Citation: | CAO Wengeng, WANG Yanyan, ZHANG Dong, SUN Xiaoyue, WEN Aixin, NA Jing. 2023. Research status and new development on heavy metals removal from industrial wastewater[J]. Geology in China, 50(3): 756-776. doi: 10.12029/gc20221128002 |
This paper is the result of hydrogeological survey engineering.
With the improvement of industrialization, the discharge of industrial wastewater containing heavy metals (such as arsenic, copper, chromium, cadmium, nickel, zinc, lead, mercury and manganese) is gradually increasing. Due to its non-biodegradability and long half-life, heavy metals in wastewater cause severe pollution in groundwater, surface water, soil and crops, seriously endangering the health of human beings, animals and plants. Therefore, it is necessary to remove these toxic heavy metals from industrial wastewater.
Based on the current status of heavy metal pollution in industrial wastewater, the current status and progress of heavy metal treatment in industrial wastewater are analyzed by comprehensively considering removal efficiency, treatment cost, sludge output, recyclability and other factors.
This paper presents the research of leading technologies on heavy metals removal from industrial wastewater. The internal mechanism, influencing factors (pH, temperature and heavy metal concentration) and the advantages and disadvantages of each technology are summarized. The development trend of heavy metal removal technology in industrial wastewater is proposed to provide a meaningful reference for the comprehensive treatment of industrial wastewater.
Various heavy metal removal technologies have broad prospects for heavy metal treatment with some drawbacks. Conventional physical and chemical methods have problems such as high sludge production, low removal efficiency and high energy consumption. In contrast, biological methods strongly depend on pH and temperature and the high demand for energy and maintenance. The combined process is a feasible method to improve the removal efficiency of heavy metals. Research and development of new natural adsorbents, membrane technology and biotechnology, and strengthening the comprehensive application of various technologies are effective ways to remove heavy metals from industrial wastewater.
Acero J L, Javier B F, Real F J, Teva F. 2016. Micropollutants removal from retentates generated in ultrafiltration and nanofiltration treatments of municipal secondary effluents by means of coagulation, oxidation, and adsorption processes[J]. Chemical Engineering Journal, 289: 48-58. doi: 10.1016/j.cej.2015.12.082 |
Aghababai B A, Akbar E. 2020. Biosorption, an efficient method for removing heavy metals from industrial effluents: A review[J]. Environmental Technology & Innovation, 17: 100503. |
Ahmed S F, Mofijur M, Nuzhat S, Chowdhury A T, Rafa N, Uddin M A, Inayat A, Mahlia TM I, Ong H C, Chia W Y, Show P L. 2021. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater[J]. Journal of Hazardous Materials, 416: 125912. doi: 10.1016/j.jhazmat.2021.125912 |
Ahmed S F, Mofijur M, Ahmed B, Mehnaz T, Mehejabin F, Maliat D, Hoang A T, Shafiullah G M. 2022. Nanomaterials as a sustainable choice for treating wastewater[J]. Environmental Research, 214(1): 113807. |
Al-Enezi G, Hamoda M F, Fawzi N. 2004. Ion exchange extraction of heavy metals from wastewater sludges[J]. Journal of Environmental Science and Health, 39(2): 455-464. doi: 10.1081/ESE-120027536 |
Ali I, Gupta V K. 2006. Advances in water treatment by adsorption technology[J]. Nature Protocols, 1(6): 2661-2667. doi: 10.1038/nprot.2006.370 |
Almubaddal F, Alrumaihi K, Ajbar A. 2009. Performance optimization of coagulation/flocculation in the treatment of wastewater from a polyvinyl chloride plant[J]. Journal of Hazardous Materials, 161(1): 431-438. doi: 10.1016/j.jhazmat.2008.03.121 |
Alyuz B, Veli S. 2009. Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins[J]. Journal of Hazardous Materials, 167(1/3): 482-488. |
An C J, Huang G, Yao Y, Zhao S. 2017. Emerging usage of electrocoagulation technology for oil removal from wastewater: A review[J]. Science of the Total Environmental, 579: 537-556. doi: 10.1016/j.scitotenv.2016.11.062 |
Arana J J, Christensen F M S, Wang Y, Wei Z. 2022. Electrodialysis for metal removal and recovery: A review[J]. Chemical Engineering Journal, 435(2): 134857. |
Asghar H M A, Hussain S N, Brown N W, Roberts E P L. 2019. Comparative adsorption-regeneration performance for newly developed carbonaceous adsorbent[J]. Journal of Industrial and Engineering Chemistry, 69: 90-98. doi: 10.1016/j.jiec.2018.09.012 |
Aslam M M A, Kuo H W, Den W, Usman M, Sultan M, Ashraf H. 2021. Functionalized carbon nanotubes (CNTs) for water and wastewater treatment: Preparation to application[J]. Sustainability, 13(10): 5717. doi: 10.3390/su13105717 |
Atta A M, Ismail H S, Elsaaed A M. 2012. Application of anionic acrylamide-based hydrogels in the removal of heavy metals from waste water[J]. Journal of Applied Polymer Science, 123(4): 2500-2510. doi: 10.1002/app.34798 |
Ayansina S A. 2017. A new strategy for heavy metal polluted environments: A review of microbial biosorbents[J]. International Journal of Environmental Research and Public Health, 14(1): 94. doi: 10.3390/ijerph14010094 |
Bai Y, Bartkiewicz B. 2009. Removal of cadmium from wastewater using ion[J]. Polish Journal of Environmental Studies, 18(6): 1191-1195. |
Bao Liran, Deng Hai, Jia Zhongmin, Li Yu, Dong Jinxiu, Yan Minhshu, Zhang Fenglei. 2020. Ecological and health risk assessment of heavy metals in farmland soil of northwest Xiushan, Chongqing[J]. Geology in China, 47(6): 1625-1636 (in Chinese with English abstract). |
Barakat M A. 2011. New trends in removing heavy metals from industrial wastewater[J]. Arabian Journal of Chemistry, 4(4): 361-377. doi: 10.1016/j.arabjc.2010.07.019 |
Bellouk H, Mrabet I E, Tanji K, Nawdali M, Benzina M, Eloussaief M, Zaitan H. 2022. Performance of coagulation-flocculation followed by ultra-violet/ultrasound activated persulfate/hydrogen peroxide for landfill leachate treatment[J]. Scientific African, 17: e01312. doi: 10.1016/j.sciaf.2022.e01312 |
Bolisetty S, Peydayesh M, Mezzenga R. 2019. Sustainable technologies for water purification from heavy metals: Review and analysis[J]. Chemical Society Reviews, 48(2): 463-487. doi: 10.1039/C8CS00493E |
Brbootl M M, AbiD B A, Al-ShuwaikI N M. 2011. Removal of heavy metals using chemicals precipitation[J]. Journal of Engineering Technology, 29(3): 595-612. |
Briffa J, Sinagra E, Blundell R. 2020. Heavy metal pollution in the environment and their toxicological effects on humans[J]. Heliyon, 6(9): e04691. doi: 10.1016/j.heliyon.2020.e04691 |
Campione A, Gurreri L, Ciofalo M, Micale G, Tamburini A, Cipollina A. 2018. Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications[J]. Desalination, 434: 121-160. doi: 10.1016/j.desal.2017.12.044 |
Carolin C F, Kumar P S, Saravanan A, Joshiba G J, Naushad M. 2017. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review[J]. Journal of Environmental Chemical Engineering, 5(3): 2782-2799. doi: 10.1016/j.jece.2017.05.029 |
Çelebi H, Gok G, Gok O. 2020. Adsorption capability of brewed tea waste in waters containing toxic lead(Ⅱ), cadmium(Ⅱ), nickel(Ⅱ), and zinc(Ⅱ) heavy metal ions[J]. Scientific Report, 10(1): 17570. doi: 10.1038/s41598-020-74553-4 |
Chai J B, Au P I, Mubarak N M, Khalid M, Ng W P, Jagadish P, Walvekar R, Abdullah E C. 2020. Adsorption of heavy metal from industrial wastewater onto low-cost Malaysian kaolin clay-based adsorbent[J]. Environmental Science and Pollution Research, 27(12): 13949-13962. doi: 10.1007/s11356-020-07755-y |
Chai W S, Cheun J Y, Kumar P S, Mubashir M, Majeed Z, Banat F, Ho S H, Show P L. 2021. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application[J]. Journal of Cleaner Production, 296: 126589. doi: 10.1016/j.jclepro.2021.126589 |
Chang L P, Cao Y J, Fan G X, Li C, Peng W J. 2019. A review of the applications of ion floatation: wastewater treatment, mineral beneficiation and hydrometallurgy[J]. RSC Advances, 9: 20226. doi: 10.1039/C9RA02905B |
Chaudhary A J, Goswami N C, Grimes S M. 2003. Electrolytic removal of hexavalent chromium from aqueous solutions[J]. Journal of Chemical Technology & Biotechnology, 78(8): 877-883. |
Cheballah K, Sahmoune A, Messaoudi K, Drouiche N, Lounici H. 2015. Simultaneous removal of hexavalent chromium and COD from industrial wastewater by bipolar electrocoagulation[J]. Chemical Engineering and Processing: Process Intensification, 96: 94-99. doi: 10.1016/j.cep.2015.08.007 |
Chen Q Y, Yao Y, Li X Y, Lu J, Zhou J, Huang Z L. 2018. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates[J]. Journal of Water Process Engineering, 26: 289-300. doi: 10.1016/j.jwpe.2018.11.003 |
Chen Zhenyu, Zhao Yuanyi, Chen Danli, Huang Haitao, Zhao Yu, Wu Yujing. 2023. Ecological risk assessment and early warning of heavy metal cumulation in the soils near the Luanchuan molybdenum polymetallic mine concentration area, Henan Province, central China[J]. China Geology, 6: 15-26. |
Dabrowski A, Hubicki Z, Podkoscielny P, Robens E. 2004. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method[J]. Chemosphere, 56(2): 91-106. doi: 10.1016/j.chemosphere.2004.03.006 |
Devda V, Chaudhary K, Varjani S, Pathak B, Patel A K, Singhania R R, Taherzadeh M J, Ngo H H, Wong J W C, Guo W, Chaturvedi P. 2021. Recovery of resources from industrial wastewater employing electrochemical technologies: status, advancements and perspectives[J]. Bioengineered, 12(1): 4697-4718. doi: 10.1080/21655979.2021.1946631 |
Dizge N, Keskinler B, Barlas H. 2009. Sorption of Ni(Ⅱ) ions from aqueous solution by Lewatit cation-exchange resin[J]. Journal of Hazardous Materials, 167(1/3): 915-926. |
Farah I A, Ahmed A M. 2011. Removal of copper ion from wastewater by flotation[J]. Journal of Engineering, 17(6): 1483-1491. |
Fatehizadeh A, Rahimi S, Ahmadian M, Barati R, Yousefi N, Moussavi S P, Rahimi K, Reshadat S, Ghasemi S R, Gilan N R. 2014. Photocatalytic removal of cadmium(Ⅱ) and lead(Ⅱ) from simulated wastewater at continuous and batch system[J]. International Journal of Environmental Health Engineering, 3(1): 31. doi: 10.4103/2277-9183.139756 |
Foo K Y, Hameed B H. 2009. A short review of activated carbon assisted electrosorption process: An overview, current stage and future prospects[J]. Journal of Hazardous Materials, 170(2/3): 552-559. |
Gad Y H. 2008. Preparation and characterization of poly(2-acrylamido-2-methylpropane-sulfonic acid)/Chitosan hydrogel using gamma irradiation and its application in wastewater treatment[J]. Radiation Physics and Chemistry, 77(9): 1101-1107. doi: 10.1016/j.radphyschem.2008.05.002 |
Gao J, Qiu Y R, Hou B, Zhang Q, Zhang X D. 2018. Treatment of wastewater containing nickel by complexation- ultrafiltration using sodium polyacrylate and the stability of PAA-Ni complex in the shear field[J]. Chemical Engineering Journal, 334: 1878-1885. doi: 10.1016/j.cej.2017.11.087 |
Gao Liya. 2022. Research progress of heavy metal water pollution treatment methods[J]. Chemical Engineer, 36(4): 56-60 (in Chinese with English abstract). |
Golob V, Vinder A, Simonic M. 2005. Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents[J]. Dyes and Pigments, 67(2): 93-97. doi: 10.1016/j.dyepig.2004.11.003 |
Gong Miaomiao, Wang Guangrong. 2018. Biological adsorbent and its research progress[J]. Journal of Chifeng University (Natural Science Edition), 34(6): 36-39 (in Chinese with English abstract). |
Hamdaoui O. 2009. Removal of copper(Ⅱ) from aqueous phase by Purolite C100-MB cation exchange resin in fixed bed columns: modeling[J]. Journal of Hazardous Materials, 161(2/3): 737-746. |
Hamdy A, Mostafa M K, Nasr M. 2018. Zero-valent iron nanoparticles for methylene blue removal from aqueous solutions and textile wastewater treatment, with cost estimation[J]. Water Science Technology, 78(1/2): 367-378. |
Haripriyan U, Gopinath K P, Arun J. 2022. Chitosan based nano adsorbents and its types for heavy metal removal: A mini review[J]. Materials Letters, 312: 131670. doi: 10.1016/j.matlet.2022.131670 |
Hazrat A, Ezzat K, Ikram I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation[J]. Journal of Chemistry, 2019: 1-14. |
He J, Strezov V, Kumar R, Weldekidan H, Jahan S, Dastjerdi B H, Zhou X T, Kan T. 2019. Pyrolysis of heavy metal contaminated avicennia marina biomass from phytoremediation: Characterisation of biomass and pyrolysis products[J]. Journal of Cleaner Production, 234: 1235-1245. doi: 10.1016/j.jclepro.2019.06.285 |
He S, Yang Z Q, Cui X D, Zhang X Y, Niu X J. 2020. Fabrication of the novel Ag-doped SnS2@InVO4 composite with high adsorption-photocatalysis for the removal of uranium (Ⅵ)[J]. Chemosphere, 260: 127548. doi: 10.1016/j.chemosphere.2020.127548 |
Hoseinian F S, Rezai B, Kowsari E, Safari M. 2019. A hybrid neural network/genetic algorithm to predict Zn(Ⅱ) removal by ion flotation[J]. Separation Science and Technology, 55(6): 1197-1206. |
Huang G X, Sun J C, Zhang Y, Chen Z Y, Liu F. 2013. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China[J]. Science of The Total Environment, 463-464: 209-221. doi: 10.1016/j.scitotenv.2013.05.078 |
Ihsanullah A A, Al-Amer A M, Laoui T, Al-Marri M J, Nasser M S, Khraisheh M, Atieh M A. 2016. Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications[J]. Separation and Purification Technology, 157: 141-161. doi: 10.1016/j.seppur.2015.11.039 |
Jafarigol E, Afshar G R, Hajipour A, Pahlevani H, Baghban S M. 2021. Tough dual-network GAMAAX hydrogel for the efficient removal of cadmium and nickle ions in wastewater treatment applications[J]. Journal of Industrial and Engineering Chemistry, 94: 352-360. doi: 10.1016/j.jiec.2020.11.006 |
Jéssica M N, Jorge D O, Andrea C L R, Seima G F L. 2019. Biosorption Cu(Ⅱ) by the yeast Saccharomyces cerevisiae[J]. Biotechnology Reports, 21: e00315. doi: 10.1016/j.btre.2019.e00315 |
Ji S M, Tiwari A P, Kim H Y. 2020. Graphene oxide coated zinc oxide core-shell nanofibers for enhanced photocatalytic performance and durability[J]. Coatings, 10(12): 1183. doi: 10.3390/coatings10121183 |
Kabdasli I, Arslan T, Olmez-Hanci T, Arslan-Alaton I, Tunay O. 2009. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes[J]. Journal of Hazardous Materials, 165(1/3): 838-845. |
Kabra K, Chaudhary R, Sawhney R L. 2008. Solar photocatalytic removal of metal ions from industrial wastewater[J]. Environmental Progress, 27(4): 487-495. doi: 10.1002/ep.10304 |
Kadirvelu K, Thamaraiselvi K, Namasivayam C. 2001. Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste[J]. Bioresource Technology, 76: 63-65. doi: 10.1016/S0960-8524(00)00072-9 |
Kang S Y, Lee J U, Moon S H, Kim K W. 2004. Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater[J]. Chemosphere, 56(2): 141-147. doi: 10.1016/j.chemosphere.2004.02.004 |
Khattab I A, Shaffei M F, Shaaban N A, Hussein H S, Abd E S S. 2013. Electrochemical removal of copper ions from dilute solutions using packed bed electrode. Part Ⅰ[J]. Egyptian Journal of Petroleum, 22(1): 199-203. doi: 10.1016/j.ejpe.2012.09.011 |
Kurniawan T A, Chan G Y S, Lo W H, Babel S. 2006. Physico-chemical treatment techniques for wastewater laden with heavy metals[J]. Chemical Engineering Journal, 118(1/2): 83-98. |
Kwak H W, Lee K H. 2018. Polyethylenimine-functionalized silk sericin beads for high-performance remediation of hexavalent chromium from aqueous solution[J]. Chemosphere, 207: 507-516. doi: 10.1016/j.chemosphere.2018.04.158 |
Ladeira A C Q, Morais C A. 2005. Uranium recovery from industrial effluent by ion exchange-column experiments[J]. Minerals Engineering, 18(13/14): 1337-1340. |
Lei C Y, Bian Y, Zhi F K, Hou X H, Lv C N, Hu Q. 2022. Enhanced adsorption capacity of cellulose hydrogel based on corn stalk for pollutants removal and mechanism exploration[J]. Journal of Cleaner Production, 375: 134130. doi: 10.1016/j.jclepro.2022.134130 |
Li Bowen, Yang Guijin. 2021. Research progress of heavy metal wastewater treatment technology[J]. Comprehensive Utilization of Resources in China, 39(11): 87-92 (in Chinese with English abstract). |
Li Xinjuan, Wang Wensheng, Tang Liang. 2020. Research on treatment methods of heavy metal pollution in water[J]. Guangzhou Chemical Industry, 48(5): 27-29 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-9677.2020.05.015 |
Liu H, Zhang F, Peng Z Y. 2019. Adsorption mechanism of Cr(Ⅵ) onto GO/PAMAMs composites[J]. Scientific Reports, 9(1): 3663. doi: 10.1038/s41598-019-40344-9 |
Liu Ruiping, Xu Youning, Zhang Jianghua, Wang Wenke, Rafaey M Elwardany. 2020. Effects of heavy metal pollution on farmland soils and crops: A case study of the Xiaoqinling Gold Belt, China[J]. China Geology, 3: 402-410. |
Ma L J, Islam S M, Liu H Y, Zhao J, Sun G B, Li H F, Ma S, Kanatzidis M G. 2017. Selective and efficient removal of toxic oxoanions of As(Ⅲ), As(Ⅴ), and Cr(Ⅵ)by layered double hydroxide intercalated with MoS42-[J]. Chemistry of Materials, 29: 3274-3284. doi: 10.1021/acs.chemmater.7b00618 |
Ma X F, Liu X, Anderson D P, Chang P R. 2015. Modification of porous starch for the adsorption of heavy metal ions from aqueous solution[J]. Food Chemistry, 181: 133-139. doi: 10.1016/j.foodchem.2015.02.089 |
Mani D, Kumar C, Patel N K. 2015. Hyperaccumulator oilcake manure as an alternative for chelate-induced phytoremediation of heavy metals contaminated alluvial soils[J]. International Journal of Phytoremediation, 17(1/6): 256-263. |
Mei Guangquan. 2004. Harm and treatment of heavy metal wastewater[J]. Journal of Trace Elements and Health Research, 21(4): 54-56 (in Chinese with English abstract). |
Mohd N N, Asyraf M R M, Khalina A, Abdullah N, Sabaruddin F A, Kamarudin S H, Ahmad S, Mahat A M, Lee C L, Aisyah H A, Norrrahim M N F, Ilyas R A, Harussani M M, Ishak M R, Sapuan S M. 2021. Fabrication, functionalization, and application of carbon nanotube-reinforced polymer composite: An overview[J]. Polymers (Basel), 13(7): 1047. doi: 10.3390/polym13071047 |
Molinari R, Argurio P. 2017. Arsenic removal from water by coupling photocatalysis and complexation- ultrafiltration processes: a preliminary study[J]. Water Research, 109: 327-336. doi: 10.1016/j.watres.2016.11.054 |
Muhammad E M H N, Obidul H A K, Binti Y R. 2016. The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: a review[J]. RSC Advances, 6(18): 14778-14791. doi: 10.1039/C5RA24358K |
Nabid M R, Sedghi R, Behbahani M, Arvan B, Heravi M M, Oskooie H A. 2014. Application of poly 1, 8-diaminonaphthalene/multiwalled carbon nanotubes-COOH hybrid material as an efficient sorbent for trace determination of cadmium and lead ions in water samples[J]. Journal of Molecular Recognition, 27(7): 421-428. doi: 10.1002/jmr.2361 |
Nanseu-Njiki C P, Tchamango S R, Ngom P C, Darchen A, Ngameni E. 2009. Mercury(Ⅱ) removal from water by electrocoagulation using aluminium and iron electrodes[J]. Journal of Hazardous Materials, 168(2/3): 1430-1436. |
Nazaripour M, Reshadi M A M, Mirbagheri S A, Nazaripour M, Bazargan A. 2021. Research trends of heavy metal removal from aqueous environments[J]. Journal of Environmental Management, 287: 112322. doi: 10.1016/j.jenvman.2021.112322 |
Nemati M, Hosseini S M, Shabanian M. 2017. Novel electrodialysis cation exchange membrane prepared by 2-acrylamido-2-methylpropane sulfonic acid; heavy metal ions removal[J]. Journal of Hazardous Materials, 337: 90-104. doi: 10.1016/j.jhazmat.2017.04.074 |
Niu Yile, Liu Yunguo, Lu Pei, Zhou Ming. 2005. Research progress on the status quo of ecological destruction and control technology of mines in China[J]. Environmental Science and Management, (5): 59-60, 66 (in Chinese with English abstract). |
Pandey L M. 2021. Surface engineering of nano-sorbents for the removal of heavy metals: Interfacial aspects[J]. Journal of Environmental Chemical Engineering, 9(1): 104586. doi: 10.1016/j.jece.2020.104586 |
Peng H, Guo J. 2020. Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: A review[J]. Environmental Chemistry Letters, 18: 2055-2068. doi: 10.1007/s10311-020-01058-x |
Perumal S, Atchudan R, Yoon D H, Joo J, Cheong I W. 2019. Spherical chitosan gelatin hydrogel particles for removalof multiple heavy metal[J]. Industrial & Engineering Chemistry Research, 58(23): 9900-9907. |
Plattes M, Bertrand A, Schmitt B, Sinner J, Verstraeten F, Welfring J. 2007. Removal of tungsten oxyanions from industrial wastewater by precipitation, coagulation and flocculation processes[J]. Journal of Hazardous Materials, 148(3): 613-615. doi: 10.1016/j.jhazmat.2007.03.016 |
Priyadarshanee M, Das S. 2021. Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: a comprehensive review[J]. Journal of Environmental Chemical Engineering, 9: 104686. doi: 10.1016/j.jece.2020.104686 |
Qiu H, Zhang S J, Pan B C, Zhang W M, Lü L. 2012. Effect of sulfate on Cu(Ⅱ) sorption to polymer-supported nano-iron oxides: behavior and XPS study[J]. Journal of Colloid and Interface Science, 366(1): 37-43. doi: 10.1016/j.jcis.2011.09.070 |
Rai P K, Lee S S, Zhang M, Tsang Y F, Kim K H. 2019. Heavy metals in food crops: Health risks, fate, mechanisms, and management[J]. Environment International, 125: 365-385. doi: 10.1016/j.envint.2019.01.067 |
Rajkumar D, Palanivelu K. 2004. Electrochemical treatment of industrial wastewater[J]. Journal of Hazardous Materials, 113(1/3): 123-129. |
Rangabhashiyam S, Nakkeeran E, Anu N, Selvaraju N. 2014. Biosorption potential of a novel powder, prepared from Ficus auriculata leaves, for sequestration of hexavalent chromium from aqueous solutions[J]. Research on Chemical Intermediates, 41(11): 8405-8424. |
Rehman K, Fatima F, Waheed I, Akash M S H. 2018. Prevalence of exposure of heavy metals and their impact on health consequences[J]. Journal or Cellular Biochemistry, 119(1): 157-184. doi: 10.1002/jcb.26234 |
Reig M, Vecino X, Valderrama C, Gibert O, Cortina J L. 2018. Application of selectrodialysis for the removal of As from metallurgical process waters: recovery of Cu and Zn[J]. Separation and Purification Technology, 195: 404-412. doi: 10.1016/j.seppur.2017.12.040 |
Ren G M, Han H T, Wang Y X, Liu S T, Zhao J Y, Meng X C, Li Z Z. 2021. Recent advances of photocatalytic application in water treatment: a review[J]. Nanomaterials (Basel), 11(7): 1804. doi: 10.3390/nano11071804 |
Rengaraj S, Joo C K, Kim Y, Yi J. 2003. Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H[J]. Journal of Hazardous Materials, 102(2/3): 257-275. |
Sanmuga P E, Senthamil S P. 2017. Water hyacinth (Eichhornia crassipes) - an efficient and economic adsorbent for textile effluent treatment - a review[J]. Arabian Journal of Chemistry, 10: 3548-3558. doi: 10.1016/j.arabjc.2014.03.002 |
Santhosh C, Velmurugan V, Jacob G, Jeong S K, Grace A N, Bhatnagar A. 2016. Role of nanomaterials in water treatment applications: A review[J]. Chemical Engineering Journal, 306: 1116-1137. doi: 10.1016/j.cej.2016.08.053 |
Santhy K, Selvapathy P. 2010. Removal of heavy metals from wastewater by adsorption on coir pith activated carbon[J]. Separation Science and Technology, 39(14): 3331-3351. |
Sepehri A, Sarrafzadeh M H, Avateffazeli M. 2020. Interaction between chlorella vulgaris and nitrifying-enriched activated sludge in the treatment of wastewater with low C/N ratio[J]. Journal of Cleaner Production, 247: 119164. doi: 10.1016/j.jclepro.2019.119164 |
Shafaqat A, Zohaib A, Muhammad R, Ihsan Z, İlkay Y, Aydın ü, Mohamed A D, May B J, Mirza H, Dimitris K. 2020. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review[J]. Sustainability, 12(5): 1927. doi: 10.3390/su12051927 |
Shen X F, Song L L Luo L, Zhang Y, Zhu B, Liu J S, Chen Z G, Zhang L S. 2018. Preparation of TiO2/C3N4 heterojunctions on carbon-fiber cloth as efficient filter-membrane-shaped photocatalyst for removing various pollutants from the flowing wastewater[J]. Journal of Colloid and Interface Science, 532: 798-807. doi: 10.1016/j.jcis.2018.08.028 |
Sher F, Malik A, Liu H. 2013. Industrial polymer effluent treatment by chemical coagulation and flocculation[J]. Journal of Environmental Chemical Engineering, 1(4): 684-689. doi: 10.1016/j.jece.2013.07.003 |
Shrestha R, Ban S, Devkota S, Sharma S, Joshi R, Tiwari A P, Kim H Y, Joshi M K. 2021. Technological trends in heavy metals removal from industrial wastewater: a review[J]. Journal of Environmental Chemical Engineering, 9(4): 105688. doi: 10.1016/j.jece.2021.105688 |
Singh N B, Nagpal G, Agrawal S, Rachna. 2018. Water purification by using adsorbents: A review[J]. Environmental Technology & Innovation, 11: 187-240. doi: 10.3969/j.issn.1004-7204.2018.z1.040 |
Somu P, Paul S. 2018. Casein based biogenic-synthesized zinc oxide nanoparticles simultaneously decontaminate heavy metals, dyes, and pathogenic microbes: A rational strategy for wastewater treatment[J]. Journal of Chemical Technology & Biotechnology, 93(10): 2962-2976. |
State Administration for Market Regulation and Standardization Administration. 2022. Standards for Drinking Water Quality (GB 5749-2022)[S] (in Chinese). |
Su S, Wu W H, Gao J M, Lu J X, Fan C H. 2012. Nanomaterials-based sensors for applications in environmental monitoring[J]. Journal of Materials Chemistry, 22(35): 18101. doi: 10.1039/c2jm33284a |
Sultana N, Hossain S M Z, Mohammed M E, Irfan M F, Haq B, Faruque M O, Razzak S A, Hossain M M. 2020. Experimental study and parameters optimization of microalgae based heavy metals removal process using a hybrid response surface methodology-crow search algorithm[J]. Scientific Reports, 10(1): 15068. doi: 10.1038/s41598-020-72236-8 |
Sun Ken, Hua Yufeng, Wang Zhenyue. 2022. Research on heavy metal pollution and health risk assessment of industrial wastewater[J]. Journal of North China University of Water Resources and Hydropower (Natural Science Edition), 43(3): 99-108 (in Chinese with English abstract). |
Teh C Y, Budiman P M, Shak K P Y, Wu T Y. 2016. Recent advancement of coagulation-flocculation and its application in wastewater treatment[J]. Industrial & Engineering Chemistry Research, 55(16): 4363-4389. |
Thomas B, Alexander L K. 2020. Removal of Pb2+ and Cd2+ toxic heavy metal ions driven by Fermi level modification in NiFe2O4-Pd nano hybrids[J]. Journal of Solid State Chemistry, 288: 121417. doi: 10.1016/j.jssc.2020.121417 |
Tran T K, Chiu K F, Lin C Y, Leu H J. 2017. Electrochemical treatment of wastewater: Selectivity of the heavy metals removal process[J]. International Journal of Hydrogen Energy, 42(45): 27741-27748. doi: 10.1016/j.ijhydene.2017.05.156 |
Wahaab R A, Moawad A, Taleb E, Ibrahim H S, El-Nazer H. 2010. Combined photocatalytic oxidation and chemical coagulation for cyanide and heavy metals removal from electroplating wastewater[J]. World Applied Sciences Journal, 8(4): 462-469. |
Wahyusi K N, Utami L I, Aprilio S, Fergina N. 2020. Reduction of Pb and Cr levels in paper industrial liquid waste with ion exchange method[J]. Journal of Physics: Conference Series, 1569(4): 042054. doi: 10.1088/1742-6596/1569/4/042054 |
Wang J L, Tang X B, Liang H, Bai L M, Xie B H, Xing J J, Wang T Y, Zhao J, Li G B. 2020. Efficient recovery of divalent metals from nanofiltration concentrate based on a hybrid process coupling single-cation electrolysis (SCE) with ultrafiltration (UF)[J]. Journal of Membrane Science, 602: 117953. doi: 10.1016/j.memsci.2020.117953 |
Wang L X, Li J C, Jiang Q, Zhao L J. 2012. Water-soluble Fe3O4 nanoparticles with high solubility for removal of heavy-metal ions from waste water[J]. Dalton Trans, 41(15): 4544-4551. doi: 10.1039/c2dt11827k |
Wang Y, Meng D P, Fei L, Dong Q, Wang Z L. 2019. A novel phytoextraction strategy based on harvesting the dead leaves: cadmium distribution and chelator regulations among leaves of tall fescue[J]. Science of the Total Environment, 650(2): 3041-3047. |
Wattigney W A, Irvin-Barnwell E, Li Z, Davis S I, Manente S, Maqsood J, Scher D, Messing R, Schuldt N, Hwang S A, Aldous K M, Lewis-Michl E L, Ragin-Wilson A. 2019. Biomonitoring programs in Michigan, Minnesota and New York to assess human exposure to Great Lakes contaminants[J]. International Journal of Hygiene and Environmental Health, 222(1): 125-135. doi: 10.1016/j.ijheh.2018.08.012 |
Wei Lai. 2017. Research progress of synthetic hydrogel materials and their treatment of heavy metal ions in water[J]. Journal of Hubei University (Natureal Science), 39(1): 1-6 (in Chinese with English abstract). |
Wei X Z, Kong X, Wang S X, Xiang H, Wang J D, Chen J Y. 2013. Removal of heavy metals from electroplating wastewater by thin-film composite nanofiltration hollow-fiber membranes[J]. Industrial & Engineering Chemistry Research, 52(49): 17583-17590. |
WHO. 2017. Guidelines for drinking-water quality: Fourth edition incorporating the first addendum[J]. World Health Organization. |
Widrig C A, Porter M D, Ryan M D, Strein T G, Ewing A G. 1990. Dynamic electrochemistry: Methodology and application[J]. Analytical Chemistry, 62(12): 1R. doi: 10.1021/ac00211a001 |
Wu R P. 2019. Removal of heavy metal ions from industrial wastewater based on chemical precipitation method[J]. Ekoloji, 28(107): 2443-2452. |
Xu Zhenmin, Shi Liyi. 2020. Research progress of photocatalytic removal of heavy metal ions from water[J]. Journal of Shanghai University (Natural Science Edition), 26(4): 491-505 (in Chinese with English abstract). |
Yan R H, Luo D Y, Fu C Y, Tian W, Wu P, Wang Y, Zhang H, Jiang W. 2020. Simultaneous removal of Cu(Ⅱ) and Cr(Ⅵ) ions from wastewater by photoreduction with TiO2-ZrO2[J]. Journal of Water Process Engineering, 33: 101052. doi: 10.1016/j.jwpe.2019.101052 |
Yang J Y, Hou B H, Wang J K, Tian B Q, Bi J T, Wang N, Li X, Huang X. 2019. Nanomaterials for the removal of heavy metals from wastewater[J]. Nanomaterials (Basel), 9(3): 123. |
Yang Weilong, Bai Yuming, Li Yongli, Hu Haoyuan, Du Xin. 2022. Plant optimal screening for contaminated soil remediation in an iron mining tailing of Baotou, Inner Monglia[J]. Geology in China, 49(3): 683-694 (in Chinese with English abstract). |
Yu Yongquan, Huang Weiwei, Dong Jianjiang, Zhu Qifa, Lu Diannna, Liu Yongming. 2017. Study on the mechanism of adsorption of heavy metal cadmium by Pseudomonas nitroreducers[J]. China Environmental Science, 37(6): 2232-2238 (in Chinese with English abstract). |
Zakeri K M, Abdollahy M, Khalesi M R, Rezai B. 2020. Selective separation of neodymium from synthetic wastewater by ion flotation[J]. Separation Science and Technology, 56(10): 1802-1810. |
Zhang C Q, Hu Z Q, Li P, Gajaraj S. 2016. Governing factors affecting the impacts of silver nanoparticles on wastewater treatment[J]. Science of the Total Environment, 572: 852-873. doi: 10.1016/j.scitotenv.2016.07.145 |
Zhang J F, Li Y, Xie X D, Zhu W H, Meng X G. 2019. Fate of adsorbed Pb(Ⅱ) on graphene oxide under variable redox potential controlled by electrochemical method[J]. Journal of Hazardous Materials, 367: 152-159. doi: 10.1016/j.jhazmat.2018.12.073 |
Zhang X S, Zhang M M, He J, Wang Q X, Li D S. 2019. The spatial-temporal characteristics of cultivated land and its influential factors in the low hilly region: A case study of Lishan Town, Hubei Province, China[J]. Sustainability, 11(14): 3810. doi: 10.3390/su11143810 |
Zhao D P, Wu X. 2018. Nanoparticles assembled SnO2 nanosheet photocatalysts for wastewater purification[J]. Materials Letters, 210: 354-357. doi: 10.1016/j.matlet.2017.09.068 |
Zhou Q Q, Yang N, Li Y Z, Ren B, Ding X H, Bian H L, Yao X. 2020. Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017[J]. Global Ecology and Conservation, 22: e00925. doi: 10.1016/j.gecco.2020.e00925 |
Zhu G C, Zheng H L, Zhang Z, Tshukudu T, Zhang P, Xiang X Y. 2011. Characterization and coagulation- flocculation behavior of polymeric aluminum ferric sulfate (PAFS)[J]. Chemical Engineering Journal, 178: 50-59. doi: 10.1016/j.cej.2011.10.008 |
Zhu W P, Sun S P, Gao J, Fu F J, Chung T S. 2014. Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater[J]. Journal of Membrane Science, 456: 117-127. doi: 10.1016/j.memsci.2014.01.001 |
Zhu Y, Fan W H, Zhou T T, Li X M. 2019. Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms[J]. Science of the Total Environment, 678: 253-266. doi: 10.1016/j.scitotenv.2019.04.416 |
Zuo J X, Fan W H, Wang X L, Ren J Q, Zhang Y, Wang X R, Zhang Y, Yu T, Li X M. 2018. Trophic transfer of Cu, Zn, Cd, and Cr, and biomarker response for food webs in Taihu Lake, China[J]. RSC Advances, 8(7): 3410-3417. doi: 10.1039/C7RA11677B |
鲍丽然, 邓海, 贾中民, 李瑜, 董金秀, 严明书, 张风雷. 2020. 重庆秀山西北部农田土壤重金属生态健康风险评价[J]. 中国地质, 47(6): 1625-1636. |
高利亚. 2022. 重金属水污染处理方法的研究进展[J]. 化学工程师, 36(4): 56-60. |
国家市场监督管理总局和国家标准化管理委员会. 2022. 生活饮用水卫生标准(GB 5749-2022)[S]. |
巩苗苗, 王光荣. 2018. 生物吸附剂及其研究进展[J]. 赤峰学院学报(自然科学版), 34(6): 36-39. |
李博文, 杨桂锦. 2021. 重金属废水处理技术研究进展[J]. 中国资源综合利用, 39(11): 87-92. doi: 10.3969/j.issn.1008-9500.2021.11.024 |
李欣娟, 王文生, 唐亮. 2020. 水中重金属污染处理方法研究[J]. 广州化工, 48(5): 27-29. doi: 10.3969/j.issn.1001-9677.2020.05.015 |
梅光泉. 2004. 重金属废水的危害及治理[J]. 微量元素与健康研究杂志, 21(4): 54-56. |
牛一乐, 刘云国, 路培, 周鸣. 2005. 中国矿山生态破坏现状及治理技术研究进展[J]. 环境科学与管理, (5): 59-60, 66. |
孙垦, 华宇峰, 王镇岳. 2022. 工业废水重金属污染与健康风险评价研究[J]. 华北水利水电大学学报(自然科学版), 43(3): 99-108. doi: 10.19760/j.ncwu.zk.2022041 |
魏来. 2017. 合成水凝胶材料及其对水体中重金属离子处理的研究进展[J]. 湖北大学学报(自然科学版), 39(1): 1-6. doi: 10.3969/j.issn.1000-2375.2017.01.001 |
许振民, 施利毅. 2020. 光催化去除水体中重金属离子的研究进展[J]. 上海大学学报(自然科学版), 26(4): 491-505. |
杨伟龙, 白宇明, 李永利, 胡浩远, 杜鑫. 2022. 内蒙古包头某铁矿尾矿库生态修复的植物优选研究[J]. 中国地质, 49(3): 683-694. |
喻涌泉, 黄魏魏, 董建江, 朱启法, 卢滇楠, 刘永民. 2017. 硝基还原假单胞菌吸附重金属镉的机理研究[J]. 中国环境科学, 37(6): 2232-2238. |
Chemical precipitation model (after Peng and Guo, 2020)
Schematic diagram of different adsorption types (after Chai et al., 2021)
Schematic diagram of the overall process of ion flotation (after Chang et al., 2019)
Dominant phases and possible binding modes of MoS42- with HAsO42- in the LDH Gellery (after Ma et al., 2017)
Coagulation and flocculation processes (after Teh et al., 2016)
Schematic diagram of electrochemical process (after Tran et al., 2017)
Mechanism diagram of heavy metal removal by chitosan based nano adsorbent (after Haripriyan et al., 2022)
Schematic diagram of Pb2+ removal by hydrogel (after Lei et al., 2022)
Mechanism involved in heavy metal biosorption by bacterial biomass (after Priyadarshanee and Das, 2021)
Schematic diagram of membrane separation principle (after Zhu et al., 2019)
Schematic of a three compartment ED setup, where CEM is cation exchange membranes and AEM is anion exchange membranes (after Arana et al., 2022)
Photocatalytic processes on heterogeneous photocatalysts, where Eg is the band-gap energy, h+ is holes, VB is valance band, and CB is conduction band (after Ren et al., 2021)