2023 Vol. 50, No. 3
Article Contents

CAO Wengeng, WANG Yanyan, ZHANG Dong, SUN Xiaoyue, WEN Aixin, NA Jing. 2023. Research status and new development on heavy metals removal from industrial wastewater[J]. Geology in China, 50(3): 756-776. doi: 10.12029/gc20221128002
Citation: CAO Wengeng, WANG Yanyan, ZHANG Dong, SUN Xiaoyue, WEN Aixin, NA Jing. 2023. Research status and new development on heavy metals removal from industrial wastewater[J]. Geology in China, 50(3): 756-776. doi: 10.12029/gc20221128002

Research status and new development on heavy metals removal from industrial wastewater

    Fund Project: Supported by National Key Research and Development Plan Project (2022YFC3703701), National Natural Science Foundation of China (No.41972262) and Excellent Youth Science Foundation of Hebei Natural Science Foundation (No. D2020504032)
More Information
  • Author Bio: CAO Wengeng, male, born in 1985, Ph.D., associate professor, mainly engaged in hydrogeology and hydrogeochemistry; E-mail: caowengeng@mail.cgs.gov.cn
  • Corresponding author: WANG Yanyan, female, born in 1987, master, assistant researcher, mainly engaged in the research of water pollution control; E-mail: wangyanyan@mail.cgs.gov.cn 
  • This paper is the result of hydrogeological survey engineering.

    Objective

    With the improvement of industrialization, the discharge of industrial wastewater containing heavy metals (such as arsenic, copper, chromium, cadmium, nickel, zinc, lead, mercury and manganese) is gradually increasing. Due to its non-biodegradability and long half-life, heavy metals in wastewater cause severe pollution in groundwater, surface water, soil and crops, seriously endangering the health of human beings, animals and plants. Therefore, it is necessary to remove these toxic heavy metals from industrial wastewater.

    Methods

    Based on the current status of heavy metal pollution in industrial wastewater, the current status and progress of heavy metal treatment in industrial wastewater are analyzed by comprehensively considering removal efficiency, treatment cost, sludge output, recyclability and other factors.

    Results

    This paper presents the research of leading technologies on heavy metals removal from industrial wastewater. The internal mechanism, influencing factors (pH, temperature and heavy metal concentration) and the advantages and disadvantages of each technology are summarized. The development trend of heavy metal removal technology in industrial wastewater is proposed to provide a meaningful reference for the comprehensive treatment of industrial wastewater.

    Conclusions

    Various heavy metal removal technologies have broad prospects for heavy metal treatment with some drawbacks. Conventional physical and chemical methods have problems such as high sludge production, low removal efficiency and high energy consumption. In contrast, biological methods strongly depend on pH and temperature and the high demand for energy and maintenance. The combined process is a feasible method to improve the removal efficiency of heavy metals. Research and development of new natural adsorbents, membrane technology and biotechnology, and strengthening the comprehensive application of various technologies are effective ways to remove heavy metals from industrial wastewater.

  • 加载中
  • Acero J L, Javier B F, Real F J, Teva F. 2016. Micropollutants removal from retentates generated in ultrafiltration and nanofiltration treatments of municipal secondary effluents by means of coagulation, oxidation, and adsorption processes[J]. Chemical Engineering Journal, 289: 48-58. doi: 10.1016/j.cej.2015.12.082

    CrossRef Google Scholar

    Aghababai B A, Akbar E. 2020. Biosorption, an efficient method for removing heavy metals from industrial effluents: A review[J]. Environmental Technology & Innovation, 17: 100503.

    Google Scholar

    Ahmed S F, Mofijur M, Nuzhat S, Chowdhury A T, Rafa N, Uddin M A, Inayat A, Mahlia TM I, Ong H C, Chia W Y, Show P L. 2021. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater[J]. Journal of Hazardous Materials, 416: 125912. doi: 10.1016/j.jhazmat.2021.125912

    CrossRef Google Scholar

    Ahmed S F, Mofijur M, Ahmed B, Mehnaz T, Mehejabin F, Maliat D, Hoang A T, Shafiullah G M. 2022. Nanomaterials as a sustainable choice for treating wastewater[J]. Environmental Research, 214(1): 113807.

    Google Scholar

    Al-Enezi G, Hamoda M F, Fawzi N. 2004. Ion exchange extraction of heavy metals from wastewater sludges[J]. Journal of Environmental Science and Health, 39(2): 455-464. doi: 10.1081/ESE-120027536

    CrossRef Google Scholar

    Ali I, Gupta V K. 2006. Advances in water treatment by adsorption technology[J]. Nature Protocols, 1(6): 2661-2667. doi: 10.1038/nprot.2006.370

    CrossRef Google Scholar

    Almubaddal F, Alrumaihi K, Ajbar A. 2009. Performance optimization of coagulation/flocculation in the treatment of wastewater from a polyvinyl chloride plant[J]. Journal of Hazardous Materials, 161(1): 431-438. doi: 10.1016/j.jhazmat.2008.03.121

    CrossRef Google Scholar

    Alyuz B, Veli S. 2009. Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins[J]. Journal of Hazardous Materials, 167(1/3): 482-488.

    Google Scholar

    An C J, Huang G, Yao Y, Zhao S. 2017. Emerging usage of electrocoagulation technology for oil removal from wastewater: A review[J]. Science of the Total Environmental, 579: 537-556. doi: 10.1016/j.scitotenv.2016.11.062

    CrossRef Google Scholar

    Arana J J, Christensen F M S, Wang Y, Wei Z. 2022. Electrodialysis for metal removal and recovery: A review[J]. Chemical Engineering Journal, 435(2): 134857.

    Google Scholar

    Asghar H M A, Hussain S N, Brown N W, Roberts E P L. 2019. Comparative adsorption-regeneration performance for newly developed carbonaceous adsorbent[J]. Journal of Industrial and Engineering Chemistry, 69: 90-98. doi: 10.1016/j.jiec.2018.09.012

    CrossRef Google Scholar

    Aslam M M A, Kuo H W, Den W, Usman M, Sultan M, Ashraf H. 2021. Functionalized carbon nanotubes (CNTs) for water and wastewater treatment: Preparation to application[J]. Sustainability, 13(10): 5717. doi: 10.3390/su13105717

    CrossRef Google Scholar

    Atta A M, Ismail H S, Elsaaed A M. 2012. Application of anionic acrylamide-based hydrogels in the removal of heavy metals from waste water[J]. Journal of Applied Polymer Science, 123(4): 2500-2510. doi: 10.1002/app.34798

    CrossRef Google Scholar

    Ayansina S A. 2017. A new strategy for heavy metal polluted environments: A review of microbial biosorbents[J]. International Journal of Environmental Research and Public Health, 14(1): 94. doi: 10.3390/ijerph14010094

    CrossRef Google Scholar

    Bai Y, Bartkiewicz B. 2009. Removal of cadmium from wastewater using ion[J]. Polish Journal of Environmental Studies, 18(6): 1191-1195.

    Google Scholar

    Bao Liran, Deng Hai, Jia Zhongmin, Li Yu, Dong Jinxiu, Yan Minhshu, Zhang Fenglei. 2020. Ecological and health risk assessment of heavy metals in farmland soil of northwest Xiushan, Chongqing[J]. Geology in China, 47(6): 1625-1636 (in Chinese with English abstract).

    Google Scholar

    Barakat M A. 2011. New trends in removing heavy metals from industrial wastewater[J]. Arabian Journal of Chemistry, 4(4): 361-377. doi: 10.1016/j.arabjc.2010.07.019

    CrossRef Google Scholar

    Bellouk H, Mrabet I E, Tanji K, Nawdali M, Benzina M, Eloussaief M, Zaitan H. 2022. Performance of coagulation-flocculation followed by ultra-violet/ultrasound activated persulfate/hydrogen peroxide for landfill leachate treatment[J]. Scientific African, 17: e01312. doi: 10.1016/j.sciaf.2022.e01312

    CrossRef Google Scholar

    Bolisetty S, Peydayesh M, Mezzenga R. 2019. Sustainable technologies for water purification from heavy metals: Review and analysis[J]. Chemical Society Reviews, 48(2): 463-487. doi: 10.1039/C8CS00493E

    CrossRef Google Scholar

    Brbootl M M, AbiD B A, Al-ShuwaikI N M. 2011. Removal of heavy metals using chemicals precipitation[J]. Journal of Engineering Technology, 29(3): 595-612.

    Google Scholar

    Briffa J, Sinagra E, Blundell R. 2020. Heavy metal pollution in the environment and their toxicological effects on humans[J]. Heliyon, 6(9): e04691. doi: 10.1016/j.heliyon.2020.e04691

    CrossRef Google Scholar

    Campione A, Gurreri L, Ciofalo M, Micale G, Tamburini A, Cipollina A. 2018. Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications[J]. Desalination, 434: 121-160. doi: 10.1016/j.desal.2017.12.044

    CrossRef Google Scholar

    Carolin C F, Kumar P S, Saravanan A, Joshiba G J, Naushad M. 2017. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review[J]. Journal of Environmental Chemical Engineering, 5(3): 2782-2799. doi: 10.1016/j.jece.2017.05.029

    CrossRef Google Scholar

    Çelebi H, Gok G, Gok O. 2020. Adsorption capability of brewed tea waste in waters containing toxic lead(Ⅱ), cadmium(Ⅱ), nickel(Ⅱ), and zinc(Ⅱ) heavy metal ions[J]. Scientific Report, 10(1): 17570. doi: 10.1038/s41598-020-74553-4

    CrossRef Google Scholar

    Chai J B, Au P I, Mubarak N M, Khalid M, Ng W P, Jagadish P, Walvekar R, Abdullah E C. 2020. Adsorption of heavy metal from industrial wastewater onto low-cost Malaysian kaolin clay-based adsorbent[J]. Environmental Science and Pollution Research, 27(12): 13949-13962. doi: 10.1007/s11356-020-07755-y

    CrossRef Google Scholar

    Chai W S, Cheun J Y, Kumar P S, Mubashir M, Majeed Z, Banat F, Ho S H, Show P L. 2021. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application[J]. Journal of Cleaner Production, 296: 126589. doi: 10.1016/j.jclepro.2021.126589

    CrossRef Google Scholar

    Chang L P, Cao Y J, Fan G X, Li C, Peng W J. 2019. A review of the applications of ion floatation: wastewater treatment, mineral beneficiation and hydrometallurgy[J]. RSC Advances, 9: 20226. doi: 10.1039/C9RA02905B

    CrossRef Google Scholar

    Chaudhary A J, Goswami N C, Grimes S M. 2003. Electrolytic removal of hexavalent chromium from aqueous solutions[J]. Journal of Chemical Technology & Biotechnology, 78(8): 877-883.

    Google Scholar

    Cheballah K, Sahmoune A, Messaoudi K, Drouiche N, Lounici H. 2015. Simultaneous removal of hexavalent chromium and COD from industrial wastewater by bipolar electrocoagulation[J]. Chemical Engineering and Processing: Process Intensification, 96: 94-99. doi: 10.1016/j.cep.2015.08.007

    CrossRef Google Scholar

    Chen Q Y, Yao Y, Li X Y, Lu J, Zhou J, Huang Z L. 2018. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates[J]. Journal of Water Process Engineering, 26: 289-300. doi: 10.1016/j.jwpe.2018.11.003

    CrossRef Google Scholar

    Chen Zhenyu, Zhao Yuanyi, Chen Danli, Huang Haitao, Zhao Yu, Wu Yujing. 2023. Ecological risk assessment and early warning of heavy metal cumulation in the soils near the Luanchuan molybdenum polymetallic mine concentration area, Henan Province, central China[J]. China Geology, 6: 15-26.

    Google Scholar

    Dabrowski A, Hubicki Z, Podkoscielny P, Robens E. 2004. Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method[J]. Chemosphere, 56(2): 91-106. doi: 10.1016/j.chemosphere.2004.03.006

    CrossRef Google Scholar

    Devda V, Chaudhary K, Varjani S, Pathak B, Patel A K, Singhania R R, Taherzadeh M J, Ngo H H, Wong J W C, Guo W, Chaturvedi P. 2021. Recovery of resources from industrial wastewater employing electrochemical technologies: status, advancements and perspectives[J]. Bioengineered, 12(1): 4697-4718. doi: 10.1080/21655979.2021.1946631

    CrossRef Google Scholar

    Dizge N, Keskinler B, Barlas H. 2009. Sorption of Ni(Ⅱ) ions from aqueous solution by Lewatit cation-exchange resin[J]. Journal of Hazardous Materials, 167(1/3): 915-926.

    Google Scholar

    Farah I A, Ahmed A M. 2011. Removal of copper ion from wastewater by flotation[J]. Journal of Engineering, 17(6): 1483-1491.

    Google Scholar

    Fatehizadeh A, Rahimi S, Ahmadian M, Barati R, Yousefi N, Moussavi S P, Rahimi K, Reshadat S, Ghasemi S R, Gilan N R. 2014. Photocatalytic removal of cadmium(Ⅱ) and lead(Ⅱ) from simulated wastewater at continuous and batch system[J]. International Journal of Environmental Health Engineering, 3(1): 31. doi: 10.4103/2277-9183.139756

    CrossRef Google Scholar

    Foo K Y, Hameed B H. 2009. A short review of activated carbon assisted electrosorption process: An overview, current stage and future prospects[J]. Journal of Hazardous Materials, 170(2/3): 552-559.

    Google Scholar

    Gad Y H. 2008. Preparation and characterization of poly(2-acrylamido-2-methylpropane-sulfonic acid)/Chitosan hydrogel using gamma irradiation and its application in wastewater treatment[J]. Radiation Physics and Chemistry, 77(9): 1101-1107. doi: 10.1016/j.radphyschem.2008.05.002

    CrossRef Google Scholar

    Gao J, Qiu Y R, Hou B, Zhang Q, Zhang X D. 2018. Treatment of wastewater containing nickel by complexation- ultrafiltration using sodium polyacrylate and the stability of PAA-Ni complex in the shear field[J]. Chemical Engineering Journal, 334: 1878-1885. doi: 10.1016/j.cej.2017.11.087

    CrossRef Google Scholar

    Gao Liya. 2022. Research progress of heavy metal water pollution treatment methods[J]. Chemical Engineer, 36(4): 56-60 (in Chinese with English abstract).

    Google Scholar

    Golob V, Vinder A, Simonic M. 2005. Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents[J]. Dyes and Pigments, 67(2): 93-97. doi: 10.1016/j.dyepig.2004.11.003

    CrossRef Google Scholar

    Gong Miaomiao, Wang Guangrong. 2018. Biological adsorbent and its research progress[J]. Journal of Chifeng University (Natural Science Edition), 34(6): 36-39 (in Chinese with English abstract).

    Google Scholar

    Hamdaoui O. 2009. Removal of copper(Ⅱ) from aqueous phase by Purolite C100-MB cation exchange resin in fixed bed columns: modeling[J]. Journal of Hazardous Materials, 161(2/3): 737-746.

    Google Scholar

    Hamdy A, Mostafa M K, Nasr M. 2018. Zero-valent iron nanoparticles for methylene blue removal from aqueous solutions and textile wastewater treatment, with cost estimation[J]. Water Science Technology, 78(1/2): 367-378.

    Google Scholar

    Haripriyan U, Gopinath K P, Arun J. 2022. Chitosan based nano adsorbents and its types for heavy metal removal: A mini review[J]. Materials Letters, 312: 131670. doi: 10.1016/j.matlet.2022.131670

    CrossRef Google Scholar

    Hazrat A, Ezzat K, Ikram I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation[J]. Journal of Chemistry, 2019: 1-14.

    Google Scholar

    He J, Strezov V, Kumar R, Weldekidan H, Jahan S, Dastjerdi B H, Zhou X T, Kan T. 2019. Pyrolysis of heavy metal contaminated avicennia marina biomass from phytoremediation: Characterisation of biomass and pyrolysis products[J]. Journal of Cleaner Production, 234: 1235-1245. doi: 10.1016/j.jclepro.2019.06.285

    CrossRef Google Scholar

    He S, Yang Z Q, Cui X D, Zhang X Y, Niu X J. 2020. Fabrication of the novel Ag-doped SnS2@InVO4 composite with high adsorption-photocatalysis for the removal of uranium (Ⅵ)[J]. Chemosphere, 260: 127548. doi: 10.1016/j.chemosphere.2020.127548

    CrossRef Google Scholar

    Hoseinian F S, Rezai B, Kowsari E, Safari M. 2019. A hybrid neural network/genetic algorithm to predict Zn(Ⅱ) removal by ion flotation[J]. Separation Science and Technology, 55(6): 1197-1206.

    Google Scholar

    Huang G X, Sun J C, Zhang Y, Chen Z Y, Liu F. 2013. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China[J]. Science of The Total Environment, 463-464: 209-221. doi: 10.1016/j.scitotenv.2013.05.078

    CrossRef Google Scholar

    Ihsanullah A A, Al-Amer A M, Laoui T, Al-Marri M J, Nasser M S, Khraisheh M, Atieh M A. 2016. Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications[J]. Separation and Purification Technology, 157: 141-161. doi: 10.1016/j.seppur.2015.11.039

    CrossRef Google Scholar

    Jafarigol E, Afshar G R, Hajipour A, Pahlevani H, Baghban S M. 2021. Tough dual-network GAMAAX hydrogel for the efficient removal of cadmium and nickle ions in wastewater treatment applications[J]. Journal of Industrial and Engineering Chemistry, 94: 352-360. doi: 10.1016/j.jiec.2020.11.006

    CrossRef Google Scholar

    Jéssica M N, Jorge D O, Andrea C L R, Seima G F L. 2019. Biosorption Cu(Ⅱ) by the yeast Saccharomyces cerevisiae[J]. Biotechnology Reports, 21: e00315. doi: 10.1016/j.btre.2019.e00315

    CrossRef Google Scholar

    Ji S M, Tiwari A P, Kim H Y. 2020. Graphene oxide coated zinc oxide core-shell nanofibers for enhanced photocatalytic performance and durability[J]. Coatings, 10(12): 1183. doi: 10.3390/coatings10121183

    CrossRef Google Scholar

    Kabdasli I, Arslan T, Olmez-Hanci T, Arslan-Alaton I, Tunay O. 2009. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes[J]. Journal of Hazardous Materials, 165(1/3): 838-845.

    Google Scholar

    Kabra K, Chaudhary R, Sawhney R L. 2008. Solar photocatalytic removal of metal ions from industrial wastewater[J]. Environmental Progress, 27(4): 487-495. doi: 10.1002/ep.10304

    CrossRef Google Scholar

    Kadirvelu K, Thamaraiselvi K, Namasivayam C. 2001. Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste[J]. Bioresource Technology, 76: 63-65. doi: 10.1016/S0960-8524(00)00072-9

    CrossRef Google Scholar

    Kang S Y, Lee J U, Moon S H, Kim K W. 2004. Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater[J]. Chemosphere, 56(2): 141-147. doi: 10.1016/j.chemosphere.2004.02.004

    CrossRef Google Scholar

    Khattab I A, Shaffei M F, Shaaban N A, Hussein H S, Abd E S S. 2013. Electrochemical removal of copper ions from dilute solutions using packed bed electrode. Part Ⅰ[J]. Egyptian Journal of Petroleum, 22(1): 199-203. doi: 10.1016/j.ejpe.2012.09.011

    CrossRef Google Scholar

    Kurniawan T A, Chan G Y S, Lo W H, Babel S. 2006. Physico-chemical treatment techniques for wastewater laden with heavy metals[J]. Chemical Engineering Journal, 118(1/2): 83-98.

    Google Scholar

    Kwak H W, Lee K H. 2018. Polyethylenimine-functionalized silk sericin beads for high-performance remediation of hexavalent chromium from aqueous solution[J]. Chemosphere, 207: 507-516. doi: 10.1016/j.chemosphere.2018.04.158

    CrossRef Google Scholar

    Ladeira A C Q, Morais C A. 2005. Uranium recovery from industrial effluent by ion exchange-column experiments[J]. Minerals Engineering, 18(13/14): 1337-1340.

    Google Scholar

    Lei C Y, Bian Y, Zhi F K, Hou X H, Lv C N, Hu Q. 2022. Enhanced adsorption capacity of cellulose hydrogel based on corn stalk for pollutants removal and mechanism exploration[J]. Journal of Cleaner Production, 375: 134130. doi: 10.1016/j.jclepro.2022.134130

    CrossRef Google Scholar

    Li Bowen, Yang Guijin. 2021. Research progress of heavy metal wastewater treatment technology[J]. Comprehensive Utilization of Resources in China, 39(11): 87-92 (in Chinese with English abstract).

    Google Scholar

    Li Xinjuan, Wang Wensheng, Tang Liang. 2020. Research on treatment methods of heavy metal pollution in water[J]. Guangzhou Chemical Industry, 48(5): 27-29 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-9677.2020.05.015

    CrossRef Google Scholar

    Liu H, Zhang F, Peng Z Y. 2019. Adsorption mechanism of Cr(Ⅵ) onto GO/PAMAMs composites[J]. Scientific Reports, 9(1): 3663. doi: 10.1038/s41598-019-40344-9

    CrossRef Google Scholar

    Liu Ruiping, Xu Youning, Zhang Jianghua, Wang Wenke, Rafaey M Elwardany. 2020. Effects of heavy metal pollution on farmland soils and crops: A case study of the Xiaoqinling Gold Belt, China[J]. China Geology, 3: 402-410.

    Google Scholar

    Ma L J, Islam S M, Liu H Y, Zhao J, Sun G B, Li H F, Ma S, Kanatzidis M G. 2017. Selective and efficient removal of toxic oxoanions of As(Ⅲ), As(Ⅴ), and Cr(Ⅵ)by layered double hydroxide intercalated with MoS42-[J]. Chemistry of Materials, 29: 3274-3284. doi: 10.1021/acs.chemmater.7b00618

    CrossRef Google Scholar

    Ma X F, Liu X, Anderson D P, Chang P R. 2015. Modification of porous starch for the adsorption of heavy metal ions from aqueous solution[J]. Food Chemistry, 181: 133-139. doi: 10.1016/j.foodchem.2015.02.089

    CrossRef Google Scholar

    Mani D, Kumar C, Patel N K. 2015. Hyperaccumulator oilcake manure as an alternative for chelate-induced phytoremediation of heavy metals contaminated alluvial soils[J]. International Journal of Phytoremediation, 17(1/6): 256-263.

    Google Scholar

    Mei Guangquan. 2004. Harm and treatment of heavy metal wastewater[J]. Journal of Trace Elements and Health Research, 21(4): 54-56 (in Chinese with English abstract).

    Google Scholar

    Mohd N N, Asyraf M R M, Khalina A, Abdullah N, Sabaruddin F A, Kamarudin S H, Ahmad S, Mahat A M, Lee C L, Aisyah H A, Norrrahim M N F, Ilyas R A, Harussani M M, Ishak M R, Sapuan S M. 2021. Fabrication, functionalization, and application of carbon nanotube-reinforced polymer composite: An overview[J]. Polymers (Basel), 13(7): 1047. doi: 10.3390/polym13071047

    CrossRef Google Scholar

    Molinari R, Argurio P. 2017. Arsenic removal from water by coupling photocatalysis and complexation- ultrafiltration processes: a preliminary study[J]. Water Research, 109: 327-336. doi: 10.1016/j.watres.2016.11.054

    CrossRef Google Scholar

    Muhammad E M H N, Obidul H A K, Binti Y R. 2016. The removal of heavy metal ions from wastewater/aqueous solution using polypyrrole-based adsorbents: a review[J]. RSC Advances, 6(18): 14778-14791. doi: 10.1039/C5RA24358K

    CrossRef Google Scholar

    Nabid M R, Sedghi R, Behbahani M, Arvan B, Heravi M M, Oskooie H A. 2014. Application of poly 1, 8-diaminonaphthalene/multiwalled carbon nanotubes-COOH hybrid material as an efficient sorbent for trace determination of cadmium and lead ions in water samples[J]. Journal of Molecular Recognition, 27(7): 421-428. doi: 10.1002/jmr.2361

    CrossRef Google Scholar

    Nanseu-Njiki C P, Tchamango S R, Ngom P C, Darchen A, Ngameni E. 2009. Mercury(Ⅱ) removal from water by electrocoagulation using aluminium and iron electrodes[J]. Journal of Hazardous Materials, 168(2/3): 1430-1436.

    Google Scholar

    Nazaripour M, Reshadi M A M, Mirbagheri S A, Nazaripour M, Bazargan A. 2021. Research trends of heavy metal removal from aqueous environments[J]. Journal of Environmental Management, 287: 112322. doi: 10.1016/j.jenvman.2021.112322

    CrossRef Google Scholar

    Nemati M, Hosseini S M, Shabanian M. 2017. Novel electrodialysis cation exchange membrane prepared by 2-acrylamido-2-methylpropane sulfonic acid; heavy metal ions removal[J]. Journal of Hazardous Materials, 337: 90-104. doi: 10.1016/j.jhazmat.2017.04.074

    CrossRef Google Scholar

    Niu Yile, Liu Yunguo, Lu Pei, Zhou Ming. 2005. Research progress on the status quo of ecological destruction and control technology of mines in China[J]. Environmental Science and Management, (5): 59-60, 66 (in Chinese with English abstract).

    Google Scholar

    Pandey L M. 2021. Surface engineering of nano-sorbents for the removal of heavy metals: Interfacial aspects[J]. Journal of Environmental Chemical Engineering, 9(1): 104586. doi: 10.1016/j.jece.2020.104586

    CrossRef Google Scholar

    Peng H, Guo J. 2020. Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: A review[J]. Environmental Chemistry Letters, 18: 2055-2068. doi: 10.1007/s10311-020-01058-x

    CrossRef Google Scholar

    Perumal S, Atchudan R, Yoon D H, Joo J, Cheong I W. 2019. Spherical chitosan gelatin hydrogel particles for removalof multiple heavy metal[J]. Industrial & Engineering Chemistry Research, 58(23): 9900-9907.

    Google Scholar

    Plattes M, Bertrand A, Schmitt B, Sinner J, Verstraeten F, Welfring J. 2007. Removal of tungsten oxyanions from industrial wastewater by precipitation, coagulation and flocculation processes[J]. Journal of Hazardous Materials, 148(3): 613-615. doi: 10.1016/j.jhazmat.2007.03.016

    CrossRef Google Scholar

    Priyadarshanee M, Das S. 2021. Biosorption and removal of toxic heavy metals by metal tolerating bacteria for bioremediation of metal contamination: a comprehensive review[J]. Journal of Environmental Chemical Engineering, 9: 104686. doi: 10.1016/j.jece.2020.104686

    CrossRef Google Scholar

    Qiu H, Zhang S J, Pan B C, Zhang W M, Lü L. 2012. Effect of sulfate on Cu(Ⅱ) sorption to polymer-supported nano-iron oxides: behavior and XPS study[J]. Journal of Colloid and Interface Science, 366(1): 37-43. doi: 10.1016/j.jcis.2011.09.070

    CrossRef Google Scholar

    Rai P K, Lee S S, Zhang M, Tsang Y F, Kim K H. 2019. Heavy metals in food crops: Health risks, fate, mechanisms, and management[J]. Environment International, 125: 365-385. doi: 10.1016/j.envint.2019.01.067

    CrossRef Google Scholar

    Rajkumar D, Palanivelu K. 2004. Electrochemical treatment of industrial wastewater[J]. Journal of Hazardous Materials, 113(1/3): 123-129.

    Google Scholar

    Rangabhashiyam S, Nakkeeran E, Anu N, Selvaraju N. 2014. Biosorption potential of a novel powder, prepared from Ficus auriculata leaves, for sequestration of hexavalent chromium from aqueous solutions[J]. Research on Chemical Intermediates, 41(11): 8405-8424.

    Google Scholar

    Rehman K, Fatima F, Waheed I, Akash M S H. 2018. Prevalence of exposure of heavy metals and their impact on health consequences[J]. Journal or Cellular Biochemistry, 119(1): 157-184. doi: 10.1002/jcb.26234

    CrossRef Google Scholar

    Reig M, Vecino X, Valderrama C, Gibert O, Cortina J L. 2018. Application of selectrodialysis for the removal of As from metallurgical process waters: recovery of Cu and Zn[J]. Separation and Purification Technology, 195: 404-412. doi: 10.1016/j.seppur.2017.12.040

    CrossRef Google Scholar

    Ren G M, Han H T, Wang Y X, Liu S T, Zhao J Y, Meng X C, Li Z Z. 2021. Recent advances of photocatalytic application in water treatment: a review[J]. Nanomaterials (Basel), 11(7): 1804. doi: 10.3390/nano11071804

    CrossRef Google Scholar

    Rengaraj S, Joo C K, Kim Y, Yi J. 2003. Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H[J]. Journal of Hazardous Materials, 102(2/3): 257-275.

    Google Scholar

    Sanmuga P E, Senthamil S P. 2017. Water hyacinth (Eichhornia crassipes) - an efficient and economic adsorbent for textile effluent treatment - a review[J]. Arabian Journal of Chemistry, 10: 3548-3558. doi: 10.1016/j.arabjc.2014.03.002

    CrossRef Google Scholar

    Santhosh C, Velmurugan V, Jacob G, Jeong S K, Grace A N, Bhatnagar A. 2016. Role of nanomaterials in water treatment applications: A review[J]. Chemical Engineering Journal, 306: 1116-1137. doi: 10.1016/j.cej.2016.08.053

    CrossRef Google Scholar

    Santhy K, Selvapathy P. 2010. Removal of heavy metals from wastewater by adsorption on coir pith activated carbon[J]. Separation Science and Technology, 39(14): 3331-3351.

    Google Scholar

    Sepehri A, Sarrafzadeh M H, Avateffazeli M. 2020. Interaction between chlorella vulgaris and nitrifying-enriched activated sludge in the treatment of wastewater with low C/N ratio[J]. Journal of Cleaner Production, 247: 119164. doi: 10.1016/j.jclepro.2019.119164

    CrossRef Google Scholar

    Shafaqat A, Zohaib A, Muhammad R, Ihsan Z, İlkay Y, Aydın ü, Mohamed A D, May B J, Mirza H, Dimitris K. 2020. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review[J]. Sustainability, 12(5): 1927. doi: 10.3390/su12051927

    CrossRef Google Scholar

    Shen X F, Song L L Luo L, Zhang Y, Zhu B, Liu J S, Chen Z G, Zhang L S. 2018. Preparation of TiO2/C3N4 heterojunctions on carbon-fiber cloth as efficient filter-membrane-shaped photocatalyst for removing various pollutants from the flowing wastewater[J]. Journal of Colloid and Interface Science, 532: 798-807. doi: 10.1016/j.jcis.2018.08.028

    CrossRef Google Scholar

    Sher F, Malik A, Liu H. 2013. Industrial polymer effluent treatment by chemical coagulation and flocculation[J]. Journal of Environmental Chemical Engineering, 1(4): 684-689. doi: 10.1016/j.jece.2013.07.003

    CrossRef Google Scholar

    Shrestha R, Ban S, Devkota S, Sharma S, Joshi R, Tiwari A P, Kim H Y, Joshi M K. 2021. Technological trends in heavy metals removal from industrial wastewater: a review[J]. Journal of Environmental Chemical Engineering, 9(4): 105688. doi: 10.1016/j.jece.2021.105688

    CrossRef Google Scholar

    Singh N B, Nagpal G, Agrawal S, Rachna. 2018. Water purification by using adsorbents: A review[J]. Environmental Technology & Innovation, 11: 187-240. doi: 10.3969/j.issn.1004-7204.2018.z1.040

    CrossRef Google Scholar

    Somu P, Paul S. 2018. Casein based biogenic-synthesized zinc oxide nanoparticles simultaneously decontaminate heavy metals, dyes, and pathogenic microbes: A rational strategy for wastewater treatment[J]. Journal of Chemical Technology & Biotechnology, 93(10): 2962-2976.

    Google Scholar

    State Administration for Market Regulation and Standardization Administration. 2022. Standards for Drinking Water Quality (GB 5749-2022)[S] (in Chinese).

    Google Scholar

    Su S, Wu W H, Gao J M, Lu J X, Fan C H. 2012. Nanomaterials-based sensors for applications in environmental monitoring[J]. Journal of Materials Chemistry, 22(35): 18101. doi: 10.1039/c2jm33284a

    CrossRef Google Scholar

    Sultana N, Hossain S M Z, Mohammed M E, Irfan M F, Haq B, Faruque M O, Razzak S A, Hossain M M. 2020. Experimental study and parameters optimization of microalgae based heavy metals removal process using a hybrid response surface methodology-crow search algorithm[J]. Scientific Reports, 10(1): 15068. doi: 10.1038/s41598-020-72236-8

    CrossRef Google Scholar

    Sun Ken, Hua Yufeng, Wang Zhenyue. 2022. Research on heavy metal pollution and health risk assessment of industrial wastewater[J]. Journal of North China University of Water Resources and Hydropower (Natural Science Edition), 43(3): 99-108 (in Chinese with English abstract).

    Google Scholar

    Teh C Y, Budiman P M, Shak K P Y, Wu T Y. 2016. Recent advancement of coagulation-flocculation and its application in wastewater treatment[J]. Industrial & Engineering Chemistry Research, 55(16): 4363-4389.

    Google Scholar

    Thomas B, Alexander L K. 2020. Removal of Pb2+ and Cd2+ toxic heavy metal ions driven by Fermi level modification in NiFe2O4-Pd nano hybrids[J]. Journal of Solid State Chemistry, 288: 121417. doi: 10.1016/j.jssc.2020.121417

    CrossRef Google Scholar

    Tran T K, Chiu K F, Lin C Y, Leu H J. 2017. Electrochemical treatment of wastewater: Selectivity of the heavy metals removal process[J]. International Journal of Hydrogen Energy, 42(45): 27741-27748. doi: 10.1016/j.ijhydene.2017.05.156

    CrossRef Google Scholar

    Wahaab R A, Moawad A, Taleb E, Ibrahim H S, El-Nazer H. 2010. Combined photocatalytic oxidation and chemical coagulation for cyanide and heavy metals removal from electroplating wastewater[J]. World Applied Sciences Journal, 8(4): 462-469.

    Google Scholar

    Wahyusi K N, Utami L I, Aprilio S, Fergina N. 2020. Reduction of Pb and Cr levels in paper industrial liquid waste with ion exchange method[J]. Journal of Physics: Conference Series, 1569(4): 042054. doi: 10.1088/1742-6596/1569/4/042054

    CrossRef Google Scholar

    Wang J L, Tang X B, Liang H, Bai L M, Xie B H, Xing J J, Wang T Y, Zhao J, Li G B. 2020. Efficient recovery of divalent metals from nanofiltration concentrate based on a hybrid process coupling single-cation electrolysis (SCE) with ultrafiltration (UF)[J]. Journal of Membrane Science, 602: 117953. doi: 10.1016/j.memsci.2020.117953

    CrossRef Google Scholar

    Wang L X, Li J C, Jiang Q, Zhao L J. 2012. Water-soluble Fe3O4 nanoparticles with high solubility for removal of heavy-metal ions from waste water[J]. Dalton Trans, 41(15): 4544-4551. doi: 10.1039/c2dt11827k

    CrossRef Google Scholar

    Wang Y, Meng D P, Fei L, Dong Q, Wang Z L. 2019. A novel phytoextraction strategy based on harvesting the dead leaves: cadmium distribution and chelator regulations among leaves of tall fescue[J]. Science of the Total Environment, 650(2): 3041-3047.

    Google Scholar

    Wattigney W A, Irvin-Barnwell E, Li Z, Davis S I, Manente S, Maqsood J, Scher D, Messing R, Schuldt N, Hwang S A, Aldous K M, Lewis-Michl E L, Ragin-Wilson A. 2019. Biomonitoring programs in Michigan, Minnesota and New York to assess human exposure to Great Lakes contaminants[J]. International Journal of Hygiene and Environmental Health, 222(1): 125-135. doi: 10.1016/j.ijheh.2018.08.012

    CrossRef Google Scholar

    Wei Lai. 2017. Research progress of synthetic hydrogel materials and their treatment of heavy metal ions in water[J]. Journal of Hubei University (Natureal Science), 39(1): 1-6 (in Chinese with English abstract).

    Google Scholar

    Wei X Z, Kong X, Wang S X, Xiang H, Wang J D, Chen J Y. 2013. Removal of heavy metals from electroplating wastewater by thin-film composite nanofiltration hollow-fiber membranes[J]. Industrial & Engineering Chemistry Research, 52(49): 17583-17590.

    Google Scholar

    WHO. 2017. Guidelines for drinking-water quality: Fourth edition incorporating the first addendum[J]. World Health Organization.

    Google Scholar

    Widrig C A, Porter M D, Ryan M D, Strein T G, Ewing A G. 1990. Dynamic electrochemistry: Methodology and application[J]. Analytical Chemistry, 62(12): 1R. doi: 10.1021/ac00211a001

    CrossRef Google Scholar

    Wu R P. 2019. Removal of heavy metal ions from industrial wastewater based on chemical precipitation method[J]. Ekoloji, 28(107): 2443-2452.

    Google Scholar

    Xu Zhenmin, Shi Liyi. 2020. Research progress of photocatalytic removal of heavy metal ions from water[J]. Journal of Shanghai University (Natural Science Edition), 26(4): 491-505 (in Chinese with English abstract).

    Google Scholar

    Yan R H, Luo D Y, Fu C Y, Tian W, Wu P, Wang Y, Zhang H, Jiang W. 2020. Simultaneous removal of Cu(Ⅱ) and Cr(Ⅵ) ions from wastewater by photoreduction with TiO2-ZrO2[J]. Journal of Water Process Engineering, 33: 101052. doi: 10.1016/j.jwpe.2019.101052

    CrossRef Google Scholar

    Yang J Y, Hou B H, Wang J K, Tian B Q, Bi J T, Wang N, Li X, Huang X. 2019. Nanomaterials for the removal of heavy metals from wastewater[J]. Nanomaterials (Basel), 9(3): 123.

    Google Scholar

    Yang Weilong, Bai Yuming, Li Yongli, Hu Haoyuan, Du Xin. 2022. Plant optimal screening for contaminated soil remediation in an iron mining tailing of Baotou, Inner Monglia[J]. Geology in China, 49(3): 683-694 (in Chinese with English abstract).

    Google Scholar

    Yu Yongquan, Huang Weiwei, Dong Jianjiang, Zhu Qifa, Lu Diannna, Liu Yongming. 2017. Study on the mechanism of adsorption of heavy metal cadmium by Pseudomonas nitroreducers[J]. China Environmental Science, 37(6): 2232-2238 (in Chinese with English abstract).

    Google Scholar

    Zakeri K M, Abdollahy M, Khalesi M R, Rezai B. 2020. Selective separation of neodymium from synthetic wastewater by ion flotation[J]. Separation Science and Technology, 56(10): 1802-1810.

    Google Scholar

    Zhang C Q, Hu Z Q, Li P, Gajaraj S. 2016. Governing factors affecting the impacts of silver nanoparticles on wastewater treatment[J]. Science of the Total Environment, 572: 852-873. doi: 10.1016/j.scitotenv.2016.07.145

    CrossRef Google Scholar

    Zhang J F, Li Y, Xie X D, Zhu W H, Meng X G. 2019. Fate of adsorbed Pb(Ⅱ) on graphene oxide under variable redox potential controlled by electrochemical method[J]. Journal of Hazardous Materials, 367: 152-159. doi: 10.1016/j.jhazmat.2018.12.073

    CrossRef Google Scholar

    Zhang X S, Zhang M M, He J, Wang Q X, Li D S. 2019. The spatial-temporal characteristics of cultivated land and its influential factors in the low hilly region: A case study of Lishan Town, Hubei Province, China[J]. Sustainability, 11(14): 3810. doi: 10.3390/su11143810

    CrossRef Google Scholar

    Zhao D P, Wu X. 2018. Nanoparticles assembled SnO2 nanosheet photocatalysts for wastewater purification[J]. Materials Letters, 210: 354-357. doi: 10.1016/j.matlet.2017.09.068

    CrossRef Google Scholar

    Zhou Q Q, Yang N, Li Y Z, Ren B, Ding X H, Bian H L, Yao X. 2020. Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017[J]. Global Ecology and Conservation, 22: e00925. doi: 10.1016/j.gecco.2020.e00925

    CrossRef Google Scholar

    Zhu G C, Zheng H L, Zhang Z, Tshukudu T, Zhang P, Xiang X Y. 2011. Characterization and coagulation- flocculation behavior of polymeric aluminum ferric sulfate (PAFS)[J]. Chemical Engineering Journal, 178: 50-59. doi: 10.1016/j.cej.2011.10.008

    CrossRef Google Scholar

    Zhu W P, Sun S P, Gao J, Fu F J, Chung T S. 2014. Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater[J]. Journal of Membrane Science, 456: 117-127. doi: 10.1016/j.memsci.2014.01.001

    CrossRef Google Scholar

    Zhu Y, Fan W H, Zhou T T, Li X M. 2019. Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms[J]. Science of the Total Environment, 678: 253-266. doi: 10.1016/j.scitotenv.2019.04.416

    CrossRef Google Scholar

    Zuo J X, Fan W H, Wang X L, Ren J Q, Zhang Y, Wang X R, Zhang Y, Yu T, Li X M. 2018. Trophic transfer of Cu, Zn, Cd, and Cr, and biomarker response for food webs in Taihu Lake, China[J]. RSC Advances, 8(7): 3410-3417. doi: 10.1039/C7RA11677B

    CrossRef Google Scholar

    鲍丽然, 邓海, 贾中民, 李瑜, 董金秀, 严明书, 张风雷. 2020. 重庆秀山西北部农田土壤重金属生态健康风险评价[J]. 中国地质, 47(6): 1625-1636.

    Google Scholar

    高利亚. 2022. 重金属水污染处理方法的研究进展[J]. 化学工程师, 36(4): 56-60.

    Google Scholar

    国家市场监督管理总局和国家标准化管理委员会. 2022. 生活饮用水卫生标准(GB 5749-2022)[S].

    Google Scholar

    巩苗苗, 王光荣. 2018. 生物吸附剂及其研究进展[J]. 赤峰学院学报(自然科学版), 34(6): 36-39.

    Google Scholar

    李博文, 杨桂锦. 2021. 重金属废水处理技术研究进展[J]. 中国资源综合利用, 39(11): 87-92. doi: 10.3969/j.issn.1008-9500.2021.11.024

    CrossRef Google Scholar

    李欣娟, 王文生, 唐亮. 2020. 水中重金属污染处理方法研究[J]. 广州化工, 48(5): 27-29. doi: 10.3969/j.issn.1001-9677.2020.05.015

    CrossRef Google Scholar

    梅光泉. 2004. 重金属废水的危害及治理[J]. 微量元素与健康研究杂志, 21(4): 54-56.

    Google Scholar

    牛一乐, 刘云国, 路培, 周鸣. 2005. 中国矿山生态破坏现状及治理技术研究进展[J]. 环境科学与管理, (5): 59-60, 66.

    Google Scholar

    孙垦, 华宇峰, 王镇岳. 2022. 工业废水重金属污染与健康风险评价研究[J]. 华北水利水电大学学报(自然科学版), 43(3): 99-108. doi: 10.19760/j.ncwu.zk.2022041

    CrossRef Google Scholar

    魏来. 2017. 合成水凝胶材料及其对水体中重金属离子处理的研究进展[J]. 湖北大学学报(自然科学版), 39(1): 1-6. doi: 10.3969/j.issn.1000-2375.2017.01.001

    CrossRef Google Scholar

    许振民, 施利毅. 2020. 光催化去除水体中重金属离子的研究进展[J]. 上海大学学报(自然科学版), 26(4): 491-505.

    Google Scholar

    杨伟龙, 白宇明, 李永利, 胡浩远, 杜鑫. 2022. 内蒙古包头某铁矿尾矿库生态修复的植物优选研究[J]. 中国地质, 49(3): 683-694.

    Google Scholar

    喻涌泉, 黄魏魏, 董建江, 朱启法, 卢滇楠, 刘永民. 2017. 硝基还原假单胞菌吸附重金属镉的机理研究[J]. 中国环境科学, 37(6): 2232-2238.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(2)

Article Metrics

Article views(6279) PDF downloads(702) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint