2023 Vol. 50, No. 3
Article Contents

HE Lei, YE Siyuan, ZHAO Guangming, XIE Liujuan, PEI Shaofeng, DING Xigui, YANG Shixiong, Hans BRIX, Edward A. LAWS. 2023. Research progress on blue carbon management in coastal wetland ecotones[J]. Geology in China, 50(3): 777-794. doi: 10.12029/gc20201106001
Citation: HE Lei, YE Siyuan, ZHAO Guangming, XIE Liujuan, PEI Shaofeng, DING Xigui, YANG Shixiong, Hans BRIX, Edward A. LAWS. 2023. Research progress on blue carbon management in coastal wetland ecotones[J]. Geology in China, 50(3): 777-794. doi: 10.12029/gc20201106001

Research progress on blue carbon management in coastal wetland ecotones

    Fund Project: Supported by the project of Laoshan Laboratory Seience and Technology Innovation (No.LSKJ202204003), Regional Development Foundation of National Natural Science Foundation (No.U22A20558), Natural Science Foundation of Shandong Province (No.ZR2022MD024), and the project of China Geological Survey (No.DD20221775)
More Information
  • Author Bio: HE Lei, male, born in 1987, associate researcher, engaged in the study of marine geology and sedimentary carbon sink; E-mail: hel_qimg@sina.com
  • Corresponding author: YE Siyuan, female, born in 1963, researcher, engaged in the study of biogeochemistry in coastal wetlands; E-mail: siyuanye@hotmail.com 
  • This paper is the result of coastal geological survey engineering.

    Objective

    Since the term "blue carbon" was first used in 2009, the important role of blue carbon habitats in sequestering atmospheric CO2 has received an increasing attention from environmental scientists, social scientists, and economists all over the world, and how to effectively manage coastal blue carbon has become one of the hottest topics.

    Methods

    Based on recent publications concerned with the sustainable management of coastal wetland ecotones and the services they provide in terms of blue carbon storage, we synthesized current researches regarding blue carbon, the spatial distribution of blue carbon within coastal ecotones, and the factors that control blue carbon sequestration.

    Results

    The total amount of blue carbon and carbon sequestration potential are huge in China's coastal wetlands. However, with the development of coastal zones becoming more and more extensive, a blue carbon sink capacity of coastal zones has been greatly affected.

    Conclusions

    Further studies are clearly needed to identify how a synthesis of environmental, social, and economic issues can facilitate the conservation and management of blue carbon sinks, and strengthen the potential evaluation of new blue carbon sinks in the future. A blue carbon research will improve China's image within the international scientific community that concerns the researches of carbon cycle, global climate change, and mitigation of greenhouse gas emissions. Blue carbon studies will also provide basic scientific understanding needed to identify relevant national strategies and policies with respect to coastal wetland restoration.

  • 加载中
  • Achard F, Eva H D, Stibig H J, Mayaux P, Gallego J, Richards T, Malingreau J P. 2002. Determination of deforestation rates of the world's humid tropical forests[J]. Science, 297: 999-1002. doi: 10.1126/science.1070656

    CrossRef Google Scholar

    Ahmed N, Bunting S W, Glaser M, Flaherty M S, Diana J S. 2017. Can greening of aquaculture sequester blue carbon?[J]. Ambio, 46(4): 468-477. doi: 10.1007/s13280-016-0849-7

    CrossRef Google Scholar

    Ahmed N, Glaser M. 2016. Coastal aquaculture, mangrove deforestation and blue carbon emissions: Is REDD plus a solution?[J]. Marine Policy, 66: 58-66. doi: 10.1016/j.marpol.2016.01.011

    CrossRef Google Scholar

    Ahmed N, Thompson S, Glaser M. 2018. Integrated mangrove-shrimp cultivation: Potential for blue carbon sequestration[J]. Ambio, 47: 441-452.

    Google Scholar

    Allen A P, Gillooly J F, Brown J H. 2005. Linking the global carbon cycle to individual metabolism[J]. Functional Ecology, 19(2): 202-213. doi: 10.1111/j.1365-2435.2005.00952.x

    CrossRef Google Scholar

    Alongi D M. 2002. Present state and future of the world's mangrove forests[J]. Environmental Conservation, 29(3): 331-349. doi: 10.1017/S0376892902000231

    CrossRef Google Scholar

    Alongi D M, Murdiyarso D, Fourqurean J W, Kauffman J B, Wagey T. 2016. Indonesia's blue carbon: A globally significant and vulnerable sink for seagrass and mangrove carbon[J]. Wetlands Ecology & Management, 24(1): 3-13.

    Google Scholar

    Andres K, Savarese M, Bovard B, Parsons M. 2019. Coastal wetland geomorphic and vegetative change: Effects of sea-level rise and water management on Brackish Marshes[J]. Estuaries and Coasts, 42: 1308-1327. doi: 10.1007/s12237-019-00538-w

    CrossRef Google Scholar

    Arkema K K, Guannel G, Verutes G, Wood S A, Guerry A, Ruckelshaus M, Kareiva P, Lacayo M, Silver J M. 2013. Coastal habitats shield people and property from sea-level rise and storms[J]. Nature Climate Change, 3(10): 913-918. doi: 10.1038/nclimate1944

    CrossRef Google Scholar

    Atwood T B, Connolly R M, Almahasheer H, Carnell P E, Duarte C M, Ewers L C J, Irigoien X, Kelleway J J, Lavery P S, Macreadie P I. 2017. Global patterns in mangrove soil carbon stocks and losses[J]. Nature Climate Change, 7(7): 523-528. doi: 10.1038/nclimate3326

    CrossRef Google Scholar

    Bianchi T S, Allison M A, Zhao Jun, Li Xinxin, Kulawardhana W R. 2013. Historical reconstruction of mangrove expansion in the Gulf of Mexico: Linking climate change with carbon sequestration in coastal wetlands[J]. Estuarine Coastal & Shelf Science, 119: 7-16.

    Google Scholar

    Björk M, Short F, Mcleod E, Beer S. 2008. Managing Seagrasses for Resilience to Climate Change[M]. IUCN, Gland, Switzerland.

    Google Scholar

    Burkholder J M, Tomasko D A, Touchette B W. 2007. Seagrasses and eutrophication[J]. Journal of Experimental Marine Biology & Ecology, 350(1/2): 46-72.

    Google Scholar

    Canadell J G, Raupach M R. 2008. Managing forests for climate change mitigation[J]. Science, 320(5882): 1456-1457. doi: 10.1126/science.1155458

    CrossRef Google Scholar

    Canadell J G, Schulze E D. 2014. Global potential of biospheric carbon management for climate mitigation[J]. Nature Communications, 5: 5282. doi: 10.1038/ncomms6282

    CrossRef Google Scholar

    Chambers L G, Osborne T Z, Reddy K R. 2013. Effect of salinity-altering pulsing events on soil organic carbon loss along an intertidal wetland gradient: A laboratory experiment[J]. Biogeochemistry, 115(1/3): 363-383.

    Google Scholar

    Chmura G L, Anisfeld S C, Cahoon D R, Lynch J C. 2003. Global carbon sequestration in tidal, saline wetland soils[J]. Global Biogeochemical Cycles, 17(4): 1111.

    Google Scholar

    Coppari M, Zanella C, Rossi S. 2019. The importance of coastal gorgonians in the blue carbon budget[J]. Scientific Reports, 9: 13550. doi: 10.1038/s41598-019-49797-4

    CrossRef Google Scholar

    Costanza R, d'Arge R, Groot R de, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, Robert V O, Jose P, Robert G R, Paul S, Marjan van den B. 1997. The value of the world's ecosystem services and natural capital[J]. Nature, 387(6630): 253-260. doi: 10.1038/387253a0

    CrossRef Google Scholar

    Couwenberg J, Dommain R, Joosten H. 2010. Greenhouse gas fluxes from tropical peatlands in south-east Asia[J]. Global Change Biology, 16(6): 1715-1732.

    Google Scholar

    Crooks S, Sutton-Grier A E., Troxler T G., Herold N, Bernal B, Schile-Beers L, Wirth T. 2018. Coastal wetland management as a contribution to the US National Greenhouse Gas Inventory[J]. Nature Climate Change, 8: 1109-1112. doi: 10.1038/s41558-018-0345-0

    CrossRef Google Scholar

    Cui Baoshan, He Qiang, Gu Binhe, Bai Junhong, Liu Xinhui. 2016. China's coastal wetlands: Understanding environmental changes and human impacts for management and conservation[J]. Wetlands, 16: 737-745.

    Google Scholar

    Davis J L, A. Currin C, Colleen O, Craig R, Amanda D, Li Bo. 2015. Living shorelines: Coastal resilience with a blue carbon benefit[J]. Plos One, 10(11): e0142595. doi: 10.1371/journal.pone.0142595

    CrossRef Google Scholar

    De Groot R, Brander L, Sander van der P, Costanza R, Bernard F, Braat L, Christie M, Crossman N, Ghermandi A, Hein L. 2012. Global estimates of the value of ecosystems and their services in monetary units[J]. Ecosystem Services, 1(1): 50-61. doi: 10.1016/j.ecoser.2012.07.005

    CrossRef Google Scholar

    Dean W E, Gorham E. 1998. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands[J]. Geology, 26(6): 535-538. doi: 10.1130/0091-7613(1998)026<0535:MASOCB>2.3.CO;2

    CrossRef Google Scholar

    Deegan L A, Johnson D S, Warren R S, Peterson B J, Fleeger J W, Fagherazzi S, Wollheim Wilfred M. 2012. Coastal eutrophication as a driver of salt marsh loss[J]. Nature, 490: 388-392. doi: 10.1038/nature11533

    CrossRef Google Scholar

    Deng Lei, Shangguan ZhouPing, Wu GaoLin, Chang XiaoFeng. 2017. Effects of grazing exclusion on carbon sequestration in China's grassland[J]. Earth Science Reviews, 173: 84-95. doi: 10.1016/j.earscirev.2017.08.008

    CrossRef Google Scholar

    Dilling L, Doney S C, Edmonds J, Gurney K R, Stokes G. 2003. The role of carbon cycle observations and knowledge in carbon management[J]. Environment & Resources, 28: 521-558.

    Google Scholar

    Ding Xigui, Wang Jisong, Zhao Guangming, Yuan Hongming, Wang Jin, Ye Siyuan. 2016. Accretion rate and controlling factors of carbon and nutrients during coastal wetland evolution in Yellow River Delta[J]. Geology in China, 43(1): 319-328 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2016.01.024

    CrossRef Google Scholar

    Ding Xigui, Ye Siyuan, Zhao Guangming, Yuan Hongming, Wang Jin. 2014. Accumulation of carbon and nutrients in coastal wetland in the Yellow River Delta[J]. Oceanologia et Limnologia Sinica, 45(1): 94-102 (in Chinese with English abstract).

    Google Scholar

    Ding Yihui, Ren Guoyu, Shi Guangyu. 2006. National assessment report of climate change (I): Climate change in China and its future trend[J]. Advance in Climate Change Research, 2(1): 3-8 (in Chinese with English abstract).

    Google Scholar

    Dixon R K, Solomon A M, Brown S, Houghton R A, Trexier M C, Wisniewski J. 1994. Carbon Pools and Flux of Global Forest Ecosystems[J]. Science, 263(5144): 185-190. doi: 10.1126/science.263.5144.185

    CrossRef Google Scholar

    Donato D C, Kauffman J B, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M. 2011. Mangroves among the most carbon-rich forests in the tropics[J]. Nature Geoscience, 4(5): 293-297. doi: 10.1038/ngeo1123

    CrossRef Google Scholar

    Duan Xiaonan, Wang Xiaoke, Yin Tao, Chen Lin. 2006. Advance in studies on carbon sequestration potential of wetland ecosystem[J]. Ecology and Environment, 15(5): 1091-1095 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-5906.2006.05.040

    CrossRef Google Scholar

    Duarte C M, Middelburg J, Caraco N. 2005. Major role of marine vegetation on the oceanic carbon cycle[J]. Biogeosciences, 2: 1-8. doi: 10.5194/bg-2-1-2005

    CrossRef Google Scholar

    Duarte C M. 2009. Coastal eutrophication research: A new awareness[J]. Hydrobiologia, 629(1): 263-269. doi: 10.1007/s10750-009-9795-8

    CrossRef Google Scholar

    Duarte C M. 2017. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget[J]. Biogeosciences, 14(2): 301-310. doi: 10.5194/bg-14-301-2017

    CrossRef Google Scholar

    Duarte C M, Dennison W C, Orth R J W, Carruthers T J B. 2008. The Charisma of coastal ecosystems: Addressing the imbalance[J]. Estuaries & Coasts, 31(2): 233-238.

    Google Scholar

    Duarte C M, Losada I J, Hendriks I E, Mazarrasa I, Marbà N. 2013. The role of coastal plant communities for climate change mitigation and adaptation[J]. Nature Climate Change, 3(11): 961-968. doi: 10.1038/nclimate1970

    CrossRef Google Scholar

    Duke N C, Meynecke J O, Dittmann S., Ellison A M, Anger K, Berger U, Cannicci S, Diele K, Ewel K C, Field, C D. 2007. A World Without Mangroves?[J]. Science, 317(5834): 41-42.

    Google Scholar

    Fagherazzi S, Kirwan M L, Mudd S M, Guntenspergen G R, Temmerman S, D'Alpaos A, Van De Koppel J, Rybczyk J M, Reyes E, Craft C. 2012. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors[J]. Reviews of Geophysics, 50(1): RG1002.

    Google Scholar

    Fennessy M S, Ibanez C, Calvo-Cubero J, Sharpe P, Rovira A, Callaway J, Caiola N. 2019. Environmental controls on carbon sequestration, sediment accretion, and elevation change in the Ebro River Delta: Implications for wetland restoration[J]. Estuarine Coastal and Shelf Science, 222: 32-42. doi: 10.1016/j.ecss.2019.03.023

    CrossRef Google Scholar

    Field C B., Behrenfeld M J, Randerson J T, Falkowski P. 1998. Primary production of the biosphere: Integrating terrestrial and oceanic components[J]. Science, 281(5374): 237-240. doi: 10.1126/science.281.5374.237

    CrossRef Google Scholar

    Fourqurean J W, Duarte C M, Kennedy H, Marbà N, Holmer M, Mateo M A, Apostolaki E T, Kendrick G A, Krause-Jensen D, McGlathery K J. 2012. Seagrass ecosystems as a globally significant carbon stock[J]. Nature Geoscience, 5(7): 505-509. doi: 10.1038/ngeo1477

    CrossRef Google Scholar

    Freeman C, Evans C D, Monteith D T, Reynolds B, Fenner N. 2001. Export of organic carbon from peat soils[J]. Nature, 412(6849): 785.

    Google Scholar

    Friedlingstein P, O'sullivan M, Jones M W, Andrew R M, Gregor L, Hauck J, Le Quéré C, Luijkx Ingrid T, Olsen A, Peters G P. 2022. Global carbon budget 2022[J]. Earth System Science Data, 14(11): 4811-4900. doi: 10.5194/essd-14-4811-2022

    CrossRef Google Scholar

    Fujimoto K, Kawase K, Ishizuka S, Shichi K, Ohira A, Adachi H. 2009. Sediment and carbon storages in the Yahagi River Delta during the Holocene, central Japan[J]. Quaternary Science Reviews, 28(15/16): 1472-1480.

    Google Scholar

    Gao Yang, Yu Guirui, Yang Tiantian, Jia Yanlong, He Nianpeng, Zhuang Jie. 2016. New insight into global blue carbon estimation under human activity in land-sea interaction area: A case study of China[J]. Earth Science Reviews, 159: 36-46. doi: 10.1016/j.earscirev.2016.05.003

    CrossRef Google Scholar

    Giri C, Ochieng E, Tieszen L L, Zhu Z, Singh A, Loveland T, Masek J, Duke N. 2011. Status and distribution of mangrove forests of the world using earth observation satellite data[J]. Global Ecology & Biogeography, 20(1): 154-159.

    Google Scholar

    Giri C, Zhu Z, Tieszen L L, Singh A, Gillette S, Kelmelis J A. 2008. Mangrove forest distributions and dynamics (1975-2005) of the tsunami-affected region of Asia[J]. Journal of Biogeography, 35(3): 519-528. doi: 10.1111/j.1365-2699.2007.01806.x

    CrossRef Google Scholar

    Guan Daoming, 2012. China Coastal Wetlands (in Chinese)[M]. Beijing: Ocean Press, 233.

    Google Scholar

    Hamilton S E, Casey D. 2016. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21)[J]. Global Ecology and Biogeography, 25(6): 729-738. doi: 10.1111/geb.12449

    CrossRef Google Scholar

    Hamilton S E, Friess D A. 2018. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012[J]. Nature Climate Change, 8(3): 240-244. doi: 10.1038/s41558-018-0090-4

    CrossRef Google Scholar

    Hartig E K, Gornitz V, Kolker A, Mushacke F, Fallon D. 2002. Anthropogenic and climate-change impacts on salt marshes of Jamaica Bay, New York City[J]. Wetlands, 22(1): 71-89. doi: 10.1672/0277-5212(2002)022[0071:AACCIO]2.0.CO;2

    CrossRef Google Scholar

    Howard J, Mcleod E, Thomas S, Eastwood E, Fox M, Wenzel L, Pidgeon E. 2017. The potential to integrate blue carbon into MPA design and management[J]. Aquatic Conservation Marine & Freshwater Ecosystems, 27: 100-115.

    Google Scholar

    IPCC. 2007. Climate change synthesis report[C]. Geneva, Switzerland.

    Google Scholar

    IPCC. 2013. Climate Change 2013—The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 1552.

    Google Scholar

    IPCC. 2014. AR5 Climate Change 2014: Mitigation of Climate Change[C]. Intergovernmental Panel on Climate Change, Copenhagen.

    Google Scholar

    IPCC. 2018. Global Warming of 1.5 oC[C]. Intergovernmental Panel on Climate Change, Incheon.

    Google Scholar

    Jankowski K L, Törnqvist T E, Fernandes A M. 2017. Vulnerability of Louisiana's coastal wetlands to present-day rates of relative sea-level rise[J]. Nature Communications, 8(1): 1-7. doi: 10.1038/s41467-016-0009-6

    CrossRef Google Scholar

    Jia Lili, Zhu Xin, Zhao Yi, Li Tingting. 2019. Spatial and temporal variation of soil carbon storage and organic carbon content in Leizhou Peninsula, Guangdong Province[J]. Geology and Mineral Resources of South China, 35(3): 373-379 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-3701.2019.03.011

    CrossRef Google Scholar

    Jiang Tingting, Pan Jianfen, Pu Xinming, Wang Bo, Pan Jingjin. 2015. Current status of coastal wetlands in China: Degradation, restoration, and future management[J]. Estuarine, Coastal and Shelf Science, 164: 265-275. doi: 10.1016/j.ecss.2015.07.046

    CrossRef Google Scholar

    Jiao Nianzhi. 2012. Carbon fixation and sequestration in the ocean, with special reference to the microbial carbon pump[J]. Scientia Sinca Terrae, (42): 1473-1486 (in Chinese).

    Google Scholar

    Jiao Nianzhi, Robinson C, Azam F, Thomas H, Baltar F, Dang H, Hardman-Mountford N J, Johnson M, Kirchman D L, Koch B P. 2014. Mechanisms of microbial carbon sequestration in the ocean-future research directions[J]. Biogeosciences, 11(19): 5285-5306. doi: 10.5194/bg-11-5285-2014

    CrossRef Google Scholar

    Jiao Nianzhi, Zhang Chuanlun, Li Chao, Wang Xiaoxue, Dang Hongyue, Zeng Qinglu, Zhang Rui, Zhang Yao, Tang Kai, Zhang Zilian, Xu Dapeng. 2013. Controlling mechanisms and climate effects of microbial carbon pump in the Ocean[J]. Scientia Sinca Terrae, 43: 1-18 (in Chinese). doi: 10.1360/zd-2013-43-1-1

    CrossRef Google Scholar

    Jiao Nianzhi, Zheng Qiang. 2011. The microbial carbon pump: From genes to ecosystems[J]. Applied & Environmental Microbiology, 77(21): 7439-7444.

    Google Scholar

    Jiao Nianzhi, Zheng Qiang, Li Yanling, Luo Tingwei, Zhang Yao, Zhang Rui, Tang Kai, Chen Feng, Zeng Yonghui, Zhang Yongyu. 2011. Microbial carbon pump in the ocean——from microbial ecological process to carbon cycle mechanism[J]. Journal of Xiamen University (Natural Science), 50(2): 387-397 (in Chinese).

    Google Scholar

    Jordà G, Marbà N, Duarte C M. 2012. Mediterranean seagrass vulnerable to regional climate warming[J]. Nature Climate Change, 2(11): 821-824. doi: 10.1038/nclimate1533

    CrossRef Google Scholar

    Kirwan M L, Temmerman S. 2009. Coastal marsh response to historical and future sea-level acceleration[J]. Quaternary Science Reviews, 28(17/18): 1790-1808.

    Google Scholar

    Kirwan M L, Megonigal J P. 2013. Tidal wetland stability in the face of human impacts and sea-level rise[J]. Nature, 504(7478): 53-60. doi: 10.1038/nature12856

    CrossRef Google Scholar

    Kirwan M L, Mudd S M. 2012. Response of salt-marsh carbon accumulation to climate change[J]. Nature, 489(7417): 550-553. doi: 10.1038/nature11440

    CrossRef Google Scholar

    Kirwan M L, Murray A B, Donnelly J P, Corbett D R. 2011. Rapid wetland expansion during European settlement and its implication for marsh survival under modern sediment delivery rates[J]. Geology, 39(5): 507-510. doi: 10.1130/G31789.1

    CrossRef Google Scholar

    Kirwan M L, Temmerman S, Skeehan E E, Guntenspergen G R, Fagherazzi S. 2016. Overestimation of marsh vulnerability to sea level rise[J]. Nature Climate Change, 6: 253-260. doi: 10.1038/nclimate2909

    CrossRef Google Scholar

    Krause-Jensen D, Duarte C M. 2016. Substantial role of macroalgae in marine carbon sequestration[J]. Nature Geoscience, 9(10): 737-742. doi: 10.1038/ngeo2790

    CrossRef Google Scholar

    Krause-Jensen D, Lavery P, Serrano O, Marba N, Masque P, Duarte C M. 2018. Sequestration of macroalgal carbon: the elephant in the Blue Carbon room[J]. Biology Letters, 14: 20180236. doi: 10.1098/rsbl.2018.0236

    CrossRef Google Scholar

    Krauss K W, Cormier N, Osland M J, Kirwan M L, Stagg C L, Nestlerode J A, Russell M J, From A S, Spivak A C, Dantin D D. 2017. Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise[J]. Scientific Reports, 7(1): 1030. doi: 10.1038/s41598-017-01224-2

    CrossRef Google Scholar

    Kroeger K D, Crooks S, Moseman-Valtierra S, Tang Jianwu. 2019. Restoring tides to reduce methane emissions in impounded wetlands: A new and potent Blue Carbon climate change intervention[J]. Scientific Reports, 7(1): 11914.

    Google Scholar

    Lal R. 2004. Soil Carbon sequestration impacts on global climate change and food security[J]. Science, 304(5677): 1623-1627. doi: 10.1126/science.1097396

    CrossRef Google Scholar

    Legendre L, Rivkin R B, Weinbauer M G, Guidi L, Uitz Julia. 2015. The microbial carbon pump concept: Potential biogeochemical significance in the globally changing ocean[J]. Progress in Oceanography, 134: 432-450. doi: 10.1016/j.pocean.2015.01.008

    CrossRef Google Scholar

    Lewis C J E, Baldock J A, Hawke B, Gadd P S, Zawadzki A, Heijnis H, Jacobsen G E, Rogers K, Macreadie P I. 2019. Impacts of land reclamation on tidal marsh "blue carbon" stocks[J]. Science of The Total Environment, 629: 427-437.

    Google Scholar

    Lin Jing. 2019. Theoretical basis and ruling of law to Blue Carbon protection[J]. China Soft Science, 10: 14-23 (in Chinese with English abstract).

    Google Scholar

    Lin Qiaoying, Yu Shen. 2018. Losses of natural coastal wetlands by land conversion and ecological degradation in the urbanizing Chinese coast[J]. Scientific Reports, 8: 15046. doi: 10.1038/s41598-018-33406-x

    CrossRef Google Scholar

    Lo Iacono C, Mateo M A, Gràcia E, Guasch L, Carbonell R, Serrano L, Serrano O, Daobeitia J. 2008. Very high-resolution seismo-acoustic imaging of seagrass meadows (Mediterranean Sea): Implications for carbon sink estimates[J]. Geophysical Research Letters, 35(18): L18601. doi: 10.1029/2008GL034773

    CrossRef Google Scholar

    Lopez-Urrutia A, Martin E S, Harris R P, Irigoien X. 2006. Scaling the metabolic balance of the oceans[J]. Proceedings of the National Academy of Sciences of the United States of America, 103(23): 8739-8744. doi: 10.1073/pnas.0601137103

    CrossRef Google Scholar

    Lovelock C E, Ball M C, Martin K C, Feller I C. 2009. Nutrient enrichment increases mortality of mangroves[J]. Plos One, 4(5): e5600. doi: 10.1371/journal.pone.0005600

    CrossRef Google Scholar

    Lovelock C E, Cahoon D R, Friess D A, Guntenspergen G R, Krauss K W, Reef R, Rogers K, Saunders M L, Sidik F, Swales A. 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise[J]. Nature, 526(7574): 559-563. doi: 10.1038/nature15538

    CrossRef Google Scholar

    Ma Tiantian, Li Xiaowen, Bai Junhong, Ding Shiyuan, Zhou Fangwen, Cui Baoshan. 2019. Four decades' dynamics of coastal blue carbon storage driven by land use/land cover transformation under natural and anthropogenic processes in the Yellow River Delta, China[J]. Science of The Total Environment, 655: 741-750. doi: 10.1016/j.scitotenv.2018.11.287

    CrossRef Google Scholar

    Mackey, B G, Keith, H, Berry, S L, Lindenmayer, D B, 2008. Green Carbon: The role of natural forests in carbon storage. Part 1. a green carbon account of australia's south-eastern eucalypt forests, and Policy implications[C]. Canberra: The Australian National University.

    Google Scholar

    Macreadie P I, Anton A, Raven J A, Beaumont N, Connolly R M, Friess D A, Kelleway J J, Kennedy H, Kuwae T. 2019. The future of Blue Carbon science[J]. Nature Communications, 10: 3998. doi: 10.1038/s41467-019-11693-w

    CrossRef Google Scholar

    Macreadie P I, Randall H A, Kimbro D L. 2013. Loss of "Blue Carbon" from coastal salt marshes following habitat disturbance[J]. Plos One, 8(7): e69244. doi: 10.1371/journal.pone.0069244

    CrossRef Google Scholar

    Marba N, Arias-Ortiz A, Kendrick G A, Masqué P, Mazarrasa I, Bastyan G R, Garcia-Orellana J, Duarte C M. 2015. Impact of seagrass loss and subsequent revegetation on carbon sequestration and stocks[J]. Journal of Ecology, 103(2): 296-302. doi: 10.1111/1365-2745.12370

    CrossRef Google Scholar

    Marbà N, Duarte C M. 2010. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality[J]. Global Change Biology, 16(8): 2366-2375.

    Google Scholar

    McKee K L, Cahoon D R, Feller I C. 2007. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation[J]. Global Ecology & Biogeography, 16(5): 545-556.

    Google Scholar

    Mcleod E, Chmura G L, Bouillon S, Salm R, Bjork M, Duarte C M, Lovelock C E, Schlesinger W H, Silliman B R. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2[J]. Frontiers in Ecology & the Environment, 9(10): 552-560.

    Google Scholar

    McTigue N, Davis J, Rodriguez A B, McKee B, Atencio A, Currin C. 2019. Sea level rise explains changing carbon accumulation rates in a salt marsh over the past two millennia[J]. Journal of Geophysical Research: Biogeosciences, 124: 2945-2957. doi: 10.1029/2019JG005207

    CrossRef Google Scholar

    Meng Weiqing, Feagin R A, Hu Beibei, He Mengxuan, Li Hongyuan. 2019. The spatial distribution of blue carbon in the coastal wetlands of China[J]. Estuarine Coastal and Shelf Science, 222: 13-20. doi: 10.1016/j.ecss.2019.03.010

    CrossRef Google Scholar

    Morris J T, Edwards J, Crooks S, Reyes E. 2012. Assessment of carbon sequestration potential in coastal wetlands[C]//R. Lal (ed. ). Recarbonization of the biosphere: Ecosystems and the global carbon cycle. Dordrecht: Springer science+ Bussiness media, 517-531.

    Google Scholar

    Moss R H, Edmonds J A, Hibbard K A, Manning M R, Rose S K, Van V D P, Carter T R, Emori S, Kainuma M, Kram T. 2010. The next generation of scenarios for climate change research and assessment[J]. Nature, 463(7282): 747-756. doi: 10.1038/nature08823

    CrossRef Google Scholar

    Negandhi K, Edwards G, Kelleway J J, Howard D, Safari D, Saintilan N. 2019. Blue carbon potential of coastal wetland restoration varies with inundation and rainfall[J]. Scientific Reports, 9: 4368. doi: 10.1038/s41598-019-40763-8

    CrossRef Google Scholar

    Nellemann C, Corcoran E, Duarte C M. 2009. Blue carbon: A rapid response assessment[C]. GRID-Arendal: United Nations Environment Programme.

    Google Scholar

    Newell R G, Pizer W A, Raimi D. 2012. Carbon markets: Past, Present, and Future[J]. Social Science Electronic Publishing, 6(1): 191-215.

    Google Scholar

    O'Connor J J, Fest B J, Sievers M, Swearer S E. 2020. Impacts of land management practices on blue carbon stocks and greenhouse gas fluxes in coastal ecosystems—A meta-analysis[J]. Global Change Biology, 26(3): 1354-1366. doi: 10.1111/gcb.14946

    CrossRef Google Scholar

    Ouyang Xiaoguang, Lee S Y. 2014. Updated estimates of carbon accumulation rates in coastal marsh sediments[J]. Biogeosciences, 11(18): 5057-5071. doi: 10.5194/bg-11-5057-2014

    CrossRef Google Scholar

    Pei Lixin, Ye Siyuan, He Lei, Zhao Guangming, Yuan Hongming, Ding Xigui, Pei Shaofeng, Li Xue, Wang Faming, Edward A. Laws. 2023. Wetland resources, development and protection in China and management recommendations[J]. Geology in China, 50(2): 459-478(in Chinese with English abstract).

    Google Scholar

    Pendleton L, Donato D C, Murray B C, Crooks S, Jenkins W A, Sifleet S, Craft C, Fourqurean J W, Kauffman J B, Marbà N. 2012. Estimating global "Blue Carbon" emissions from conversion and degradation of vegetated coastal ecosystems[J]. Plos One, 7(9): e43542. doi: 10.1371/journal.pone.0043542

    CrossRef Google Scholar

    Qin Dahe, Luo Yong, Chen Zhenlin, Ren Jiawen, Shen Yongping. 2007. Lastest advances in Climate Change Report: Interpretation of the synthesis report of the IPCC Fourth assessment report[J]. Advances in Climate Change Research, 3(6): 311-314 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-1719.2007.06.001

    CrossRef Google Scholar

    Qiu Guanglong, Lin Xingzhu, Li Zongshan, Fan Hangqing, Zhou Haolang, Liu Guohua. 2014. Seagrass ecosystems: Contributions to and mechanisms of carbon sequestration[J]. Chinese Journal of Applied Ecology, 25(6): 1825-1832 (in Chinese with English abstract).

    Google Scholar

    Rabalais N N, Cai Wei-Jun, Carstensen J, Conley D J, Fry B, Hu Xinping, Quinones-Rivera Z, Rosenberg R, Slomp C P, Turner R E. 2014. Eutrophication-driven deoxygenation in the coastal ocean[J]. Oceanography, 27(1): 172-183. doi: 10.5670/oceanog.2014.21

    CrossRef Google Scholar

    Raven J. 2018. Blue carbon: Past, present and future, with emphasis on macroalgae[J]. Biology Letters, 14: 20180336. doi: 10.1098/rsbl.2018.0336

    CrossRef Google Scholar

    Rogers K, Kelleway J J, Saintilan N, Megonigal J P, Adams J B, Holmquist J, Lu Meng, Schile-Beers L, Zawadzki A, Mazumder D, Woodroffe C D. 2019a. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise[J]. Nature, 567: 91-95. doi: 10.1038/s41586-019-0951-7

    CrossRef Google Scholar

    Rogers K, Macreadie P I, Kelleway J J, Saintilan N. 2018. Blue carbon in coastal landscapes: A spatial framework for assessment of stocks and additionality[J]. Sustainability Science, 18: 1-15.

    Google Scholar

    Rogers K, Saintilan N, Mazumder D, Kelleway J J. 2019b. Mangrove dynamics and blue carbon sequestration[J]. Biology Letters, 15: 20180471. doi: 10.1098/rsbl.2018.0471

    CrossRef Google Scholar

    Sanderman J, Hengl T, Fiske G, Solvik K, Adame M F, Benson L, Bukoski J J, Carnell P, Cifuentes-Jara M, Donato D. 2018. A global map of mangrove forest soil carbon at 30 m spatial resolution[J]. Environmental Research Letters, 13(5): 055002. doi: 10.1088/1748-9326/aabe1c

    CrossRef Google Scholar

    Sapkota Y, White J R. 2019. Marsh edge erosion and associated carbon dynamics in coastal Louisiana: A proxy for future wetland-dominated coastlines world-wide[J]. Estuarine Coastal and Shelf Science, 226: 106289. doi: 10.1016/j.ecss.2019.106289

    CrossRef Google Scholar

    Sasmito S D, Taillardat P, Clendenning J N, Cameron C, Friess D A, Murdiyarso D, Hutley L B. 2019. Effect of land-use and land-cover change on mangrove blue carbon: A systematic review[J]. Global Change Biology, 25(12): 4291-4302. doi: 10.1111/gcb.14774

    CrossRef Google Scholar

    Schuerch M, Spencer T, temmerman S, Kirwan M L, Wolff C, Lincke D, McOwen C J, Pickering M D, Reef R, Vafeidis A T, Hinkel J, Nicholls R J, Brown S. 2018. Future response of global coastal wetlands to sea-level rise[J]. Nature, 561: 231-234. doi: 10.1038/s41586-018-0476-5

    CrossRef Google Scholar

    Shields M R, Bianchi T S, Mohrig D, Hutchings J A, Kenney W F, Kolker A S, Curtis J H. 2017. Carbon storage in the Mississippi River delta enhanced by environmental engineering[J]. Nature Geoscience, 10: 846-851. doi: 10.1038/ngeo3044

    CrossRef Google Scholar

    Shifflett S D, Schubauer-Berigan J. 2019. Assessing the risk of utilizing tidal coastal wetlands for wastewater management[J]. Journal of Environmental Management, 236: 269-279.

    Google Scholar

    Silliman B R, Grosholz T, Bertness M D. 2009. Human Impacts on Salt Marshes: A Global Perspective[M]. University of California Press, Berkeley, CA.

    Google Scholar

    Spencer T, Schuerch M, Nicholls R J, Hinkel J, Lincke D, Vafeidis A T, Reef R, McFadden L, Brown S. 2016. Global coastal wetland change under sea-level rise and related stresses: The DIVA wetland change model[J]. Global and Planetary Change, 139: 15-30. doi: 10.1016/j.gloplacha.2015.12.018

    CrossRef Google Scholar

    Spivak A C, Sanderman J, Bowen J L, Canuel E A, Hopkinson C S. 2019. Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems[J]. Nature Geoscience, 12: 685-692. doi: 10.1038/s41561-019-0435-2

    CrossRef Google Scholar

    Suir G M, Sasser C E, Delaune R D. 2019. Comparing carbon accumulation in restored and natural wetland soils of coastal Louisiana[J]. International Journal of Sediment Research, 34: 600-607. doi: 10.1016/j.ijsrc.2019.05.001

    CrossRef Google Scholar

    Syvitski J P M, Voeroesmarty C J, Kettner A J, Green P. 2005. Impact of humans on the flux of terrestrial sediment to the global coastal ocean[J]. Science, 308(5720): 376-380. doi: 10.1126/science.1109454

    CrossRef Google Scholar

    Tang Jianwu, Ye Shufeng, Chen Xuechu, Yang Hualei, Sun Xiaohong, Wang Faming, Wen Quan, Chen Shaobo. 2018. Coastal blue carbon: Concept, study method, and the application to ecological restoration[J]. Science China Earth Sciences, 61: 637-646 (in Chinese). doi: 10.1007/s11430-017-9181-x

    CrossRef Google Scholar

    Thorne K, MacDonald G, Guntenspergen G, Ambrose R, Buffington K, Dugger B, Freeman C, Janousek C, Brown L, Rosencranz J. 2018. US Pacific coastal wetland resilience and vulnerability to sea-level rise[J]. Science Advances, 4(2): eaao3270. doi: 10.1126/sciadv.aao3270

    CrossRef Google Scholar

    Ullman R, Bilbao-Bastida V, Grimsditch G. 2013. Including blue carbon in climate market mechanisms[J]. Ocean & Coastal Management, 83: 15-18.

    Google Scholar

    Valiela I, Bowen J L, York J K. 2001. Mangrove forests: One of the world's threatened major tropical environments[J]. Bioscience, 51(10): 807-815. doi: 10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2

    CrossRef Google Scholar

    Wang Chengyu, Li Yuchao, Yu Chengguang, Wang Chenglong, Wang Dapeng. 2019. Temporal and spatial distribution characteristics of soil carbon pool in western coast of Liaoning Province and it influencing factors[J]. Geological Survey and Research, 42(3): 208-218 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-4135.2019.03.007

    CrossRef Google Scholar

    Wang Faming, Lu Xiaoliang, Sanders Christian J, Tang Jianwu. 2019. Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States[J]. Nature Communications, 10: 5434. doi: 10.1038/s41467-019-13294-z

    CrossRef Google Scholar

    Wang Faming, Zhang Jingfan, Ye Siyuan, Liu Jihua. 2022. Coastal blue carbon ecosystems in China[J]. China Geology, 5: 193-194.

    Google Scholar

    Wang Yao, Guo Chihui, Chen Xijie, Jia Liqiong, Guo Xiaona, Chen Ruishan, Zhang Maosheng, Chen Zeyu, Wang Haodong. 2021. Carbon peak and carbon neutrality in China: Goals, implementation path and prospects[J]. China Geology, 4: 720-746.

    Google Scholar

    Waycott M, Duarte C M, Carruthers T J B, Orth R J, Dennison W C, Olyarnik S, Calladine A, Fourqurean J W, Heck K L, Hughes A R. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems[J]. Proceedings of the National Academy of Sciences, 106(30): 12377-12381. doi: 10.1073/pnas.0905620106

    CrossRef Google Scholar

    Wen Yongli, Bernhardt E S., Deng Wenbo, Liu Wenjuan, Yan Junxia, Baruch E M, Bergemann C M. 2019. Salt effects on carbon mineralization in southeastern coastal wetland soils of the United States[J]. Geoderma, 339: 31-39. doi: 10.1016/j.geoderma.2018.12.035

    CrossRef Google Scholar

    Wilson R M, Hopple A M, Tfaily M M, Sebestyen S D, Schadt C W, Pfeifer-Meister L, Medvedeff C, Mcfarlane K J, Kostka J E, Kolton M. 2016. Stability of peatland carbon to rising temperatures[J]. Nature Communications, 7: 13723. doi: 10.1038/ncomms13723

    CrossRef Google Scholar

    Winkler K, Fuchs R, Rounsevell M, Herold M. 2021. Global land use changes are four times greater than previously estimated[J]. Nature Communications, 12(1): 2501. doi: 10.1038/s41467-021-22702-2

    CrossRef Google Scholar

    WMO. 2022. WMO Provisional State of the Global Climate 2022[C]. Sharm el Sheikh, World Meteorological Organization, 1-26.

    Google Scholar

    Wylie L, Sutton-Grier A E, Moore A. 2016. Keys to successful blue carbon projects: Lessons learned from global case studies[J]. Marine Policy, 65: 76-84. doi: 10.1016/j.marpol.2015.12.020

    CrossRef Google Scholar

    Yang S L, Li M, Dai S B, Liu Z, Zhang J, Ding P X. 2006. Drastic decrease in sediment supply from the Yangtze River and its challenge to coastal wetland management[J]. Geophysical Research Letters, 33: L06408.

    Google Scholar

    Yang Wen, Zhao Hui, Chen Xinglong, Yin Shenglai, Cheng Xiaoli, An Shuqing. 2013. Consequences of short-term C4 plant Spartina alterniflora invasions for soil organic carbon dynamics in a coastal wetland of Eastern China[J]. Ecological Engineering, 61: 50-57. doi: 10.1016/j.ecoleng.2013.09.056

    CrossRef Google Scholar

    Yang Wen, Zhao Hui, Leng Xin, Cheng Xiaoli, An Shuqing. 2017. Soil organic carbon and nitrogen dynamics following Spartina alterniflora invasion in a coastal wetland of eastern China[J]. Catena, 156: 281-289. doi: 10.1016/j.catena.2017.03.021

    CrossRef Google Scholar

    Ye Siyuan, Laws E A, Costanza R, Brix H. 2016. Ecosystem service value for the common reed wetlands in the Liaohe Delta, Northeast China[J]. Open Journal of Ecology, 6(3): 129-137. doi: 10.4236/oje.2016.63013

    CrossRef Google Scholar

    Yu Xueyang, Ye Siyuan, Yuknis N L, Laws E A, Zhao Guangming, Yuan Hongming, Ding Xigui, Wang Jin. 2014. Carbon sequestration along vegetation coverage gradient in the Suaeda salsa marsh from the Liaohe Delta[J]. Geology in China, 41(2): 648-657. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-3657.2014.02.025

    CrossRef Google Scholar

    Yue Dongdong, Wang Lumin. 2012. A preliminary research on the accounting system of carbon sink for marine culture of shellfish in China[J]. Hunan agricultural sciences, 15: 120-122 (in Chinese with English abstract).

    Google Scholar

    Zhang Haibo, Luo Yongming, Liu Xinghua, Fu Chuancheng. 2015. Current researches and prospects on the coastal blue carbon[J]. Scientia Sinica Terae, 45: 1641-1648 (in Chinese). doi: 10.1360/zd2015-45-11-1641

    CrossRef Google Scholar

    Zhang Li, Guo Zhihua, Li Zhiyong. 2013. Carbon storage and carbon sink of mangrove wetland: Research progress[J]. Chinese Journal of Applied Ecology, 24(4): 1153-1159 (in Chinese with English abstract).

    Google Scholar

    Zhang Mingxiang, Bao Daming, Wang Yuyu, Liu Yu. 2015. American experience in conservation and management of coastal wetland in san francisco bay, and its inspiration for China[J]. Wetlands Science & Management, 11(1): 24-28 (in Chinese with English abstract).

    Google Scholar

    Zhang Yao, Zhao Meixun, Cui Qiu, Pan Wei, Qi Jiaguo, Chen Ying, Zhang Yongyu, Gao Kunshan, Pan Jingfeng, Wang Guangyi. 2017. Processes of coastal ecosystem carbon sequestration and approaches for increasing carbon sink[J]. Science China Earth Science, 60: 809-820 (in Chinese). doi: 10.1007/s11430-016-9010-9

    CrossRef Google Scholar

    Zhao Guangming, Ye Siyuan, Laws E A, He Lei, Yuan Hongming, Ding Xigui, Wang Jin. 2019. Carbon burial records during the last~40, 000 years in sediments of the liaohe delta wetland, China[J]. Estuarine Coastal and Shelf Science, 226: 106291. doi: 10.1016/j.ecss.2019.106291

    CrossRef Google Scholar

    Zhao Guangming, Ye Siyuan, Li Guangxue, Ding Xigui, Yuan Hongming. 2015. Late quaternary strata and carbon burial records in the Yellow River delta, China[J]. Journal of Ocean University of China, 14 (3): 446-456. doi: 10.1007/s11802-015-2773-z

    CrossRef Google Scholar

    Zhao Qingqing, Bai Junhong, Zhang Guangliang, Jia Jia, Wang Wei, Wang Xin. 2018. Effects of water and salinity regulation measures on soil carbon sequestration in coastal wetlands of the Yellow River delta[J]. Geoderma, 319: 219-229. doi: 10.1016/j.geoderma.2017.10.058

    CrossRef Google Scholar

    Zhou Pan, Ye Siyuan, Wang Jing, Yu Changbin, Yuan Hongming, Pei Lixin, Ding Xigui, Yang Juan, Hans Brix. 2022. Glomalin-related soil protein distribution and its relation to mineral weathering in the wetlands along the Bohai Sea, China[J]. Geology in China, 49(4): 1075-1087(in Chinese with English abstract).

    Google Scholar

    Zhu Xin. 2014. Temporal and spatial variation of organic carbon and soil carbon storage in the Pearl River Delta economic zone[J]. Geology and Mineral Resources of South China, 30(2): 176-185 (in Chinese with English abstract).

    Google Scholar

    丁喜桂, 叶思源, 赵广明, 袁红明, 王锦. 2014. 黄河三角洲滨海湿地演化及其对碳与营养成分的扣留[J]. 海洋与湖沼, 45(1): 94-102.

    Google Scholar

    丁喜桂, 王吉松, 赵广明, 袁红明, 王锦. 2016. 黄河三角洲滨海湿地演化过程中的碳埋藏效率及其控制[J]. 中国地质, 43(1): 319—328. doi: 10.3969/j.issn.1000-3657.2016.01.024

    CrossRef Google Scholar

    丁一汇, 任国玉, 石广玉. 2006. 气候变化国家评估报告(Ⅰ): 中国气候变化的历史和未来趋势[J]. 气候变化研究进展, 3(s1): 1-5.

    Google Scholar

    段晓男, 王效科, 尹弢, 陈琳. 2006. 湿地生态系统固碳潜力研究进展[J]. 生态环境学报, 15(5): 201-205. doi: 10.16258/j.cnki.1674-5906.2006.05.040

    CrossRef Google Scholar

    关道明. 2012. 中国滨海湿地[M]. 北京: 海洋出版社, 233.

    Google Scholar

    贾黎黎, 朱鑫, 赵艺, 李婷婷. 2019. 雷州半岛土壤碳储量及其有机碳时空变化规律[J]. 华南地质与矿产, 35(3): 373-379. doi: 10.3969/j.issn.1007-3701.2019.03.011

    CrossRef Google Scholar

    焦念志. 2012. 海洋固碳与储碳-并论微型生物在其中的重要作用[J]. 中国科学: 地球科学, 42(10): 1473-1486.

    Google Scholar

    焦念志, 张传伦, 李超, 王晓雪, 党宏月, 曾庆璐, 张锐, 张瑶, 汤凯, 张子莲, 徐大鹏. 2013. 海洋微型生物碳泵储碳机制及气候效应[J]. 中国科学: 地球科学, 43: 1-18.

    Google Scholar

    焦念志, 郑强, 李彦玲, 骆庭伟, 张瑶, 张锐, 汤凯, 陈峰, 曾永辉, 张永雨. 2011. 海洋微型生物碳泵-从微型生物生态过程到碳循环机制效应[J]. 厦门大学学报(自然科学版), 50(2): 387-401.

    Google Scholar

    林婧. 2019. 蓝碳保护的理论基础与法治进路[J]. 中国软科学, 10: 14-23.

    Google Scholar

    裴理鑫, 叶思源, 何磊, 赵广明, 袁红明, 丁喜桂, 裴绍峰, 李雪, 王法明, Edward A. Laws. 2023. 中国湿地资源与开发保护现状及其管理建议[J]. 中国地质, 50(2): 459-478.

    Google Scholar

    秦大河, 罗勇, 陈振林, 任贾文, 沈永平. 2007. 气候变化科学的最新进展: IPCC第四次评估综合报告解析[J]. 气候变化研究进展, 3(6): 311-314. doi: 10.3969/j.issn.1673-1719.2007.06.001

    CrossRef Google Scholar

    邱广龙, 林幸助, 李宗善, 范航清, 周浩郎, 刘国华. 2014. 海草生态系统的固碳机理及贡献[J]. 应用生态学报, 25(6): 1825-1832. doi: 10.13287/j.1001-9332.20140409.011

    CrossRef Google Scholar

    唐剑武, 叶属峰, 陈雪初, 杨华蕾, 孙晓红, 王法明, 温泉, 陈少波. 2018. 海岸带蓝碳的科学概念、研究方法以及在生态恢复中的应用[J]. 中国科学: 地球科学, 48(6): 661-670.

    Google Scholar

    王诚煜, 李玉超, 于成广, 王成龙, 王大鹏. 2019. 辽宁西部沿海地区土壤碳库时空分布特征及其影响因素[J]. 地质调查与研究, 42(3): 208-218. doi: 10.3969/j.issn.1672-4135.2019.03.007

    CrossRef Google Scholar

    余雪洋, 叶思源, Nicholas Lawrence Yuknis, Edward A Laws, 赵广明, 袁红明, 丁喜桂, 王锦. 2014. 辽河三角洲翅碱蓬湿地不同植被覆盖度下的土壤对碳的扣留[J]. 中国地质, 41(2): 648-657. doi: 10.3969/j.issn.1000-3657.2014.02.025

    CrossRef Google Scholar

    岳冬冬, 王鲁民. 2012. 中国海水贝类养殖碳汇核算体系初探[J]. 湖南农业科学, 15: 120-122. doi: 10.16498/j.cnki.hnnykx.2012.15.045

    CrossRef Google Scholar

    张莉, 郭志华, 李志勇. 2013. 红树林湿地碳储量及碳汇研究进展[J]. 应用生态学报, 24(4): 1153-1159. doi: 10.13287/j.1001-9332.2013.0272

    CrossRef Google Scholar

    张明祥, 鲍达明, 王玉玉, 刘宇. 2015. 美国旧金山湾滨海湿地保护与管理的经验及启示[J]. 湿地科学与管理, 11(1): 25-28.

    Google Scholar

    张瑶, 赵美训, 崔球, 樊炜, 齐家国, 陈鹰, 张永雨, 高坤山, 樊景凤, 汪光义. 2017. 近海生态系统碳汇过程、调控机制及增汇模式[J]. 中国科学: 地球科学, 47(4): 438-449.

    Google Scholar

    章海波, 骆永明, 刘兴华, 付传城. 2015. 海岸带蓝碳研究及其展望[J]. 中国科学: 地球科学, 45(11): 1641-1648.

    Google Scholar

    郑凤英, 邱广龙, 范航清, 张伟. 2013. 中国海草的多样性、分布及保护[J]. 生物多样性, 21(5): 517-526.

    Google Scholar

    周攀, 叶思源, 王锦, 于长斌, 袁红明, 裴理鑫, 丁喜桂, 杨娟, HANS Brix. 2022. 环渤海湿地沉积物球囊霉素相关土壤蛋白分布特征及其对湿地土壤风化的影响[J]. 中国地质, 49(4): 1075-1087.

    Google Scholar

    朱鑫, 2014. 珠江三角洲经济区土壤碳储量及有机碳时空变化规律研究[J]. 华南地质与矿产, 30(2): 176-185

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(1)

Article Metrics

Article views(3288) PDF downloads(205) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint