2024 Vol. 51, No. 1
Article Contents

HUANG Kuan, ZHANG Wanyi, WANG Fengxiang, LUAN Zhuoran, HU Yalu, CHEN Ji, FANG Yuan, SONG Zefeng, WANG Jian. 2024. Development status of underground space energy storage at home and abroad and geological survey suggestions[J]. Geology in China, 51(1): 105-117. doi: 10.12029/gc20230331001
Citation: HUANG Kuan, ZHANG Wanyi, WANG Fengxiang, LUAN Zhuoran, HU Yalu, CHEN Ji, FANG Yuan, SONG Zefeng, WANG Jian. 2024. Development status of underground space energy storage at home and abroad and geological survey suggestions[J]. Geology in China, 51(1): 105-117. doi: 10.12029/gc20230331001

Development status of underground space energy storage at home and abroad and geological survey suggestions

    Fund Project: Supported by Hebei Province Innovation Ability Promotion Plan Project (No.21567628H).
More Information
  • Author Bio: HUANG Kuan, male, born in 1999, graduate student, majors in resources and environment, engaged in mineral prospecting and exploration research; E-mail: huangk022@163.com
  • Corresponding author: WANG Fengxiang, male, born in 1984, assistant researcher, engaged in the study of large−super large deposits; E-mail: wfx0316@163.com
  • This paper is the result of geological survey engineering.

    Objective

    In the modern energy system, energy reserve plays an important role. Strengthening the energy reserve system, ensuring stable energy supply, and handling the impact of various emergencies in the international and domestic energy markets are an important topic in China's energy development.

    Methods

    Based on the types of underground space storage facilities, combined with the construction of global underground space storage facilities and related research experiments, this paper deeply compares and analyzes the development status of oil and gas storage in the world and China, so as to put forward reasonable suggestions to ensure energy security.

    Results

    (1) The utilization of underground space for energy storage is an important direction of future energy storage maintenance. This is an effective way to peak regulation of natural gas, sustainable supply of renewable energy and efficient use of hydrogen on a large scale. The development of underground space energy storage is a key issue to achieve carbon neutrality and upgrade China's energy structure; (2) Global underground space energy storage facilities can be divided into five categories: salt cavern, water-sealed cavern, aquifer, depleted oil and gas reservoir and abandoned mine; (3) The construction of underground space energy storage facilities was carried out earlier in foreign countries, which should take the lead in the construction of underground energy storage power stations, underground hydrogen storage facilities, oil reserves and natural gas reserves.

    Conclusions

    In the complex international background, China's energy security faces severe challenges. It is imperative to investigate the energy storage capacity of underground space, establish more underground space storage facilities and carry out national underground storage planning together with related enterprises.

  • 加载中
  • [1] Allen R D, Doherty T J, Fossum A F. 1982. Geotechnical issues and guidelines for storage of compressed air in excavated hard rock caverns[J]. Pacific Northwest Laboratory Operated for the U. S. Department of Energy by Battelle Memorial Institute, PNL–4180.

    Google Scholar

    [2] Bachu S, Dusseault M. 2005. Underground injection of carbon dioxide in salt beds[J]. Developments in Water Science, 52(5): 637−648.

    Google Scholar

    [3] Bai M, Song K, Sun Y, He M, Li Y, Sun J. 2014. An overview of hydrogen underground storage technology and prospects in China[J]. Journal of Petroleum Science & Engineering, 124: 132–136.

    Google Scholar

    [4] Chang Le, Zhang Minji, Liang Jia, Sun Yangzhou. 2012. The role of energy storage in ensuring energy security[J]. Sino–Global Energy, 17(2): 29−35 (in Chinese with English abstract).

    Google Scholar

    [5] Chen Haisheng, Liu Jinchao, Guo Huan, Xu Yujie, Tan Chunqing. 2013. Technical principle of compressed air energy storage system[J]. Energy Storage Science and Technology, 2(2): 146−151 (in Chinese with English abstract).

    Google Scholar

    [6] Crotogino F, Schneider G S, Evans D J. 2018. Renewable energy storage in geological formations[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 232(1): 100–114.

    Google Scholar

    [7] Fan J, Xie H, Chen J, Jiang D, Li C, Tiedeu W N, Ambre J. 2020. Preliminary feasibility analysis of a hybrid pumped–hydro energy storage system using abandoned coal mine goafs[J]. Applied Energy, 258: 114007. doi: 10.1016/j.apenergy.2019.114007

    CrossRef Google Scholar

    [8] Fu Pan, Luo Miao, Xia Yan, Li Guotao, Ban Fansheng. 2020. Research on status and difficulties of hydrogen underground storage technology[J]. China Well and Rock Salt, 51(6): 19−23 (in Chinese with English abstract).

    Google Scholar

    [9] Guo Chaobin, Wang Zhihui, Liu Kai, Li Cai. 2019. The application and research progress of special underground space[J]. Geology in China, 46(3): 482−492 (in Chinese with English abstract).

    Google Scholar

    [10] Guo Pingye, Wang Meng, Sun Xiaoming, He Manchao. 2022. Study on off–season cyclic energy storage in underground space of abandoned mine[J]. Journal of China Coal Society, 47(6): 2193−2206 (in Chinese with English abstract).

    Google Scholar

    [11] Jia Shanpo, Jin Fengming, Zheng Dewen, Meng Qingchun, Zhang Hui, Lin Jianpin, Wei Qiang. 2015. Evaluation indices and classification criterion of aquifer site for gas storage[J]. Chinese Journal of Rock Mechanics and Engineering, 34(8): 1628−1640 (in Chinese with English abstract).

    Google Scholar

    [12] Jia Shanpo, Zheng Dewen, Jin Fengming, Zhang Hui, Meng Qingchun, Lin Jianpin, Wei Qiang. 2016. Evaluation system of selected target sites for aquifer underground gas storage[J]. Journal of Central South University (Science and Technology), 47(3): 857−867 (in Chinese with English abstract).

    Google Scholar

    [13] Knepper G A. 1997. Underground storage operations[J]. Journal of Petroleum Technology, 49(10): 1112−1114. doi: 10.2118/39101-JPT

    CrossRef Google Scholar

    [14] Knott L, Cross K G. 1992. Gas storage caverns in East Yorkshire Zechstein salt: Some geological and engineering aspects of site selection[J]. In SPE Annual Technical Conference and Exhibition, 24923: 691−692.

    Google Scholar

    [15] Li Jianjun. 2022. Development status and prospect of underground gas storage in China[J]. Oil & Gas Storage and Transportation, 41(7): 780−786 (in Chinese with English abstract).

    Google Scholar

    [16] Liu Kailin, Shang Peipei. 2021. Measurement and spatial correlation of high–quality development level of China’s city clusters[J]. Journal of Northeast University of Finance and Economics, (3): 37−46 (in Chinese with English abstract).

    Google Scholar

    [17] Liu W, Zhang Z, Chen J, Jiang D, Wu F, Fan J, Li Y. 2020. Feasibility evaluation of large–scale underground hydrogen storage in bedded salt rocks of China: A case study in Jiangsu Province[J]. Energy, 198(May 1): 117348.1–117348.16.

    Google Scholar

    [18] Lord A S, Kobos P H, Borns D J. 2014. Geologic storage of hydrogen: Scaling up to meet city transportation demands[J]. International Journal of Hydrogen Energy, 39(28): 15570−15582. doi: 10.1016/j.ijhydene.2014.07.121

    CrossRef Google Scholar

    [19] Lu Jiamin, Xu Junhui, Wang Weidong, Wang Hao, Xu Zijun, Chen Liuping. 2022. Development of large–scale underground hydrogen storage technology[J]. Energy Storage Science and Technology, 11(11): 3699−3707 (in Chinese with English abstract).

    Google Scholar

    [20] Ma Xinhua, Zheng Dewen, Wei Guoqi, Ding Guosheng, Zheng Shaojing. 2022. Development directions of major scientific theories and technologies for underground gas storage[J]. Natural Gas Industry, 42(5): 93−99 (in Chinese with English abstract).

    Google Scholar

    [21] Matos C R, Carneiro J F, Silva P P. 2019. Overview of large–scale underground energy storage technologies for integration of renewable energies and criteria for reservoir identification[J]. Journal of Energy Storage, 21: 241−258. doi: 10.1016/j.est.2018.11.023

    CrossRef Google Scholar

    [22] Mei Shengwei, Gong Maoqiong, Qin Guoliang, Tian Fang, Xue Xiaodai, Li Rui. 2017. Advanced adiabatic compressed air energy storage system with salt cavern air storage and its application prospects[J]. Power System Technology, 41(10): 3392−3399 (in Chinese with English abstract).

    Google Scholar

    [23] Shi Xilin, Wei Xinxing, Yang Chunhe, Ma Hongling, Li Yinping. 2023. Problems and countermeasures for construction of China’s salt cavern type strategic oil storage[J]. Bulletin of Chinese Academy of Sciences, 38(1): 99−111 (in Chinese with English abstract).

    Google Scholar

    [24] Sovacool B K, Mukherjee I. 2011. Conceptualizing and measuring energy security: A synthesized approach[J]. Energy, 36(8): 5343−5355. doi: 10.1016/j.energy.2011.06.043

    CrossRef Google Scholar

    [25] Su Jian, Liang Yingbo, Ding Lin, Zhang Guosheng, Liu He. 2021. Research on China's energy development strategy under carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 36(9): 1001−1009 (in Chinese with English abstract).

    Google Scholar

    [26] Su Zhan. 2021. Research on the development trend of global underground gas storage and its enlightenment to the construction of gas storage and peak shaving system in China[J]. Quality and Market, (7): 143−145 (in Chinese with English abstract).

    Google Scholar

    [27] Subject Information Team of Wuhan Literature and Information Center, Chinese Academy of Sciences, Li Nana, Zhao Yanqiang, Wang Tongtao, Yang Chunhe. 2021. Trend observation: International salt cavern energy storage strategy and technology development trend analysis[J]. Bulletin of Chinese Academy of Sciences, 36(10): 1248−1252 (in Chinese with English abstract).

    Google Scholar

    [28] Tarkowski R. 2019. Underground hydrogen storage: Characteristics and prospects[J]. Renewable and Sustainable Energy Reviews, 105: 86−94. doi: 10.1016/j.rser.2019.01.051

    CrossRef Google Scholar

    [29] Taylor J B, Alderson J E, Kalyanam K M, Lyle A B, Phillips L A. 1986. Technical and economic assessment of methods for the storage of large quantities of hydrogen[J]. International Association for Hydrogen Energy, 2(1): 5−22.

    Google Scholar

    [30] Tian Q N, Yao S Q, Shao M J, Zhang W, Wang H H. 2022. Origin, discovery, exploration and development status and prospect of global natural hydrogen under the background of “Carbon Neutrality”[J]. China Geology, 5(4): 722−733.

    Google Scholar

    [31] US Department of Energy (USDE). 2019. Office of Fossil Energy and Carbon Management[N]. SPR Storage Sites. https://www.energy.gov/fecm/strategic–petroleum–reserve–4.

    Google Scholar

    [32] Van Gessel S, Leynet A, Mulder A, Koorneef J, Harcouet–Menou V. 2014. ESTMAP Technical Support Document: Subsurface Data Specification. EC Project no[R].

    Google Scholar

    [33] Wang Baohui, Yan Xianzhen, Yang Xiujuan, Feng Yaorong. 2012. Natural gas dynamic migration in an underground gas storage in aquifer beds[J]. Acta Petrolei Sinica, 33(2): 327−331 (in Chinese with English abstract).

    Google Scholar

    [34] Wang Mengshu, Yang Huijun. 2008. Basic principles for design and construction of underground water–sealed hydrocarbon–storage rock caverns[J]. Engineering Science of China, (4): 11−16, 28 (in Chinese with English abstract).

    Google Scholar

    [35] Wang Y, Guo C H, Chen X J, Jia L Q, Guo X N, Chen R S, Wang H D. 2021. Carbon peak and carbon neutrality in China: Goals, implementation path and prospects[J]. China Geology, 4(4): 720−746.

    Google Scholar

    [36] Wen Xiankui, Zhang shihai, Wang Suobin. 2018. Summary of compressed air energy storage technology and demonstration projects[J]. Application of Energy Technology, (3): 43−48 (in Chinese with English abstract).

    Google Scholar

    [37] Wu Haowen, Wang Jun, Gong Yingli, Yang Hairui, Zhang Man, Huang Zhong. 2021. Development status and application prospect analysis of energy storage technology[J]. Journal of Electric Power, 36(5): 434−443 (in Chinese with English abstract).

    Google Scholar

    [38] Xue Huifeng, Zhou Yichen. 2009. China's energy reserve strategy under the slowdown of global economic growth[J]. Environmental Protection, (2): 64−66 (in Chinese with English abstract).

    Google Scholar

    [39] Yang C, Wang T, Chen H. 2022. Theoretical and technological challenges of deep underground energy storage in China[J]. Engineering, 25(6): 168−181.

    Google Scholar

    [40] Zhang Senqi, Guo Jianqiang, Diao Yujie, Zhang Hui, Jia Xiaofeng, Zhang Yang. 2011. Technical method for selection of CO2 geological storage project sites in deep saline aquifers[J]. Geology in China, 38(6): 1640−1651 (in Chinese with English abstract).

    Google Scholar

    [41] Zhou Qingfan, Zhang Junfa. 2022. Review of underground hydrogen storage technology[J]. Oil Gas and New Energy, 34(4): 1−6 (in Chinese with English abstract).

    Google Scholar

    [42] Zhu Jianying, Qian Bin, Zhao Yunsong, Li Jingjiang. 2021. Advantages of applying cluster well technology to construct salt cavern gas storage[J]. Gas & Heat, 41(5): 1−3, 17, 44 (in Chinese with English abstract).

    Google Scholar

    [43] Zong Shi, Liu Shiqi, Xu Hui, Wang Wenkai, Cao Bo, Huang Fansheng. 2023. Numerical simulation of CO2 storage in bedded salt rock storage cavern in Subei Basin[J]. Coal Geology & Exploration, 51(3): 27−36 (in Chinese with English abstract).

    Google Scholar

    [44] 常乐, 张敏吉, 梁嘉, 孙洋洲. 2012. 储能在能源安全中的作用[J]. 中外能源, 17(2): 29−35.

    Google Scholar

    [45] 陈海生, 刘金超, 郭欢, 徐玉杰, 谭春青. 2013. 压缩空气储能技术原理[J]. 储能科学与技术, 2(2): 146−151.

    Google Scholar

    [46] 付盼, 罗淼, 夏焱, 李国韬, 班凡生. 2020. 氢气地下存储技术现状及难点研究[J]. 中国井矿盐, 51(6): 19−23.

    Google Scholar

    [47] 郭朝斌, 王志辉, 刘凯, 李采. 2019. 特殊地下空间应用与研究现状[J]. 中国地质, 46(3): 482−492.

    Google Scholar

    [48] 郭平业, 王蒙, 孙晓明, 何满潮. 2022. 废弃矿井地下空间反季节循环储能研究[J]. 煤炭学报, 47(6): 2193−2206.

    Google Scholar

    [49] 贾善坡, 金凤鸣, 郑得文, 孟庆春, 张辉, 林建品, 魏强. 2015. 含水层储气库的选址评价指标和分级标准及可拓综合判别方法研究[J]. 岩石力学与工程学报, 34(8): 1628−1640.

    Google Scholar

    [50] 贾善坡, 郑得文, 金凤鸣, 张辉, 孟庆春, 林建品, 魏强. 2016. 含水层构造改建地下储气库评价体系[J]. 中南大学学报(自然科学版), 47(3): 857−867.

    Google Scholar

    [51] 李建君. 2022. 中国地下储气库发展现状及展望[J]. 油气储运, 41(7): 780−786.

    Google Scholar

    [52] 刘楷琳, 尚培培. 2021. 中国城市群高质量发展水平测度及空间关联性[J]. 东北财经大学学报, (3): 37−46.

    Google Scholar

    [53] 陆佳敏, 徐俊辉, 王卫东, 王浩, 徐孜俊, 陈留平. 2022. 大规模地下储氢技术研究展望[J]. 储能科学与技术, 11(11): 3699−3707.

    Google Scholar

    [54] 马新华, 郑得文, 魏国齐, 丁国生, 郑少婧. 2022. 中国天然气地下储气库重大科学理论技术发展方向[J]. 天然气工业, 42(5): 93−99.

    Google Scholar

    [55] 梅生伟, 公茂琼, 秦国良, 田芳, 薛小代, 李瑞. 2017. 基于盐穴储气的先进绝热压缩空气储能技术及应用前景[J]. 电网技术, 41(10): 3392−3399.

    Google Scholar

    [56] 施锡林, 尉欣星, 杨春和, 马洪岭, 李银平. 2023. 中国盐穴型战略石油储备库建设的问题及对策[J]. 中国科学院院刊, 38(1): 99−111.

    Google Scholar

    [57] 苏健, 梁英波, 丁麟, 张国生, 刘合. 2021. 碳中和目标下我国能源发展战略探讨[J]. 中国科学院院刊, 36(9): 1001−1009.

    Google Scholar

    [58] 苏展. 2021. 全球地下储气库发展趋势研究及对我国储气调峰体系建设的启示[J]. 质量与市场, (7): 143−145.

    Google Scholar

    [59] 王保辉, 闫相祯, 杨秀娟, 冯耀荣. 2012. 含水层型地下储气库天然气动态运移规律[J]. 石油学报, 33(2): 327−331.

    Google Scholar

    [60] 王梦恕, 杨会军. 2008. 地下水封岩洞油库设计、施工的基本原则[J]. 中国工程科学, (4): 11−16, 28.

    Google Scholar

    [61] 文贤馗, 张世海, 王锁斌. 2018. 压缩空气储能技术及示范工程综述[J]. 应用能源技术, (3): 43−48.

    Google Scholar

    [62] 吴皓文, 王军, 龚迎莉, 杨海瑞, 张缦, 黄中. 2021. 储能技术发展现状及应用前景分析[J]. 电力学报, 36(5): 434−443.

    Google Scholar

    [63] 薛惠锋, 周奕琛. 2009. 全球经济增长减缓下的中国能源储备策略[J]. 环境保护, (2): 64−66.

    Google Scholar

    [64] 张森琦, 郭建强, 刁玉杰, 张徽, 贾小丰, 张杨. 2011. 规模化深部咸水含水层CO2地质储存选址方法研究[J]. 中国地质, 38(6): 1640−1651.

    Google Scholar

    [65] 中国科学院武汉文献情报中心学科情报团队, 中国科学院武汉岩土力学研究所油气地下储备与开发研究中心团队, 李娜娜, 赵晏强, 王同涛, 杨春和. 2021. 趋势观察: 国际盐穴储能战略与科技发展态势分析[J]. 中国科学院院刊, 36(10): 1248−1252.

    Google Scholar

    [66] 周庆凡, 张俊法. 2022. 地下储氢技术研究综述[J]. 油气与新能源, 34(4): 1−6.

    Google Scholar

    [67] 朱健颖, 钱彬, 赵云松, 李敬江. 2021. 应用丛式井技术建设盐穴储气库的优势[J]. 煤气与热力, 41(5): 1−3, 17, 44.

    Google Scholar

    [68] 宗师, 刘世奇, 徐辉, 王文楷, 曹泊, 皇凡生. 2023. 苏北盆地层状盐穴储气库CO2封存数值模拟研究[J]. 煤田地质与勘探, 51(3): 27−36.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(3)

Article Metrics

Article views(1057) PDF downloads(32) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint