2025 Vol. 52, No. 3
Article Contents

LIU Jinlong, LI Zhumin, ZHOU Yongheng, DONG Cunjie. 2025. Geological setting, spatiotemporal distribution of predominant metal deposits in eastern section of China, Mongolia and Russia[J]. Geology in China, 52(3): 945-971. doi: 10.12029/gc20230215001
Citation: LIU Jinlong, LI Zhumin, ZHOU Yongheng, DONG Cunjie. 2025. Geological setting, spatiotemporal distribution of predominant metal deposits in eastern section of China, Mongolia and Russia[J]. Geology in China, 52(3): 945-971. doi: 10.12029/gc20230215001

Geological setting, spatiotemporal distribution of predominant metal deposits in eastern section of China, Mongolia and Russia

    Fund Project: Supported by the project of China Geological Survey (No.DD20221806).
More Information
  • Author Bio: LIU Jinlong, male, born in 1988, senior engineer, mainly engaged in regional geological mineral survey and research; E-mail: liujinlong0815@yeah.net
  • Corresponding author: LI Zhumin, male, born in 1983, senior engineer, mainly engaged in northeast Asian regional geological mineral survey and research; E-mail: 45569520@qq.com
  • This paper is the result of geological survey engineering.

    Objective

    The eastern segment of China–Mongolia–Russia has a complex geological evolution history with strong mineralization. Thus, it is of great significance to enhance the study about cross−boundary mineralization and, particularly, the summary of region-wide mineralization rules for improving the level of regional basic geological research and ore exploration.

    Methods

    By compiling all kinds of geological data, we disentangle the metallogenic geological features, resource endowment, temporal and spatial distribution of ore deposits, metallogenic background and so on.

    Results

    Within the study area, 10 super−large ore deposits, 33 large ore deposits, 55 medium ore deposits, and numerous small ore deposits (and occurrences) were proved or discovered. In general, it can be divided into the deposits related Precambrian tectonic system, the deposits related Paleo–Asian Ocean tectonic system, the deposits related Mongolia–Okhotsk tectonic system, and the deposits superimposed by the Mongolia–Okhotsk Ocean and Paleo–Pacific tectonic system.

    Conclusions

    The spatial and temporal distribution features of regional ore deposits are obvious: The most important deposits formed in various periods, including the Archean Fe deposits distributed in the West Aldan–Sutam area, the Paleoproterozoic Cu–Fe–Ti deposits distributed in the Udokan–DyosLeglier area and the Neoproterozoic Pb–Zn deposits distributed in the Baikal–Muya tectonic belt, the Cambrian–Silurian Fe–Zn–Ti deposits distributed in the Yenisey–Transbaikalian tectonic belt, the Carboniferous Au deposits distributed in the Baikal–Patom tectonic belt, the Triassic Cu and Mo deposits distributed in the Orhon–Selenge area and the Late Permian–Early Triassic Fe deposits in the Angara–Ilim area, and the Middle Jurassic–Cretaceous Au–Pb–Zn–W–Mo deposits distributed in the Mongolia–Okhotsk tectonic belt and its surrounding areas.

  • 加载中
  • [1] Badarch G, Dickson C, Windley B. 2002. A new terrane subdivision for Mongolia: Implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 21(1): 87−110. doi: 10.1016/S1367-9120(02)00017-2

    CrossRef Google Scholar

    [2] Badredinov Z, Sharova O, Avchenko O, Sakhno V, Mishkin M, Vovna G, Karabtsov A. 2009. Magnetite–ilmenite equilibria in Archean enderbites from the Sutam Complex (Aldan Shield)[J]. Doklady Earth Sciences, 425: 235−238. doi: 10.1134/S1028334X09020135

    CrossRef Google Scholar

    [3] Bao Qingzhong, Zhou Yongheng, Shao Jun, Chai Lu, Wang Hongbo, Zhang Jing, Zhang Zhehuan. 2015. Ore–forming geological background of Mesozoic orogenic belts in northeast area of Russian Far East: Metallogenic process of Okhotsk–Chukchi volcanic plutonic belt[J]. Geological Bulletin of China, 34(4): 605−617 (in Chinese with English abstract).

    Google Scholar

    [4] Belichenko V, Geletii N, Barash I. 2006. Barguzin microcontinent (Baikal Mountain area): The problem of outlining[J]. Russian Geology and Geophysics, 47(10): 1049−1059.

    Google Scholar

    [5] Bortnikov N, Gamyanin G, Alpatov V, Naumov V, Nosik L, Mironova O. 1998. Mineralogy, geochemistry, and origin of the Nezhdaninsk gold deposit (Sakha–Yakutia, Russia)[J]. Geology of Ore Deposits 40(2): 121–138.

    Google Scholar

    [6] Buslov M. 2011. Tectonics and geodynamics of the Central Asian fold belt: The role of Late Paleozoic large–amplitude strike–slip faults[J]. Russian Geology and Geophysics, 52(1): 52−71.

    Google Scholar

    [7] Bussien D, Gombojav N, Winkler W, Quadt A. 2011. The Mongol–Okhotsk Belt in Mongolia: An appraisal of the geodynamic development by the study of sandstone provenance and detrital zircons[J]. Tectonophysics, 510(1): 132−150.

    Google Scholar

    [8] Chai Lu, Bao Qingzhong, Zhou Yongheng, Li Xiao. 2017. Copper resources and supply & demand situation in Northeast Asia[J]. Multipurpose Utilization of Mineral Resources, (6): 26−30 (in Chinese with English abstract).

    Google Scholar

    [9] Chetvertakov I, Vanin V, Demin I. 2021. Geologic structure, mineralogy, and geochemistry of the Nerunda Gold Ore Field (Northern Transbaikalia)[J]. Russian Geology and Geophysics, 62(10): 1139−1156. doi: 10.2113/RGG20194119

    CrossRef Google Scholar

    [10] Dejidmaa G, Bujinlkham B, Eviihuu A, Enkhtuya B, Ganbaatar T, Moenkh–Erdene N, Oyuntuya N. 2001. Distribution map of deposits and occurrences in Mongolia, at the scale 1: 1000000[R]. Ulaanbaatar: Geological Information Center, Geological Office, Mineral Resources Authority of Mongolia, 1–280.

    Google Scholar

    [11] Demonterova E, Ivanov A, Reznitskii L, Belichenko V, Hung C, Chung S, Iizuka Y, Wang K. 2011. Formation history of the Tuva–Mongolian Massif (Western Hubsugul region, North Mongolia) based on U–Pb dating of detrital zircons from sandstone of the Darkhat group by the LA–ICP–MS method[J]. Doklady Earth Sciences, 441: 1498−1501. doi: 10.1134/S1028334X11110225

    CrossRef Google Scholar

    [12] Distanov E, Borisenko A, Obolensky A, Sotnikov V, Lebedev V. 2006. Metallogeny of the polyaccretionary Altai–Sayan orogenic area[J]. Russian Geology and Geophysics, 47(12): 1257−1276.

    Google Scholar

    [13] Dmitrieva N, Letnikova E, Buslov M, Proshenkin A, Geng H. 2013. Late Precambrian terrigenous rocks of the Anamakit–Muya zone of the Baikal–Muya belt: Geochemistry and results of LA–ICP–MS dating of detrital zircons[J]. Russian Geology and Geophysics, 54: 1164−1176. doi: 10.1016/j.rgg.2013.09.003

    CrossRef Google Scholar

    [14] Donskaya T. 2020. Assembly of the Siberian Craton: Constraints from Paleoproterozoic granitoids[J]. Precambrian Research, 348(1): 105869.

    Google Scholar

    [15] Donskaya T, Gladkochub D. 2021. Post–collisional magmatism of 1.88–1.84 Ga in the southern Siberian Craton: An overview[J]. Precambrian Research, 367: 106447. doi: 10.1016/j.precamres.2021.106447

    CrossRef Google Scholar

    [16] Furnes H, Safonova I. 2019. Ophiolites of the Central Asian Orogenic Belt: Geochemical and petrological characterization and tectonic settings[J]. Geoscience Frontiers, 10(4): 38−67.

    Google Scholar

    [17] Gablina I. 1997. Formation conditions of large cupriferous sandstone and shale deposits[J]. Geology of Ore Deposits, 39(4): 320−333.

    Google Scholar

    [18] Gladkochub D, Stanevich A, Mazukabzov A, Donskaya T, Pisarevsky S, Nicoll G, Motova Z, Kornilova T. 2013. Early evolution of the Paleoasian ocean: LA–ICP–MS dating of detrital zircon from Late Precambrian sequences of the southern margin of the Siberian craton[J]. Russian Geology and Geophysics, 54(10): 1150−1163. doi: 10.1016/j.rgg.2013.09.002

    CrossRef Google Scholar

    [19] Goldfarb R, Taylor R, Collins G, Goryachev N, Orlandini O. 2014. Phanerozoic continental growth and gold metallogeny of Asia[J]. Gondwana Research, 25(1): 48−102. doi: 10.1016/j.gr.2013.03.002

    CrossRef Google Scholar

    [20] Gongalsky B, Krivolutskaya N, Ariskin A, Nikolaev G. 2016. The Chineysky gabbronorite–anorthosite layered massif (Northern Transbaikalia, Russia): Its structure, Fe–Ti–V and Cu–PGE deposits, and parental magma composition[J]. Mineralium Deposita, 51: 1013−1034. doi: 10.1007/s00126-016-0687-3

    CrossRef Google Scholar

    [21] Gongalsky B, Krivolutskaya N. 2019. World–Class Mineral Deposits of Northeastern Transbaikalia, Siberia, Russia[M]. Springer Nature Switzerland AG, 1– 321.

    Google Scholar

    [22] Gordienko I. 2006. Geodynamic evolution of Late Baikalides and Paleozoids in the folded periphery of the Siberian craton[J]. Russian Geology and Geophysics, 47(1): 51−67.

    Google Scholar

    [23] Gordienko I, Gorokhovskiy D, Elbaev A, Bayanova T. 2015. New data on the Early Paleozoic gabbroid and granitoid magmatism age within the Dzhida zone of Caledonides (Southwestern Transbaikalia, North Mongolia)[J]. Doklady Earth Sciences, 463: 817−821. doi: 10.1134/S1028334X15080103

    CrossRef Google Scholar

    [24] Goroshko M, Kaplun V, Malyshev Y, Romanovskiy N, Gurovich V. 2010. The deep structure, magmatism, and metallogeny of the Central Aldan Block, Aldan–Stanovoy Shield[J]. Russian Journal of Pacific Geology, 4(4): 275−288. doi: 10.1134/S1819714010040019

    CrossRef Google Scholar

    [25] Huang Shiqi, Dong Shuwen, Hu Jianmin, Shi Wei, Chen Xuanhua, Liu Zhiqiang. 2016. The formation and tectonic evolution of the Mongol–Okhotsk belt[J]. Acta Geologica Sinica, 90(9): 2192−2205 (in Chinese with English abstract).

    Google Scholar

    [26] Izokh A, Polyakov G, Krivenko A, Bognibov V, Bayarbileg L. 1990. The Gabbro Formations of Western Mongolia[M]. Novosibirsk: Nauka, 1–269 (in Russian).

    Google Scholar

    [27] Jahn B, Litvinovsky B, Zanvilevich A, Reichow M. 2009. Peralkaline granitoid magmatism in the Mongolian–Transbaikalian Belt: Evolution, petrogenesis and tectonic significance[J]. Lithos, 113(3): 521−539.

    Google Scholar

    [28] Jiang Sihong, Nie Fengjun, Su Yongjiang, Bai Daming, Liu Yifei. 2010. Geochronology and origin of the Erdenet superlarge Cu–Mo deposit in Mongolia[J]. Acta Geoscientica Sinica, 31(3): 289−306 (in Chinese with English abstract).

    Google Scholar

    [29] Kelty T, Yin A, Dash B, Gehrels G, Ribeiro A. 2008. Detrital–zircon geochronology of Paleozoic sedimentary rocks in the Hangay–Hentey basin, north–central Mongolia: Implications for the tectonic evolution of the Mongol–Okhotsk Ocean in central Asia[J]. Tectonophysics, 451(1/4): 290−311.

    Google Scholar

    [30] Khubanov V, Tsygankov A, Burmakina G. 2021. The duration and geodynamics of formation of the Angara–Vitim Batholith: Results of U–Pb isotope (LA–ICP–MS) dating of magmatic and detrital zircons[J]. Russian Geology and Geophysics, 62(12): 1331−1349. doi: 10.2113/RGG20204223

    CrossRef Google Scholar

    [31] Kovach V, Salnikova E, Wang K, Jahn B, Chiu H, Reznitskiy L, Kotov A, Iizuka Y, Chung S. 2013. Zircon ages and Hf isotopic constraints on sources of clastic metasediments of the Slyudyansky high–grade complex, southeastern Siberia: Implication for continental growth and evolution of the Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 62: 18−36. doi: 10.1016/j.jseaes.2011.08.008

    CrossRef Google Scholar

    [32] Kovach V, Kozakov I, Kröner A, Salnikova E, Wang K, Lee H, Plotkina J, Gorokhovsky B, Adamskaya E, Tolmacheva E, Shpakovich L. 2021. Early Neoproterozoic crustal growth and microcontinent formation of the north–central Central Asian Orogenic Belt: New geological, geochronological, and Nd–Hf isotopic data on the Mélange Zone within the Zavkhan terrane, western Mongolia[J]. Gondwana Research, 91: 254−276. doi: 10.1016/j.gr.2020.12.022

    CrossRef Google Scholar

    [33] Kovalenko D, Yarmolyuk V, Kozlovskiy A. 2022. Paleomagnetism of the central part of the Central Asian Fold Belt (Tuva, Mongolia)[J]. Doklady Earth Sciences, 504(1): 296−304. doi: 10.1134/S1028334X22050087

    CrossRef Google Scholar

    [34] Kovalev K, Ripp G, Distanov E, Baulina M. 2005. Fe–Mg carbonates and variations in isotopic compositions of carbon and oxygen at the Ozernoe hydrothermal–sedimentary pyrite–polymetallic deposit (Transbaikalia)[J]. Russian Geology and Geophysics, 46(4): 383−397.

    Google Scholar

    [35] Kozakov I, Kovach V, Yarmolyuk V, Kotov A, Salnikova E, Zagornaya N. 2003. Crust−forming processes in the geologic development of the Tuva−Mongolia Massif: Sm−Nd isotopic and geochemical data for granitoids[J]. Petrology, 11: 444−463.

    Google Scholar

    [36] Kravchinsky V, Sklyarov E, Gladkochub D, Harbert W. 2010. Paleomagnetism of the Precambrian Eastern Sayan rocks: Implications for the Ediacaran–Early Cambrian paleogeography of the Tuva–Mongolian composite terrane[J]. Tectonophysics, 486: 65−80. doi: 10.1016/j.tecto.2010.02.010

    CrossRef Google Scholar

    [37] Kungurtsev L, Berzin N, Kazansky A, Metelkin D. 2001. Tectonic evolution of the southwestern framing of the Siberian Platform in the Vendian–Cambrian according to paleomagnetic data[J]. Russian Geology and Geophysics, 42: 1042−1051.

    Google Scholar

    [38] Kuzmichev A, Bibikova E, Zhuravlev D. 2001. Neoproterozoic (∼800 Ma) orogeny in the Tuva–Mongolia Massif (Siberia): Island arc–continent collision at the northeast Rodinia margin[J]. Precambrian Research, 110(1): 109−126.

    Google Scholar

    [39] Laverov N, Chernyshev I, Chugaev A, Bairova E, Gol’tsman Y, Distler V, Yudovskaya M. 2007. Formation stages of the large–scale noble metal mineralization in the Sukhoi Log deposit, east Siberia: Results of isotope–geochronological study[J]. Doklady Earth Sciences, 415(1): 810−814. doi: 10.1134/S1028334X07050339

    CrossRef Google Scholar

    [40] Leonov M, Morozov Y, Nikitin A. 2007. Tectonic deformation of granites in the Tien Shan and Transbaikal regions[J]. Doklady Earth Sciences, 417(9): 1348−1354.

    Google Scholar

    [41] Li Jinyi. 1988. Some new ideas on tectonics of NE China and its neighboring area[J]. Geogogical Review, 44(4): 339−347 (in Chinese with English abstract).

    Google Scholar

    [42] Li J Y. 2006. Permian geodynamic setting of Northeast China and adjacent regions: Closure of the Paleo–Asian Ocean and subduction of the Paleo–Pacific Plate[J]. Journal of Asian Earth Sciences, 26(3): 207−224.

    Google Scholar

    [43] Ma Y F, Liu Y J, Peskov A, Wang Y, Song W M, Zhang Y J, Qian C, Liu T J. 2022. Paleozoic tectonic evolution of the eastern central Asian Orogenic Belt in NE China[J]. China Geology, 5(4): 555−578.

    Google Scholar

    [44] Makrygina V, Belichenko V, Reznitsky L. 2007. Types of paleoisland arcs and back–arc basins in the northeast of the Paleoasian Ocean (from geochemical data)[J]. Russian Geology and Geophysics, 48(1): 107−119. doi: 10.1016/j.rgg.2006.12.010

    CrossRef Google Scholar

    [45] Miguta A. 2001. Uranium deposits of the El'kon ore district in the Aldan Shield[J]. Geology of Ore Deposits, 43(2): 117−135.

    Google Scholar

    [46] Mishkin M, Vovna G, Lavrik S, Oktyabr'skii R. 2001. Geochemistry and genesis of in the Sutam block, deep–seated Archean enderbites southern Aldan Shield[J]. Geochemistry International, 39(7): 627−645.

    Google Scholar

    [47] Neymark L, Kovach V, Nemchin A, Morozova I, Kotov A, Vinogradov D, Gorokhovsky B, Ovchinnikova G, Bogomolova L, Smelov A. 1993. Late Archaean intrusive complexes in the Olekma granite–greenstone terrain (eastern Siberia): Geochemical and isotopic study[J]. Precambrian Research, 62(4): 453−472. doi: 10.1016/0301-9268(93)90016-U

    CrossRef Google Scholar

    [48] Nokleberg W. 2010. Metallogenesis and Tectonics of Northeast Asia[M]. U. S. Geological Survey, 1–624.

    Google Scholar

    [49] Nutman A, Chernyshev I, Baadsgaard H, Smelov A. 1992. The Aldan shield of Siberia, Ussr: The age of its Archaean components and evidence for widespread reworking in the Mid–Proterozoic[J]. Precambrian Research, 54(2/4): 195−210.

    Google Scholar

    [50] Parfenov L, Popeko L, Tomurtogoo O. 2001. Problems of tectonics of the Mongol–Okhotsk orogenic belt[J]. Geology of the Pacific Ocean, 16(5): 797−830.

    Google Scholar

    [51] Parfenov L, Berzin N, Khanchuk A, Badarch G, Belichenko V, Bulgatov A, Dril S, Kirillova G, Kuz’min M, Nockleberg W, Prokop’ev A, Timofeev V, Tomurtogoo O, Yan H. 2003. A model for the formation of orogenic belts in Central and Northeast Asia[J]. Tikhookeanskaya Geologiya, 22(6): 7−41.

    Google Scholar

    [52] Petrov O, Morozov A, Kiselev, Shokalsky S, Dong S, Chuluun O, Tomurtogoo O, Uzhkenov B, Sayduakasov M, Hwang J, Chul K. 2017. Metallogeny of Northern, Central and Eastern Asia[M]. St. Petersburg: VSEGEI Printing House, 1–310.

    Google Scholar

    [53] Polyakov G, Izokh A, Krivenko A. 2006. Platiniferous ultramafic–mafic formations of mobile belts of central and southeastern Asia[J]. Russian Geology and Geophysics, 47(12): 1227−1241.

    Google Scholar

    [54] Prokof’ev V, Safonov Y, Lüders V, Borovikov A, Kotov A, Zlobina T, Murashov K, Yudovskaya M, Selektor S. 2019. The sources of mineralizing fluids of orogenic gold deposits of the Baikal–Patom and Muya areas, Siberia: Constraints from the C and N stable isotope compositions of fluid inclusions[J]. Ore Geology Reviews, 111: 102988. doi: 10.1016/j.oregeorev.2019.102988

    CrossRef Google Scholar

    [55] Prokopyev I, Doroshkevich A, Malyutina A, Starikova A, Ponomarchuk A, Semenova D, Kovalev S, Savinsky I. 2021. Geochronology of the Chadobets alkaline ultramafic carbonatite complex (Siberian craton): New U–Pb and Ar–Ar data[J]. Geodynamics & Tectonophysics, 12(4): 865−882.

    Google Scholar

    [56] Reznitsky L, Sal’nikova E, Barash I, Belichenko V, Glebovitsky V, Kotov A, Kovach V, Yakovleva S, Fedoseenko A. 2007. Upper age boundary of the accretion of terranes in the northwestern part of the eastern segment of the Central Asian fold belt[J]. Doklady Earth Sciences, 414(1): 548−551. doi: 10.1134/S1028334X07040137

    CrossRef Google Scholar

    [57] Rytsk E, Kovach V, Yarmolyuk V, Kovalenko V, Bogomolov E, Kotov A. 2011. Isotopic structure and evolution of the continental crust in the East Transbaikalian segment of the Central Asian fold belt[J]. Geotectonics, 45(5): 349−377. doi: 10.1134/S0016852111050037

    CrossRef Google Scholar

    [58] Shkol’nik E, Zhegallo E. 2012. Formation conditions of some iron ores in the Uda–Shantar basin, Far East[J]. Russian Journal of Pacific Geology, 6(3): 242−250. doi: 10.1134/S1819714012030050

    CrossRef Google Scholar

    [59] Skuzovatov S, Shatsky V, Dril S. 2017. High–pressure mafic granulites of the South Muya Block (Central Asian Orogenic Belt)[J]. Doklady Earth Sciences, 473: 423−426. doi: 10.1134/S1028334X17040067

    CrossRef Google Scholar

    [60] Sorokin A, Kudryashov N, Li J, Zhuravlev D, Pin Y, Guihua S, Liming G. 2004. Early Paleozoic granitoids in the eastern margin of the Argun' terrane, Amur area: First geochemical and geochronologic data[J]. Petrology, 12(4): 367−376.

    Google Scholar

    [61] Sotnikov V, Ponomarchuk V, Shevchenko D, Berzina A. 2005. The Erdenetiyn–Ovoo porphyry Cu–Mo deposit, Northern Mongolia: 40Ar/39Ar geochronology and factors of large–scale mineralization[J]. Geologiya i Geofizika, 46(6): 633−644.

    Google Scholar

    [62] Vernikovsky V, Vernikovskaya A. 2006. Tectonics and evolution of granitoid magmatism in the Yenisei Ridge[J]. Russian Geology and Geophysics, 47: 35−52.

    Google Scholar

    [63] Vernikovsky V, Kazansky A, Matushkin N, Metelkin D, Sovetov J. 2009. The geodynamic evolution of the folded framing and the western margin of the Siberian craton in the Neoproterozoic: Geological, structural, sedimentological, geochronological, and paleomagnetic data[J]. Russian Geology and Geophysics, 50(4): 380−393. doi: 10.1016/j.rgg.2009.03.014

    CrossRef Google Scholar

    [64] Vetrov E, Chernykh A, Babin G. 2019. Early Paleozoic granitoid magmatism in the East Tannu–Ola Sector of the Tuvinian magmatic belt: Geodynamic setting, age, and metallogeny[J]. Russian Geology and Geophysics, 60(5): 492−513. doi: 10.15372/RGG2019047

    CrossRef Google Scholar

    [65] Vetrov E, De Grave J, Vetrova N. 2022. The tectonic evolution of the Paleozoic Tannuola Terrane of Tuva in the Mesozoic and Cenozoic: Data of fission–track thermochronology of apatite[J]. Geotectonics, 56(4): 471−485. doi: 10.1134/S0016852122040094

    CrossRef Google Scholar

    [66] Vladimirov A, Khromykh S, Mekhonoshin A, Volkova N, Travin A, Yudin D, Kruk N. 2008. U–Pb dating and Sm–Nd systematics of igneous rocks in the Ol’khon Region (Western Baikal Coast)[J]. Doklady Earth Sciences, 423(2): 1372−1375. doi: 10.1134/S1028334X08090092

    CrossRef Google Scholar

    [67] Wang Tao, Zhang Lei, Guo Lei, Wang Xiaoxia, Li Shan, Feng Chengyou, Xu Wenliang, Tong Ying, Zhang Jianjun, Zhang Hongrui, Zhang Chengli, Mao Jianqi, Yang Qidi. 2014. The progress of the preliminary compilation of map of Mesozoic granitoid of Asia and the research on related key issues[J]. Acta Geosicientica Sinica, 35(6): 655−672 (in Chinese with English abstract).

    Google Scholar

    [68] Wu G, Chen Y, Chen Y, Zeng Q. 2012. Zircon U–Pb ages of the metamorphic supracrustal rocks of the Xinghuadukou Group and granitic complexes in the Argun massif of the northern Great Hinggan Range, NE China, and their tectonic implications[J]. Journal of Asian Earth Sciences, 49: 214−233. doi: 10.1016/j.jseaes.2011.11.023

    CrossRef Google Scholar

    [69] Watanabe Y. 2000. Re–Os ages for the Erdenet and Tsagaan Suvarga porphyry Cu–Mo deposits, Mongolia, and tectonic implications[J]. Economic Geology, 95(7): 1537−1542.

    Google Scholar

    [70] Yarmolyuk V, Kovalenko V, Kozakov I, Sal’nikova, E, Bibikova E, Kovach V, Kozlovsky A, Kotov A, Lebedev V, Eenjin G, Fugzan M. 2008. The age of the Khangai batholith and the problem of batholith formation in Central Asia[J]. Doklady Earth Sciences, 423: 1223−1228. doi: 10.1134/S1028334X08080096

    CrossRef Google Scholar

    [71] Zhou Yongheng, Bao Qingzhong, Chai Lu, Zhang Zhehuan, Shi Jianmin, Duan Ruiyan. 2013. Metallogenic characteristics and prospecting indications of Udokan sandstone coper deposit in North Transbaikalye, Russia[J]. Geological Science and Technology Information, 32(5): 153−159 (in Chinese with English abstract).

    Google Scholar

    [72] Zhou Yongheng, Liu Changchun, Wu Taotao, Bao Qingzhong, Wu Datian. 2018a. Geological characteristics and a prospecting model of volcanic–type uranium deposits in the Zabaikalsky area of Russia[J]. Geology and Exploration, 54(6): 1238−1246 (in Chinese with English abstract).

    Google Scholar

    [73] Zhou Yongheng, Zhang Sen, Wu Taotao, Bao Qingzhong, Wu Datian, Chai Lu, Liu Jinlong. 2018. Current situation, potential and investment proposal of copper deposit exploitation and utilization in Russia[J]. Geology and Exploration, 54(6): 1227−1237 (in Chinese with English abstract).

    Google Scholar

    [74] Zorin, Y, Belichenko V, Turutanov E, Mazukabzov A, Sklyarov E, Mordvinova V. 1995. The East Siberia transect[J]. International Geology Review, 37: 154−175. doi: 10.1080/00206819509465398

    CrossRef Google Scholar

    [75] Zorin Y. 1999. Geodynamics of the western part of the Mongolia–Okhotsk collisional belt, Trans–Baikal region (Russia) and Mongolia[J]. Tectonophysics, 306: 33−56. doi: 10.1016/S0040-1951(99)00042-6

    CrossRef Google Scholar

    [76] Zorin Y, Sklyarov E, Belichenko V, Mazukabzov A. 2007. Evolution of island arcs and geodynamics of the eastern central Asian fold belt in the Neogea[J]. Doklady Earth Sciences, 412(1): 39−42. doi: 10.1134/S1028334X07010096

    CrossRef Google Scholar

    [77] Zorin Y, Sklyarov E, Belichenko V, Mazukabzov A. 2009. Island arc–back–arc basin evolution: Implications for Late Riphean–Early Paleozoic geodynamic history of the Sayan–Baikal folded area[J]. Russian Geology & Geophysics, 50(3): 149−161.

    Google Scholar

    [78] Галимова Т Ф, Пашкова А Г, Поваринцева С А, Перфильев В В, Намолова М М, Андрющенко С В, Денисенко Е П, Пермяков С А, Миронюк Е П, Тимашков А Н, Плеханов А О. 2012. Государственная  геологическая  карта  Российской  Федерации.   Масштаб  1∶1 000000  (третье  поколение).   Серия  АнгароЕнисейская.   Лист  N47 – Нижнеудинск.   Объяснительная  записка[R]. 1–652.

    Google Scholar

    [79] Добровольская М Г, Ерёмин Н А. 2010. Метаморфизм и время образования промышленных свинцово–цинковых руд в Холоднинском месторождении (Северное Прибайкалье)[J]. Вестник Российского университета дружбы народов. Серия: Инженерные исследования, 1: 30−35.

    Google Scholar

    [80] Козлов С А, Новченко С А, Богач Г И, Томбасов И А, Пинаева Т А, Потемкина Л В, Ядрищенская Н Г, Абдукаримова С Ф, Куриленко А В, Раитина Н И, Ступак Ф М, Филипченко Ю А, Сверкунов В С, Егоров А С, Шор Г М, Алексеенко В Д, Беляев Г М, Руденко В Е. 2010. Государственная геологическая карта Российской Федерации. Масштаб 1∶1 000 000 (третье поколение). Серия АлданоЗабайкальская. Лист N–50–Сретенск. Объяснительная записка[R]. 1–377.

    Google Scholar

    [81] Козлов А В, Печенкин М М, Савичев А А, Бамбаев Т С. 2011. Новые черты глубинного строения Озернинского рудного узла по данным магнитотеллурического зондирования[J]. Записки Горного института, 189: 262−265.

    Google Scholar

    [82] Макарьев Л Б, Митрофанов Г Л, Митрофанова Н Н, Пай В М, Семейкина Л К. 2010. Государственная геологическая карта Российской Федерации масштаба 1∶1000000 (третье поколение). Серия Алдано–Забайкальская. Лист O–50 —Бодайбо. Объяснительная записка[R]. 1–623.

    Google Scholar

    [83] Петров Е И, Тетенькин Д Д. 2021. ГОСУДАРСТВЕННЫЙ ДОКЛАД О СОСТОЯНИИ И ИСПОЛЬЗОВАНИИ МИНЕРАЛЬНО–СЫРЬЕВЫХ РЕСУРСОВ РОССИЙСКОЙ ФЕДЕРАЦИИ в 2020 году[R]. Министерство природных ресурсов и экологии Российской Федерации Федеральное агентство по недропользованию (Роснедра), 1–572.

    Google Scholar

    [84] Чечеткин В С, Трубачев А И. 2014. Металлогения меди Центрально–Азиатской провинции[J]. Науки о Земле и недропользование, 3(46): 5−15.

    Google Scholar

    [85] 鲍庆中, 周永恒, 邵军, 柴璐, 王宏博, 张璟, 张哲寰. 2015. 远东东北部中生代造山带成矿地质背景——兼论鄂霍茨克—楚科奇火山深成岩带金属成矿作用[J]. 地质通报, 34(4): 605−617. doi: 10.3969/j.issn.1671-2552.2015.04.003

    CrossRef Google Scholar

    [86] 柴璐, 鲍庆中, 周永恒, 李霄. 2017. 东北亚地区铜矿资源与供需概况[J]. 矿产综合利用, (6): 26−30. doi: 10.3969/j.issn.1000-6532.2017.06.006

    CrossRef Google Scholar

    [87] 黄始琪, 董树文, 胡健民, 施炜, 陈宣华, 刘志强. 2016. 蒙古–鄂霍茨克构造带的形成与演化[J]. 地质学报, 90(9): 2192−2205.

    Google Scholar

    [88] 江思宏, 聂凤军, 苏永江, 白大明, 刘翼飞. 2010. 蒙古国额尔登特特大型铜–钼矿床年代学与成因研究[J]. 地球学报, 31(3): 289−306.

    Google Scholar

    [89] 李锦轶. 1988. 中国东北及邻区若干地质构造问题的新认识[J]. 地质论评, 44(4): 339−347.

    Google Scholar

    [90] 王涛, 张磊, 郭磊, 王晓霞, 李舢, 丰成友, 许文良, 童英, 张建军, 张洪瑞, 张成立, 毛建仁, 杨奇荻. 2014. 亚洲中生代花岗岩图初步编制及若干研究进展[J]. 地球学报, 35(6): 655−672.

    Google Scholar

    [91] 周永恒, 鲍庆中, 柴璐, 张哲寰, 时建民, 段瑞炎. 2013. 俄罗斯乌多坎砂岩型铜矿的成矿特征与找矿标志[J]. 地质科技情报, 32(5): 153−159.

    Google Scholar

    [92] 周永恒, 刘长纯, 吴涛涛, 鲍庆中, 吴大天. 2018a. 俄罗斯后贝加尔地区火山岩型铀矿地质特征与找矿模型[J]. 地质与勘探, 54(6): 1238−1246.

    Google Scholar

    [93] 周永恒, 张森, 吴涛涛, 鲍庆中, 吴大天, 柴璐, 刘金龙. 2018b. 俄罗斯铜矿资源勘查开发现状、潜力及投资建议[J]. 地质与勘探, 54(6): 1227−1237.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(1)

Article Metrics

Article views(37) PDF downloads(0) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint