2025 Vol. 52, No. 1
Article Contents

ZHAO Zirui, ZHANG Wei, WANG Guiling, XING Linxiao, ZHANG Hanxiong, ZHAO Jiayi. 2025. Hydrogeochemical characteristics of Gaoyang geothermal field in central Hebei Depression and its constraint on geothermal genesis[J]. Geology in China, 52(1): 246-263. doi: 10.12029/gc20230226002
Citation: ZHAO Zirui, ZHANG Wei, WANG Guiling, XING Linxiao, ZHANG Hanxiong, ZHAO Jiayi. 2025. Hydrogeochemical characteristics of Gaoyang geothermal field in central Hebei Depression and its constraint on geothermal genesis[J]. Geology in China, 52(1): 246-263. doi: 10.12029/gc20230226002

Hydrogeochemical characteristics of Gaoyang geothermal field in central Hebei Depression and its constraint on geothermal genesis

    Fund Project: Supported by the projects of Basic Research Fees of Chinese Academy of Geological Sciences (No.SK202306) and China Geological Survey (No.DD20190555).
More Information
  • Author Bio: ZHAO Zirui, male, born in 1996, Ph.D. candidate, mainly engaged in geothermal geology research; E-mail: 184239608@qq.com
  • Corresponding author: WANG Guiling, male, born in 1964, researcher, mainly engaged in geothermal resources evaluation research; E-mail: guilingw@163.com
  • This paper is the result of geothermal exploration engineering.

    Objective

    Gaoyang geothermal field rich in low−medium temperature geothermal resources. Hydrogeochemical research of geothermal fluids is an effective method to understand the processes of deep geothermal water circulation and to reveal the genesis mechanism of geothermal systems.

    Methods

    Through analyzing hydrochemical and isotopic data of geothermal water samples in Gaoyang field, we can explore the formation and development process of deep geothermal water.

    Results

    The hydrochemical type of carbonate reservoirs is Cl–Na type, and that of sandstones reservoirs is HCO3·Cl–Na and Cl·HCO3–Na type. The ionic components in geothermal water are mainly controlled by the dissolution of salt rock and carbonate rock and the alternating adsorption of cations. Geothermal water is recharged from precipitation in the Taihang and Yanshan mountains, The recharge elevation of geothermal water is 759.12−1092.33 m. The geothermal reservoirs temperature of Jxw is 102−154℃, and the depth of thermal cycle is 2524−4020 m; the geothermal reservoirs temperature of Ng is 61−84℃, and the depth of thermal cycle is 1357−2024 m.

    Conclusions

    In Gaoyang geothermal field, the γNa+/γCl of samples from the Jxw reservoirs is smaller than that Ng reservoirs, and the γSO42–/γCl and γCl/(γHCO3+CO32–) are larger than that of the Ng reservoirs. This indicates that Jxw reservoirs has a higher degree of metamorphism, better confinement, slower geothermal water circulation and higher degree of salinization than the Ng reservoirs. The heat from the deep thermal storage is partly transferred upward by thermal convection through hot water along the fault channels, and partly transferred upward by thermal conduction through rocks, forming a convection−conduction type geothermal system.

  • 加载中
  • [1] Appelo C A J, Postma D. 2004. Geochemistry, Groundwater and Pollution[M]. CRC Press.

    Google Scholar

    [2] Chang Jian, Qiu Nansheng, Zhao Xianzheng, Xu Qiuchen, Jin Fengming, Han Chunyuan, Ma Xuefeng, Dong Xiongying, Liang Xiaojuan. 2016. Present–day geothermal regime of the Jizhong depression in Bohai Bay basin, East China[J]. Chinese Journal of Geophysics, 59(3): 1003−1016 (in Chinese with English abstract).

    Google Scholar

    [3] Chen Moxiang. 1988. Geothermal in North China[M]. Beijing: Science Press, 1–214 (in Chinese).

    Google Scholar

    [4] Chen Moxiang, Wang Jiyang, Wang Ji’an, Deng Xiao, Yang Shuzhen, Xiong Liangping, Zhang Juming. 1990. The characteristics of the geothermal field and its formation mechanism in the North China down–faulted basin[J]. Acta Geologica Sinica, 64(1): 80−91 (in Chinese with English abstract).

    Google Scholar

    [5] Chen Zongyu. 2001. Groundwater Resources Evolution Based on Paleoenvironmental Information from Groundwater System in North China Plain[D]. Changchun: Jilin University, 1–139 (in Chinese with English abstract).

    Google Scholar

    [6] Craig H. 1961. Isotopic variations in meteoric waters[J]. Science, 133(3465): 1702−1703. doi: 10.1126/science.133.3465.1702

    CrossRef Google Scholar

    [7] Cui Yue, Zhu Chuanqing, Qiu Nansheng, Tang Boning, Guo Sasa. 2020. Geothermal lithospheric thickness in the central Jizhong depression and its geothermal significance[J]. Acta Geologica Sinica, 94(7): 1960−1969 (in Chinese with English abstract).

    Google Scholar

    [8] Fournier R O. 1977. Chemical geothermometers and mixing models for geothermal systems[J]. Geothermics, 5(1/4): 41−50. doi: 10.1016/0375-6505(77)90007-4

    CrossRef Google Scholar

    [9] Giggenbach W F. 1988. Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 52(12): 2749−2765. doi: 10.1016/0016-7037(88)90143-3

    CrossRef Google Scholar

    [10] Hai Kuo. 2019. Using Several Methods to Estimate the Temperatures of Deep Geothermal Reservoirs[D]. Beijing: China University of Geosciences (Beijing), 1–102 (in Chinese with English abstract).

    Google Scholar

    [11] Li Jun, Zhou Shengzhang, Zhao Yi, Zhao Ruike, Dang Zhiwen, Pan Minqiang, Zhu Danni, Zhou Changsong. 2021. Major ionic characteristics and factors of karst groundwater at Huixian karst wetland, China[J]. Environmental Science, 42(4): 1750−1760 (in Chinese with English abstract).

    Google Scholar

    [12] Li Yiman, Pang Zhonghe, Luo Ji, Chen Kai. 2021. Applicability of SiO2 geothermometers with adiabatic boiling correction in plateau areas[J]. Geological Review, 67(4): 1050−1056 (in Chinese with English abstract).

    Google Scholar

    [13] Liu Haijian. 2015. Relationships between Cenozoic Extension and Strike–slip of Raoyang Sag in Jizhong Depression[D]. Qingdao: China University of Petroleum (East China), 1–69 (in Chinese with English abstract).

    Google Scholar

    [14] Liu Jianrong, Song Xianfang, Yuan Guofu, Sun Xiaomin, Liu Xin, Wang Shiqin. 2009. Characteristics of δ18O in precipitation over Eastern Monsoon China and the water vapor sources[J]. Chinese Science Bulletin, 54(22): 3521−3531 (in Chinese). doi: 10.1360/csb2009-54-22-3521

    CrossRef Google Scholar

    [15] Liu Kai, Liu Yingchao, Sun Ying, Liu Jiurong, Wang Shufang, Liu Zongming. 2015. Characteristics of deuterium excess parameters of geothermal water in Beijing[J]. Geology in China, 42(6): 2029−2035 (in Chinese with English abstract).

    Google Scholar

    [16] Liu Mingliang, He Tong, Wu Qifan, Guo Qinghai. 2020. Hydrogeochemistry of geothermal waters from Xiongan New Area and its indicating significance[J]. Earth Science, 45(6): 2221−2231 (in Chinese with English abstract).

    Google Scholar

    [17] Ma Feng, Wang Guiling, Zhang Wei, Zhu Xi, Zhang Hanxiong, Yue Gaofan. 2020. Structure of geothermal reservoirs and resource potential in the Rongcheng geothermal field in Xiong’an New Area[J]. Acta Geologica Sinica, 94(7): 1981−1990 (in Chinese with English abstract).

    Google Scholar

    [18] Mao X M, Zhu D B, Ndikubwimana I, He Y Y, Shi Z D. 2021. The mechanism of high–salinity thermal groundwater in Xinzhou geothermal field, South China: Insight from water chemistry and stable isotopes[J]. Journal of Hydrology, 593: 125889. doi: 10.1016/j.jhydrol.2020.125889

    CrossRef Google Scholar

    [19] Miao Q Z, Wang G L, Qi S H, Xing L X, Xin H L, Zhou X N. 2022. Genetic mechanism of geothermal anomaly in the Gaoyang Uplift of the Jizhong Depression[J]. Frontiers in Earth Science, 10: 885197. doi: 10.3389/feart.2022.885197

    CrossRef Google Scholar

    [20] Pang J M, Pang Z H, Lü M, Tian J, Kong Y L. 2018. Geochemical and isotopic characteristics of fluids in the Niutuozhen geothermal field, North China[J]. Environmental Earth Sciences, 77(1): 1−21. doi: 10.1007/s12665-017-7169-5

    CrossRef Google Scholar

    [21] Pang Yumao. 2012. Geological Structure Characteristics and the Influence on Hydrocarbon Accumulation in Jizhong Depression[D]. Qingdao: China University of Petroleum (East China), 1–80 (in Chinese with English abstract).

    Google Scholar

    [22] Reed M, Spycher N. 1984. Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution[J]. Geochimica et Cosmochimica Acta, 48(7): 1479−1492. doi: 10.1016/0016-7037(84)90404-6

    CrossRef Google Scholar

    [23] Shan Shuaiqiang, He Dengfa, Fang Chengming, Zhang Yuying, Hu Meiling. 2022. Structural characteristics and genetic mechanism of Gaoyang low uplift in Jizhong Depression, Bohai Bay Basin[J]. Petroleum Geology and Experiment, 44(6): 989−996, 1007 (in Chinese with English abstract).

    Google Scholar

    [24] Sui Shaoqiang. 2020. Genetic analysis of karst thermal reservoir in Gaoyang geothermal field, Hebei Province, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 47(4): 492−497 (in Chinese with English abstract).

    Google Scholar

    [25] Sun Houyun, Wei Xiaofeng, Gan Fengwei, Wang Heng, Jia Fengchao, He Zexin, Li Duojie, Li Jian, Zhang Jing. 2020. Genetic type and formation mechanism of strontium–rich groundwater in the upper and middle reaches of Luanhe river basin[J]. Acta Geoscientica Sinica, 41(1): 65−79 (in Chinese with English abstract).

    Google Scholar

    [26] Wang G L, Zhang W, Ma F, Lin W J, Liang J Y, Zhu X. 2018. Overview on hydrothermal and hot dry rock researches in China[J]. China Geology, 1(2): 273−285. doi: 10.31035/cg2018021

    CrossRef Google Scholar

    [27] Wang G L, Wang W L, Zhang W, Ma F, Liu F. 2020. The status quo and prospect of geothermal resources exploration and development in Beijing–Tianjin–Hebei region in China[J]. China Geology, 3(1): 173−181. doi: 10.31035/cg2020013

    CrossRef Google Scholar

    [28] Wang Guiling, Zhang Wei, Liang Jiyun, Lin Wenjing, Liu Zhiming, Wang Wanli. 2017a. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 38(4): 449−459 (in Chinese with English abstract).

    Google Scholar

    [29] Wang Guiling, Zhang Wei, Lin Wenjing, Liu Feng, Zhu Xi, Liu Yanguang, Li jun. 2017b. Research on formation mode and development potential of geothermal resources in Beijing–Tianjin–Hebei region[J]. Geology in China, 44(6): 1074−1085 (in Chinese with English abstract).

    Google Scholar

    [30] Wang Guiling, Gao Jun, Zhang Baojian, Xing Yifei, Zhang Wei, Ma Feng. 2020. Study on the thermal storage characteristics of the Wumishan Formation and huge capacity geothermal well parameters in the Gaoyang low uplift area of Xiong’an New Area[J]. Acta Geologica Sinica, 94(7): 1970−1980 (in Chinese with English abstract).

    Google Scholar

    [31] Wang Guiling, Lin Wenjing. 2020. Main hydrogeothermal systems and their genetic models in China[J]. Acta Geologica Sinica, 94(7): 1923−1937 (in Chinese with English abstract).

    Google Scholar

    [32] Wang Jiyang, Hu Shengbiao, Pang Zhonghe, He Lijuan, Zhao Ping, Zhu Chuanqing, Rao Song, Tang Xiaoyin, Kong Yanlong, Luo Lu, Li Weiwei. 2012. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science and Technology Review, 30(32): 25−31 (in Chinese with English abstract).

    Google Scholar

    [33] Wang Siqi, Zhang Baojian, Li Yanyan, Xing Yifei, Yuan Wenzhen, Li Jun, Gao Jun, Zhao Tian. 2021. Heat accumulation mechanism of deep ancient buried hill in the northeast of Gaoyang geothermal field, Xiong′an New Area[J]. Bulletin of Geological Science and Technology, 40(3): 12−21 (in Chinese with English abstract).

    Google Scholar

    [34] Xing Yifei, Wang Huiqun, Li Jie, Teng Yanguo, Zhang Baojian, Li Yanyan, Wang Guiling. 2022. Chemical field of geothermal water in Xiong'an New Area and analysis of influencing factors[J]. Geology in China, 49(6): 1711−1722 (in Chinese with English abstract).

    Google Scholar

    [35] Yin Z Y, Luo Q K, Wu J F, Xu S H, Wu J C. 2021. Identification of the long–term variations of groundwater and their governing factors based on hydrochemical and isotopic data in a river Basin[J]. Journal of Hydrology, 592: 125604. doi: 10.1016/j.jhydrol.2020.125604

    CrossRef Google Scholar

    [36] Yuan Jianfei. 2010. Transport of Boron in the Aquatic Environment of the Yangbajing Geothermal Field, Tibet[D]. Wuhan: China University of Geosciences, 1–74 (in Chinese with English abstract).

    Google Scholar

    [37] Zhang B J, Zhao T, Li Y Y, Xing Y F, Wang G L, Gao J, Tang X C, Yuan W Z, Zhang D L. 2019a. The hydrochemical characteristics and its significance of geothermal water in both sides of large fault: Taking northern section of the Liaokao fault in north China as an example[J]. China Geology, 2(4): 512−521. doi: 10.31035/cg2018132

    CrossRef Google Scholar

    [38] Zhang B J, Wang S Q, Kang F X, Wu Y Q, Li Y Y, Gao J, Yuan W Z, Xing Y F. 2022. Heat accumulation mechanism of the Gaoyang carbonatite geothermal field, Hebei Province, North China[J]. Frontiers in Earth Science, 10: 858814. doi: 10.3389/feart.2022.858814

    CrossRef Google Scholar

    [39] Zhang Renquan, Liang Xing, Jin Menggui, Wan Li, Yu Qingchun. 2011. Fundamentals of Hydrogeology (6th Edition)[M]. Beijing: Geological Publishing House (in Chinese).

    Google Scholar

    [40] Zhang W, Wang G L, Xing L X, Li T X, Zhao J Y. 2019b. Geochemical response of deep geothermal processes in the Litang region, Western Sichuan[J]. Energy Exploration and Exploitation, 37(2): 626−645. doi: 10.1177/0144598718812550

    CrossRef Google Scholar

    [41] Zhang Wei, Wang Guiling, Liu Feng, Xing Linxiao, Li Man. 2019. Characteristics of geothermal resources in sedimentary basins[J]. Geology in China, 46(2): 255−268 (in Chinese with English abstract).

    Google Scholar

    [42] Zhang Wei, Wang Guiling, Zhao Jiayi, Liufeng. 2021. Geochemical characteristics of medium–high temperature geothermal fluids in West Sichuan and their geological implications[J]. Geoscience, 35(1): 188−198 (in Chinese with English abstract).

    Google Scholar

    [43] Zhang Wenchao, Yang Dexiang, Chen Yanjun, Qian Zheng, Zhang Chaowen, Liu Huifang. 2008. Sedimentary structural characteristics and hydrocarbon distributed rules of Jizhong depression[J]. Acta Geologica Sinica, 82(8): 1103−1112 (in Chinese with English abstract).

    Google Scholar

    [44] Zhao Jiayi, Zhang Wei, Ma Feng, Zhu Xi, Zhang Hanxiong, Wang Guiling. 2020. Geochemical characteristics of the geothermal fluid in the Rongcheng geothermal field, Xiong’an New Area[J]. Acta Geologica Sinica, 94(7): 1991−2001 (in Chinese with English abstract).

    Google Scholar

    [45] Zhu Rixiang, Xu Yigang, Zhu Guang, Zhang Hongfu, Xia Qunke, Zheng Tianyu. 2012. Destruction of the North China Craton[J]. Science China: Earth Science, 42(8): 1135−1159 (in Chinese).

    Google Scholar

    [46] Zhu Xi, Wang Guiling, Ma Feng, Zhang Wei, Zhang Qinglian, Zhang Hanxiong. 2021. Hydrogeochemistry of geothermal waters from Taihang Mountain–Xiong’an New Area and its indicating significance[J]. Earth Science, 46(7): 2594−2608 (in Chinese with English abstract).

    Google Scholar

    [47] 常健, 邱楠生, 赵贤正, 许威, 徐秋晨, 金凤鸣, 韩春元, 马学峰, 董雄英, 梁小娟. 2016. 渤海湾盆地冀中坳陷现今地热特征[J]. 地球物理学报, 59(3): 1003−1016. doi: 10.6038/cjg20160322

    CrossRef Google Scholar

    [48] 陈墨香. 1988. 华北地热[M]. 北京: 科学出版社, 1–214.

    Google Scholar

    [49] 陈墨香, 汪集旸, 汪缉安, 邓孝, 杨淑贞, 熊亮萍, 张菊明. 1990. 华北断陷盆地热场特征及其形成机制[J]. 地质学报, 64(1): 80−91.

    Google Scholar

    [50] 陈宗宇. 2001. 从华北平原地下水系统中古环境信息研究地下水资源演化[D]. 长春: 吉林大学, 1–139.

    Google Scholar

    [51] 崔悦, 朱传庆, 邱楠生, 唐博宁, 郭飒飒. 2020. 冀中坳陷中部现今热岩石圈厚度及地热学意义探讨[J]. 地质学报, 94(7): 1960−1969. doi: 10.3969/j.issn.0001-5717.2020.07.005

    CrossRef Google Scholar

    [52] 海阔. 2019. 运用多种方法估算深部热储温度[D]. 北京: 中国地质大学(北京), 1–102.

    Google Scholar

    [53] 李军, 邹胜章, 赵一, 赵瑞科, 党志文, 潘民强, 朱丹尼, 周长松. 2021. 会仙岩溶湿地地下水主要离子特征及成因分析[J]. 环境科学, 42(4): 1750−1760.

    Google Scholar

    [54] 李义曼, 庞忠和, 罗霁, 陈凯. 2021. SiO2地温计沸腾校正方法在高原地区的适用性分析[J]. 地质论评, 67(4): 1050−1056.

    Google Scholar

    [55] 刘海剑. 2015. 冀中坳陷饶阳凹陷新生代伸展与走滑关系研究[D]. 青岛: 中国石油大学(华东), 1–69.

    Google Scholar

    [56] 刘凯, 刘颖超, 孙颖, 刘久荣, 王树芳, 刘宗明. 2015. 北京地区地热水氘过量参数特征分析[J]. 中国地质, 42(6): 2029−2035.

    Google Scholar

    [57] 刘明亮, 何曈, 吴启帆, 郭清海. 2020. 雄安新区地热水化学特征及其指示意义[J]. 地球科学, 45(6): 2221−2231.

    Google Scholar

    [58] 柳鉴容, 宋献方, 袁国富, 孙晓敏, 刘鑫, 王仕琴. 2009. 中国东部季风区大气降水δ18O的特征及水汽来源[J]. 科学通报, 54(22): 3521−3531.

    Google Scholar

    [59] 马峰, 王贵玲, 张薇, 朱喜, 张汉雄, 岳高凡. 2020. 雄安新区容城地热田热储空间结构及资源潜力[J]. 地质学报, 94(7): 1981−1990. doi: 10.3969/j.issn.0001-5717.2020.07.007

    CrossRef Google Scholar

    [60] 庞玉茂. 2012. 冀中坳陷地质结构特征及对油气成藏的影响[D]. 青岛: 中国石油大学(华东), 1–80.

    Google Scholar

    [61] 单帅强, 何登发, 方成名, 张煜颖, 胡美玲. 2022. 渤海湾盆地冀中坳陷高阳低凸起构造特征及成因机制[J]. 石油实验地质, 44(6): 989−996,1007. doi: 10.11781/sysydz202206989

    CrossRef Google Scholar

    [62] 隋少强. 2020. 河北高阳地热田岩溶热储的成因[J]. 成都理工大学学报(自然科学版), 47(4): 492−497.

    Google Scholar

    [63] 孙厚云, 卫晓锋, 甘凤伟, 王恒, 贾凤超, 何泽新, 李多杰, 李健, 张竞. 2020. 滦河流域中上游富锶地下水成因类型与形成机制[J]. 地球学报, 41(1): 65−79. doi: 10.3975/cagsb.2019.061701

    CrossRef Google Scholar

    [64] 王贵玲, 张薇, 梁继运, 蔺文静, 刘志明, 王婉丽. 2017a. 中国地热资源潜力评价[J]. 地球学报, 38(4): 449−459.

    Google Scholar

    [65] 王贵玲, 张薇, 蔺文静, 刘峰, 朱喜, 刘彦广, 李郡. 2017b. 京津冀地区地热资源成藏模式与潜力研究[J]. 中国地质, 44(6): 1074−1085.

    Google Scholar

    [66] 王贵玲, 高俊, 张保建, 邢一飞, 张薇, 马峰. 2020. 雄安新区高阳低凸起区雾迷山组热储特征与高产能地热井参数研究[J]. 地质学报, 94(7): 1970−1980. doi: 10.3969/j.issn.0001-5717.2020.07.006

    CrossRef Google Scholar

    [67] 王贵玲, 蔺文静. 2020. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 94(7): 1923−1937. doi: 10.3969/j.issn.0001-5717.2020.07.002

    CrossRef Google Scholar

    [68] 王思琪, 张保建, 李燕燕, 邢一飞, 袁文真, 李郡, 高俊, 赵甜. 2021. 雄安新区高阳地热田东北部深部古潜山聚热机制[J]. 地质科技通报, 40(3): 12−21.

    Google Scholar

    [69] 汪集旸, 胡圣标, 庞忠和, 何丽娟, 赵平, 朱传庆, 饶松, 唐晓音, 孔彦龙, 罗璐, 李卫卫. 2012. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 30(32): 25−31. doi: 10.3981/j.issn.1000-7857.2012.32.002

    CrossRef Google Scholar

    [70] 邢一飞, 王慧群, 李捷, 滕彦国, 张保健, 李燕燕, 王贵玲. 2022. 雄安新区地热水的化学场特征及影响因素分析[J]. 中国地质, 49(6): 1711−1722. doi: 10.12029/gc20220601

    CrossRef Google Scholar

    [71] 袁建飞. 2010. 西藏羊八井高温地热田水环境中硼的迁移和转化研究[D]. 武汉: 中国地质大学, 1–74.

    Google Scholar

    [72] 张人权, 梁杏, 靳孟贵, 万力, 于青春. 2011. 水文地质学基础(第6版)[M]. 北京: 地质出版社.

    Google Scholar

    [73] 张薇, 王贵玲, 刘峰, 邢林啸, 李曼. 2019. 中国沉积盆地型地热资源特征[J]. 中国地质, 46(2): 255−268. doi: 10.12029/gc20190204

    CrossRef Google Scholar

    [74] 张薇, 王贵玲, 赵佳怡, 刘峰. 2021. 四川西部中高温地热流体地球化学特征及其地质意义[J]. 现代地质, 35(1): 188−198.

    Google Scholar

    [75] 张文朝, 杨德相, 陈彦均, 钱铮, 张超文, 刘会纺. 2008. 冀中坳陷古近系沉积构造特征与油气分布规律[J]. 地质学报, 82(8): 1103−1112. doi: 10.3321/j.issn:0001-5717.2008.08.011

    CrossRef Google Scholar

    [76] 赵佳怡, 张薇, 马峰, 朱喜, 张汉雄, 王贵玲. 2020. 雄安新区容城地热田地热流体化学特征[J]. 地质学报, 94(7): 1991−2001. doi: 10.3969/j.issn.0001-5717.2020.07.008

    CrossRef Google Scholar

    [77] 朱日祥, 徐义刚, 朱光, 张宏福, 夏群科, 郑天愉. 2012. 华北克拉通破坏[J]. 中国科学: 地球科学, 42(8): 1135−1159.

    Google Scholar

    [78] 朱喜, 王贵玲, 马峰, 张薇, 张庆莲, 张汉雄. 2021. 太行山–雄安新区蓟县系含水层水文地球化学特征及意义[J]. 地球科学, 46(7): 2594−2608.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(5)

Article Metrics

Article views(62) PDF downloads(8) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint