2023 Vol. 50, No. 5
Article Contents

CHEN Zhenhong, CHEN Jianli, WANG Jiuyi, CHEN Yingnan, WANG Chunlian, YANG Fei. 2023. Distribution and genesis of global Na-carbonate deposits and its prospecting potential[J]. Geology in China, 50(5): 1399-1413. doi: 10.12029/gc20230516001
Citation: CHEN Zhenhong, CHEN Jianli, WANG Jiuyi, CHEN Yingnan, WANG Chunlian, YANG Fei. 2023. Distribution and genesis of global Na-carbonate deposits and its prospecting potential[J]. Geology in China, 50(5): 1399-1413. doi: 10.12029/gc20230516001

Distribution and genesis of global Na-carbonate deposits and its prospecting potential

    Fund Project: Supported by the projects of Henan Geological Exploration Foundation (No.[2012]80, No.[2014]3), CAGS Funds (No.KK2005, No.KK2110) and China Geological Survey (No.DD20190606)
More Information
  • Author Bio: CHEN Zhenhong, female, born in 2000, master candidate, engaged in mineral resource prospecting and exploration; E-mail: 2562578635@qq.com
  • Corresponding author: WANG Jiuyi, male, born in 1983, doctor, associate professor, engaged in mineralization of nonmetallic deposit; E-mail: wjyhlx@163.com 
  • This paper is the result of mineral exploration engineering.

    Objective

    Natural soda-ash deposits, also called sodium carbonate evaporites, are mainly used to produce soda ash. In the soda industry, compared with synthetic soda, this process has advantages for environmental protection and lower cost. The downstream industries contain various fields, including glass, medicine, and so on. The booming of new energy industries such as photovoltaic has brought new demand for soda ash. China consumes loads of soda ash annually; thus, soda may become a scarce resource in the future. Mineralization process of natural soda-ash evaporites is of great significance in evaporite community. In China however, soda-ash deposits have received little attention and have great research potential. Investigations on types and distribution characteristics of global soda-ash deposits and their genesis are helpful and useful for deepening research and prospecting of Nacarbonate deposits in China.

    Methods

    Compiling published data and systematically summarizing the regional setting, provenance, genesis of typical soda-ash deposits.

    Results

    Most deposits are Cenozoic in age and located in North America, Asia and Africa. Modern soda-ash deposits predominate in number, but resources size of ancient deposits is tremendous. Specific ancient deposits include the Green River Formation, United States and the Anpeng soda deposit in Biyang Depression in Henan, the counterparts, typical modern alkaline lake deposits formed in Lake Magadi, Kenya and Chaganor, Inner Mongolia.

    Conclusions

    The requirement for Na-carbonate deposits precipitation are (1) hydrologically-closed basins, (2) arid climate, and (3) sufficient sodium carbonate supply. Unlike other evaporites, the sources of CO2 required to maintain Na-carbonate brines are complicated. Efforts for prospecting in China should focus on Quaternary saline lakes, Cretaceous restrict basins in Inner Mongolia, and tectonically-closed depression in which dolomite and oil shale develops in Henan. It is of great significance to carry out the metallogenic theory research and mine prospecting.

  • 加载中
  • Baker B H, Mitchell J G. 1976. Volcanic stratigraphy and geochronology of the Kedong-Olorgesailie area and the evolution of the South Kenya rift valley[J]. Journal of the Geological Society, 132: 467-484. doi: 10.1144/gsjgs.132.5.0467

    CrossRef Google Scholar

    Baker B H. 1986. Tectonics and volcanism of the southern Kenya Rift Valley and its influence on rift sedimentation[J]. Geological Society London Special Publications, 25(1): 45-57. doi: 10.1144/GSL.SP.1986.025.01.05

    CrossRef Google Scholar

    Chen Jianli. 2013. Geological characteristics, genesis and ore prediction of natural soda deposit in Biyang depression: Taking Anpeng trona deposit as an example[J]. Contributions to Geology and Mineral Resources Research, 28(3): 393-400 (in Chinese with English abstract).

    Google Scholar

    Crossley R. 1979. The Cenozoic stratigraphy and structure of the western part of the Rift Valley in southern Kenya[J]. Journal of the Geological Society, 136(4): 393-405. doi: 10.1144/gsjgs.136.4.0393

    CrossRef Google Scholar

    Culbertson W C. 1972. Trona and Halite resources in Wilkins Peak Member of Green river Formation, Green River Basin, Wyoming: Abstract[J]. AAPG Bulletin, 56: 612-612.

    Google Scholar

    Cumming V M, Selby D, Lillis P G. 2012. Re-Os geochronology of the lacustrine Green River Formation: Insights into direct depositional dating of lacustrine successions, Re-Os systematics and paleocontinental weathering[J]. Earth and Planetary Science Letters, 359/360: 194-205. doi: 10.1016/j.epsl.2012.10.012

    CrossRef Google Scholar

    Cumming V M, Selby D, Lillis P G, Lewan M D. 2014. Re-Os geochronology and Os isotope fingerprinting of petroleum sourced from a Type Ⅰ lacustrine kerogen: Insights from the natural Green River petroleum system in the Uinta Basin and hydrous pyrolysis experiments[J]. Geochimica et Cosmochimica Acta, 138: 32-56. doi: 10.1016/j.gca.2014.04.016

    CrossRef Google Scholar

    Damnati B, Taieb M, Williamson D. 1992. Laminated deposits from Lake Magadi (Kenya); climatic contrast effect during the maximum wet period between 12, 000-10, 000 yrs BP[J]. Bulletin De La Société Géologique De France, 163(4): 407-414.

    Google Scholar

    Demicco R V, Lowenstein T K, Hardie L A. 2003. Atmospheric pCO2 since 60 Ma from records of seawater pH, calcium, and primary carbonate mineralogy[J]. Geology, 31(9): 793-796. doi: 10.1130/G19727.1

    CrossRef Google Scholar

    Dickinson W R, Klut M A, Hayes M J, Janecke S U, Lundin E R, McKittrick M A, Olivares M D. 1988. Paleogeographic and paleotectonic setting of Laramide sedimentary basins in the central Rocky Mountain region[J]. Geological Society of America Bulletin, 100: 1023-1039. doi: 10.1130/0016-7606(1988)100<1023:PAPSOL>2.3.CO;2

    CrossRef Google Scholar

    Earman S, Phillips F M, McPherson B J O L. 2005. The role of "excess" CO2 in the formation of trona deposits[J]. Applied Geochemistry, 20(12): 2217-2232. doi: 10.1016/j.apgeochem.2005.08.007

    CrossRef 2 in the formation of trona deposits" target="_blank">Google Scholar

    Eugster H P. 1967. Hydrous sodium silicates from lake Magadi, Kenya: Precursors of bedded chert[J]. Science, 157(3793): 1177-1180. doi: 10.1126/science.157.3793.1177

    CrossRef Google Scholar

    Eugster H P, Blair F J. 1968. Gels composed of sodium-aluminum silicate, Lake Magadi, Kenya[J]. Science, 161(3837): 160-163. doi: 10.1126/science.161.3837.160

    CrossRef Google Scholar

    Eugster H P. 1969. Inorganic bedded cherts from the Magadi area, Kenya[J]. Contributions to Mineralogy and Petrology, 22(1): 1-31. doi: 10.1007/BF00388011

    CrossRef Google Scholar

    Eugster H P, Hardie L A. 1975. Sedimentation in an ancient PlayaLake Complex: The Wilkins peak member of the Green River Formation of Wyoming[J]. Geological Society of America Bulletin, 86(3): 319-334. doi: 10.1130/0016-7606(1975)86<319:SIAAPC>2.0.CO;2

    CrossRef Google Scholar

    Eugster H P, Jones B F, Shirley L R. 1977. Hydrochemistry of the Lake Magadi basin, Kenya[J]. Geochimica et Cosmochimica Acta, 41(1): 53-72. doi: 10.1016/0016-7037(77)90186-7

    CrossRef Google Scholar

    Eugster H P. 1980. Hypersaline Brines and Evaporitic Environments[M]. Netherland: Elsevier Science.

    Google Scholar

    Garcia-Veigas J, Gundogan I, Helvacı C, Prats E. 2013. A genetic model for Na-carbonate mineral precipitation in the Miocene Beypazari trona deposit, Ankara province, Turkey[J]. Sedimentary Geology, 294: 315-327. doi: 10.1016/j.sedgeo.2013.06.011

    CrossRef Google Scholar

    Hardie L A, Eugster H P. 1970. The evolution of closed-basin brines[J]. Mineralogical Society of America Special Publication, 3: 253-273.

    Google Scholar

    Helvaci C, Inci U, Yilmaz H, Yaǧmurlu F. 1989. Geology and Neogene trona deposit of the Beypazari region, Turkey[J]. Turkish Journal of Engineering and Environmental Sciences, 13: 245-256.

    Google Scholar

    Helvaci C. 1998. The Beypazari Trona Deposit, Ankara Province, Turkey[C]//Wyoming State Geological Survey Public Information Circular 40.

    Google Scholar

    Helvaci C. 2010. Geology of the Beypazari trona field, Ankara, Turkey. Mid-congress field excursion guide book, tectonic crossroads: Evolving orogens of Eurasia-Africa-Arabia[C]//Tectonic Crossroads: Evolving Orogens of Eurasia-AfricaArabia, Ankara, Turkey.

    Google Scholar

    Hyland E G, Sheldon N. 2013. Coupled CO2-climate response during the Early Eocene climatic optimum[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 369: 125-135. doi: 10.1016/j.palaeo.2012.10.011

    CrossRef Google Scholar

    Inci U. 1991. Miocene alluvial fan-alkaline playa lignite-trona bearing deposits from an inverted basin in Anatolia: Sedimentology and tectonic controls on deposition[J]. Sedimentary Geology, 71(1): 73-97.

    Google Scholar

    Jagniecki E A, Lowenstein T K, Jenkins D M, Demicco R V. 2015. Eocene atmospheric CO2 from the nahcolite proxy[J]. Geology, 43(12): 1075-1078.

    Google Scholar

    Jagniecki E A, Lowenstein T K, Demicco R V, Baddouh M, Carroll A R, Beard B L, Johnson C M. 2021. Spring origin of Eocene carbonate mounds in the Green River Formation, Northern Bridger Basin, Wyoming, USA[J]. Sedimentology, 68(6): 2334-2364. doi: 10.1111/sed.12852

    CrossRef Google Scholar

    Jin Qiang, Xiong Shousheng, Lu Peide. 1998. Volcanic activity in major source rocks in faulted basins of China and its significance in main source rocks of fault basins in China [J]. Geological Review, 44: 136-142 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.1998.02.004

    CrossRef Google Scholar

    Lee H, Muirhead J. D, Fischer T P, Ebinger C J, Sharp Z. D, Kianji G. 2016. Massive and prolonged deep carbon emissions associated with continental rifting[J]. Nature Geoscience, 9: 145-149. doi: 10.1038/ngeo2622

    CrossRef Google Scholar

    LeGall B, Nonnotte, P, Rolet J, Benoit M, Guillou, H, MousseauNonnotte M, Albaric J, Deverchère J. 2008. Rift propagation at craton margin. Distribution of faulting and volcanism in the North Tanzanian Divergence (East Africa) during Neogene times[J]. Tectonophysics, 448, 1-19. doi: 10.1016/j.tecto.2007.11.005

    CrossRef Google Scholar

    Lowenstein T K, Demicco R V. 2006. Elevated Eocene atmospheric CO2 and its subsequent decline[J]. Science, 313(5795): 1928-1928. doi: 10.1126/science.1129555

    CrossRef Google Scholar

    Lowenstein T K, Lauren A D, García-Veigas, J. 2016. Influence of magmatic-hydrothermal activity on brine evolution in closed basins: Searles Lake, California[J]. Geological Society of America Bulletin, 128: 1555-1568. doi: 10.1130/B31398.1

    CrossRef Google Scholar

    Lowenstein T K, Jagniecki E A, Carroll A R, Smith M E, Renaut R W, Owen R B. 2017. The Green River salt mystery: What was the source of the hyperalkaline lake waters?[J]. Earth-Science Reviews, 173: 295-306. doi: 10.1016/j.earscirev.2017.07.014

    CrossRef Google Scholar

    Lowenstein T K, Demicco R V. 2019. When evaporites are not formed by evaporation-The role of temperature and pCO2 on saline deposits of the Eocene Green River Formation, Colorado, USA[J]. Geological Society of America Bulletin, 132: 1365-1380.

    Google Scholar

    McNulty E. 2017. Lake Magadi and the Soda Lake Cycle: A Study of the Modern Sodium Carbonates and of Late Pleistocene and Holocene Lacustrine Core Sediments[D]. Binghamton: Binghamton University.

    Google Scholar

    Muirhead J D, Simon A K, Hyunwoo L, Sara M, Brent D T, Tobias P F, Kianji G W, Sarah S D. 2016. Evolution of upper crustal faulting assisted by magmatic volatile release during early-stage continental rift development in the East African Rift[J]. Geosphere, 12: 1670-1700. doi: 10.1130/GES01375.1

    CrossRef Google Scholar

    Ogola J S, Behr H J. 2000. Mineralogy and Trona Formation in lake Magadi, Kenya[C]//Applied Mineralogy in Research, Economy, Technology, Ecology and Culture: Proceedings of the Sixth International Congress on Applied Mineralogy. Göttingen, GER: ICAM, 383-386.

    Google Scholar

    Olson K J, Lowenstein T K. 2021. Searles Lake evaporite sequences Indicators of late Pleistocene-Holocene lake temperatures, brine evolution, and pCO2[J]. Geological Society of America Bulletin, 133(11): 2319-2334.

    Google Scholar

    Owen R B, Muiruri V M, Lowenstein T K, Renaut R W, Rabideaux N, Luo S, Deino A L, Sier M J, Dupont-Nivet G, McNulty E P, Leet K, Cohen A, Campisano C, Deocampo D, Shen C, Billingsley A, Mbuthia A. 2018. Progressive aridification in East Africa over the last half million years and implications for human evolution[J]. Proceedings of the National Academy of Sciences, 115(44): 11174-11179. doi: 10.1073/pnas.1801357115

    CrossRef Google Scholar

    Owen R B, Renaut R W, Muiruri V M, Rabideaux N M, Lowenstein T K, McNulty E P, Leet K, Deocampo, D, Luo S, Deino A L, Cohen, A, Sier M J, Campisano, C, Shen C, Billingsley A, Mbuthia A, Stockhecke M. 2019. Quaternary history of the Lake Magadi Basin, southern Kenya Rift: Tectonic and climatic controls[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 518: 97-118. doi: 10.1016/j.palaeo.2019.01.017

    CrossRef Google Scholar

    Qi Bingde, Xie Xing, Deng Liangwu, Zeng Qingliang, Ma Lanlan. 2011. Analysis on metallogenic conditions of Chaganur natural alkali deposit in Sunite Right Banner, Inner Mongolia[J]. Journal of Sichuan Geology, 31(S1): 8-10 (in Chinese).

    Google Scholar

    Renaut R W, Ashley G M. 2002. Sedimentation in Continental Rifts[M]. US: SEPM Society for Sedimentary Geology.

    Google Scholar

    Renaut R W, Owen R B, Lowenstein T K, De C G, Mcnulty E, Scott J J, Mbuthia A. 2021. The role of hydrothermal fluids in sedimentation in saline alkaline lakes: Evidence from Nasikie Engida, Kenya Rift Valley[J]. Sedimentology, 68(1): 108-134. doi: 10.1111/sed.12778

    CrossRef Google Scholar

    Schubel K A, Simonson B M. 1990. Petrography and diagenesis of cherts from Lake Magadi, Kenya[J]. Journal of Sedimentary Petrology, 60(5): 761-776.

    Google Scholar

    Smith M E, Carroll A R, Scott J J, Singer B S. 2014. Early Eocene carbon isotope excursions and landscape destabilization at eccentricity minima: Green River Formation of Wyoming[J]. Earth and Planetary Science Letters, 403: 393-406. doi: 10.1016/j.epsl.2014.06.024

    CrossRef Google Scholar

    USGS. 2023. Mineral Commodity Summaries[R]. United States Geological Survey.

    Google Scholar

    Wang Aiyun, Chen Wenxi. 2022. Trona: From ancient washing powder to the mother of chemical industry[J]. Earth, (1): 6-11 (in Chinese).

    Google Scholar

    Wang Jiuyi, Liu Chenglin, Wang Chunlian, Yu Xiaocan, Yan Kai, Gao Chao. 2021. Tectono-paleoclimatic coupling process for mineralization of Late Cretaceous-Paleogene evaporites in South China[J]. Acta Geologica Sinica, 95(7): 2041-2051 (in Chinese with English abstract).

    Google Scholar

    Warren J K. 2010. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits[J]. EarthScience Reviews, 98(3/4): 217-268.

    Google Scholar

    Warren J K. 2016. Evaporites: Sediments, Resources and Hydrocarbons[M]. Switzerland: Springer International Publishing AG.

    Google Scholar

    Xu Hong, Peng Qiming, Martin R Palmer. 2004. Origin of tourmalinerich rocks in a Paleoproterozoic terrene (N.E. China): Evidence for evaporite-derived boron[J]. Geology in China, (3): 240-253 (in Chinese with English abstract).

    Google Scholar

    Xu Yang, Cao Yangtong, Liu Chenglin. 2021. Whether the middle Eocene salt-forming brine in the Kuqa Basin reached the potashforming stage: Quantitative evidence from halite fluid inclusions[J]. Geofluids, 2: 1-12.

    Google Scholar

    Xu Yang, Liu Chenglin, Cao Yangtong. 2021. Salt-forming evolution characteristics of Middle Eocene in the Kuqa basin, Xinjiang: A case study of borehole KL4[J]. Acta Geologica Sinica, 95(7): 2183-2192 (in Chinese with English abstract).

    Google Scholar

    Yan Kai, Liu Chenglin, Wang Chunlian, Fan Meiling, Xu Haiming, Wang Jiuyi. 2021. Mineral deposition and paleoenvironment of Cretaceous evaporite in Southwestern Congo[J]. Acta Petrologica et Mineralogica, 40(3): 525-534 (in Chinese with English abstract).

    Google Scholar

    Yang Jianghai, Yi Chenglong, Du Yuansheng, Zhang Zongheng, Yan Jiaxin. 2014. Geochemical characteristics of Paleogene alkalibearing rock series in Biyang Depression and their indicative significance for alkali-formation[J]. Scientia Sinica (Terrae), 44(10): 2172-2184 (in Chinese). doi: 10.1360/zd-2014-44-10-2172

    CrossRef Google Scholar

    Ye Tielin. 1978. Trona and its genesis briefly[J]. Industrial Minerals and Processing, 6: 18-23 (in Chinese).

    Google Scholar

    Ye Tielin. 2013. Trona Resources, Geology, Mining and Processing, 3rd Edition[M]. Beijing: Chemical Industry Press (in Chinese).

    Google Scholar

    Yi Chenglong. 2016. Sequence stratigraphy characteristics and its significance of alkaliferous strata of the Paleogene Hetaoyuan Formation in Anpeng area, Biyang sag in Henan Province[J]. Journal of Palaeogeography (Chinese Edition), 18(1): 93-100 (in Chinese with English abstract).

    Google Scholar

    Zachos J C, Dickens G R, Zeebe R E. 2008. An Early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J]. Nature, 451: 279-283. doi: 10.1038/nature06588

    CrossRef Google Scholar

    Zhang Chending. 1979. Soda-ash deposits[J]. Soda Industry, 3: 56-64(in Chinese).

    Google Scholar

    Zhang Chending. 2004. Development of the Trona deposit in Beypazari, Turkey [J]. Soda ash Industry, (2): 15-18 (in Chinese).

    Google Scholar

    Zhang Chending. 2013. Development of the Trona Deposit[M]. Beijing: China Petrochemical Press (in Chinese).

    Google Scholar

    Zhang Tianfu, Zhang Yun, Cheng Xianyu, Sun Lixin, Cheng Yinhang, Zhou Xiaoxi, Wang Shaooyi, Ma Hailin, Lu Chao. 2020. Borehole databases and 3D geological model of Jurassic-Cretaceous strata in Dongsheng area, North Odors Basin[J]. China Geology, 47(S1): 220-245 (in Chinese with English abstract).

    Google Scholar

    Zhong Yisi, Wang Licheng, Dong Haowei. 2022. Evaporite sedimentary characteristics and environment: A review[J]. Acta Sedimentologica Sinica, 40(5): 1188-1214 (in Chinese with English abstract).

    Google Scholar

    陈建立. 2013. 泌阳凹陷碱矿床地质特征、成因及成矿预测——以安棚碱矿床为例[J]. 地质找矿论丛, 28(3): 393-400.

    Google Scholar

    金强, 熊寿生, 卢陪德. 1998. 中国断陷盆地主要生油岩中的火山活动及其意义[J]. 地质论评, 44: 136-142. doi: 10.16509/j.georeview.1998.02.005

    CrossRef Google Scholar

    齐兵德, 谢星, 邓良武, 曾清亮, 马兰兰. 2011. 内蒙古苏尼特右旗查干诺尔天然碱矿成矿条件浅析[J]. 四川地质学报, 31(S1): 8-10.

    Google Scholar

    王爱云, 陈文西. 2022. 天然碱: 从古代洗衣粉到化工之母[J]. 地球, (1): 6-11.

    Google Scholar

    王九一, 刘成林, 王春连, 余小灿, 颜开, 高超. 2021. 晚白垩世-古近纪华南蒸发岩矿床形成的构造和气候耦合控制[J]. 地质学报, 95(7): 2041-2051.

    Google Scholar

    许虹, 彭齐鸣, Martin R Palmer. 2004. 辽宁古元古代地体中富电气石岩石的成因: 蒸发岩硼源的证据(英文)[J]. 中国地质, (3): 240-253.

    Google Scholar

    徐洋, 刘成林, 曹养同. 2021. 新疆库车盆地中始新世成盐演化特征——以KL4钻孔为例[J]. 地质学报, 95(7): 2183-2192.

    Google Scholar

    颜开, 刘成林, 王春连, 范美玲, 徐海明, 王九一. 2021. 刚果盆地西南部白垩纪蒸发岩矿物与古环境特征[J]. 岩石矿物学杂志, 40(3): 525-534.

    Google Scholar

    杨江海, 易承龙, 杜远生, 张宗恒, 颜佳新. 2014. 泌阳凹陷古近纪含碱岩系地球化学特征对成碱作用的指示意义[J]. 中国科学: 地球科学, 44(10): 2172-2184.

    Google Scholar

    叶铁林. 1978. 天然碱及其成因简述[J]. 化工矿山技术, 6: 18-23.

    Google Scholar

    叶铁林. 2013. 天然碱资源·地质·开采·加工第3版[M]. 北京: 化学工业出版社.

    Google Scholar

    易承龙. 2016. 河南省泌阳凹陷安棚地区古近系核桃园组含碱地层层序特征及其意义[J]. 古地理学报, 18(1): 93-100.

    Google Scholar

    张晨鼎. 1979. 天然碱矿床[J]. 纯碱工业, 3: 56-64.

    Google Scholar

    张晨鼎. 2004. 土耳其贝帕扎里天然碱矿床的开发[J]. 纯碱工业, (2): 15-18.

    Google Scholar

    张晨鼎. 2013. 天然碱矿床开发[M]. 北京: 中国石化出版社.

    Google Scholar

    张天福, 张云, 程先钰, 孙立新, 程银行, 周小希, 王少轶, 马海林, 鲁超. 2020. 鄂尔多斯盆地北部东胜地区侏罗系-白垩系钻孔数据库与三维地质模型[J]. 中国地质, 47(S1): 220-245.

    Google Scholar

    钟逸斯, 王立成, 董浩伟. 2022. 蒸发岩沉积特征及环境综述[J]. 沉积学报, 40(5): 1188-1214.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(2629) PDF downloads(75) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint