西北地质, 40(1): 7−34. doi: 10.3969/j.issn.1009-6248.2007.01.002 |
[48] | 金晓媚, 张强, 杨春杰. 2013. 海流兔河流域植被分布与地形地貌及地下水位关系研究[J]. 地学前缘, 20(3): 227−233. |
[49] | 雷磊, 王双明, 黄金廷, 潘桂行. 2015. 海流兔河流域植被生长季的覆盖度与气候因子关系研究[J]. 西北大学学报(自然科学版), 45(2): 327−332. |
[50] | 刘鹄, 赵文智, 李中恺. 2018. 地下水依赖型生态系统生态水文研究进展[J]. 地球科学进展, 33(7): 741−750. doi: 10.11867/j.issn.1001-8166.2018.07.0741 |
[51] | 吕京京. 2013. 海流兔河流域地下水对植被指数分布的影响研究[D]. 北京: 中国地质大学(北京), 1−127. |
[52] | 王晓勇, 尹立河, 戴泽兵, 高峰, 杨忠. 2014. 鄂尔多斯盆地海流兔河流域地表蒸散发研究[J]. 西北地质, 47(1): 244−248. doi: 10.3969/j.issn.1009-6248.2014.01.022 |
[53] | 杨泽元, 王文科, 黄金廷, 段磊. 2006. 陕北风沙滩地区生态安全地下水位埋深研究[J]. 西北农林科技大学学报(自然科学版), 34(8): 67−74. |
[54] | 张俊, 赵振宏, 马洪云, 王冬. 2014. 基于物种生存域的干旱半干旱区地下水与植被关系研究[J]. 水土保持研究, 21(5): 240−243. |
[55] | 张俊, 赵振宏, 王冬, 马洪云, 郭莉. 2013. 鄂尔多斯高原地下水浅埋区植被与地下水埋深关系[J]. 干旱区资源与环境, 27(4): 141−145. |
[56] | 张茂省, 党学亚. 2014. 干旱半干旱地区水资源及其环境问题: 陕北榆林能源化工基地例析[M]. 北京: 科学出版社. |
[57] | 张绪财, 金晓媚, 朱晓倩, 张京. 2019. 格尔木河流域植被指数时空分布及其影响因素研究[J]. 现代地质, 33(2): 461−468. |
[58] | 张雨航, 王晓林, 胡光成. 2012. 基于MODIS数据的海流兔河流域蒸散量的计算[J]. 地球科学(中国地质大学学报), 37(2): 375−380. |
[59] | 张志强, 刘欢, 左其亭, 于锦涛, 李阳. 2021. 2000—2019年黄河流域植被覆盖度时空变化[J]. 资源科学, 43(4): 849−858. |
[60] | 赵明. 2021. 毛乌素沙地植被生态与地下水文过程互馈机制研究[D]. 西安: 长安大学, 1−165. |
[61] | 周生辉, 刘廷玺, 段利民, 冀如, 张春雨. 2021. 毛乌素沙地海流兔河流域水文地质特征[J]. 中国沙漠, 41(5): 103−110. |
[62] | 朱丽, 徐贵青, 李彦, 唐立松, 牛子儒. 2017. 物种多样性及生物量与地下水位的关系—以海流兔河流域为例[J]. 生态学报, 37(6): 1912−1921. |
Location of the study area
Classification of depth to water table in the Hailiutu River catchment
Classification of soil types in the Hailiutu River Catchment
Classification of vegetation coverage in the Hailiutu River Catchment
Classification of evapotranspiration in the Hailiutu River Catchment
Degree of groundwater dependent ecosystems in the Hailiutu River Catchment
Sensitivity analysis of groundwater dependent ecosystems assessment
Groundwater dependent ecosystems assessment by removing one index