2023 Vol. 50, No. 3
Article Contents

DIAO Yujie, LIU Ting, WEI Ning, MA Xin, JIN Xiaolin, FU Lei. 2023. Classification and assessment methodology of carbon dioxide geological storage in deep saline aquifers[J]. Geology in China, 50(3): 943-951. doi: 10.12029/gc20221030001
Citation: DIAO Yujie, LIU Ting, WEI Ning, MA Xin, JIN Xiaolin, FU Lei. 2023. Classification and assessment methodology of carbon dioxide geological storage in deep saline aquifers[J]. Geology in China, 50(3): 943-951. doi: 10.12029/gc20221030001

Classification and assessment methodology of carbon dioxide geological storage in deep saline aquifers

    Fund Project: Supported by the project of China Geological Survey (No.DD20221818), National Key Research and Development Program (No.2019YFE0100100), Key Research and Development Program of Hebei Province (No.22374004D)
More Information
  • Author Bio: DIAO Yujie, male, born in 1983, Ph.D., professor of engineering, engaged in CO2 geological utilization and storage in deep underground space; E-mail: diaoyujie@mail.cgs.gov.cn
  • Corresponding author: LIU Ting, male, born in 1990, master, engineer, engaged in CO2 geological storage in deep underground space; E-mail: liuting@mail.cgs.gov.cn 
  • This paper is the result of comprehensive geological survey engineering of carbon peak and carbon neutrality.

    Objective

    To achieve the carbon neutrality, the carbon dioxide geological storage in saline aquifers is considered as the bottom technology in the field of fossil energy in China. With the increasingly extensive and in-depth research on the evaluation of storage potential at different geological scales, it is urgent to establish a unified classification system and scientific evaluation methods for storage potential.

    Methods

    This paper refers to the geological exploration experience of solid minerals, oil and gas minerals, as well as the potential levels and evaluation methods of saline aquifer carbon dioxide storage at home and abroad. It divides the stages and potential levels of saline aquifer carbon dioxide storage in China, and proposes potential evaluation ideas, calculation formulas, and important coefficient values for reference.

    Results

    Firstly, by setting four stages of the requirements for exploration and geological understanding of the storage sites, i.e. general exploration, detailed exploration, advanced exploration and injection, the carbon dioxide storage potential is divided into four levels: geological potential, technically capacity, technically-commercial capacity and engineering reserves. The general exploration stage corresponds to the possible level (Level D), the detailed exploration stage corresponds to the probable level (Level C), the advanced exploration stage corresponds to the proved level (Level B), and the injection stage corresponds to the engineering level (Level A). Secondly, the assessment on carbon dioxide storage potential can be carried out in process of reservoir selection, potential grading and calculation, and the effective reservoirs should be selected considering storage conditions, sealing ability, stability of storage complex, and development of deep resources. At last, for different levels of carbon dioxide storage potential calculation, formulas of volume method or mechanism method, as well as geological coefficient, displacement coefficient, cost coefficient and other key parameters should be reasonably selected according to the application scenarios. The carbon dioxide storage potential should be assessed using numerical simulation with different injection schemes in the detailed exploration stage.

    Conclusions

    The potential assessment on carbon dioxide storage in saline aquifers should include a multi-scale and multi-level dynamic evaluation mechanism with a precision from low to high. The classification and assessment methodology of carbon dioxide geological storage in saline aquifers proposed could provide support (references) for potential of different regions and assessment stages, and also the management of deep underground space for saline aquifer carbon dioxide storage. However, the potential calculation formulas and key coefficient values are still need to be innovated through a large number of lab experiments, numerical simulation and project practices, as that are more consistent with the actual storage sites.

  • 加载中
  • Bachu S. 2015. Review of CO2 storage efficiency in deep saline aquifers[J]. International Journal of Greenhouse Gas Control, 40: 188-202. doi: 10.1016/j.ijggc.2015.01.007

    CrossRef Google Scholar

    Chadwick A, Williams G, Delepine N, Clochard V, Labat K, Sturton S, Buddensiek M L, Dillen M, Nickel M, Lima A L. 2010. Quantitative analysis of time-lapse seismic monitoring dataat the Sleipner CO2 storage operation[J]. Leading Edge, 29: 170-177. doi: 10.1190/1.3304820

    CrossRef Google Scholar

    CSLF. 2007. Estimation of CO2 Storage Capacity in Geological Media - Phase Ⅱ Report[R].

    Google Scholar

    CSLF. 2019. Carbon Capture, Utilisation and Storage (CCUS) and Energy Intensive Industries (EIIs): From Energy/Emission Intensive Industries to Low Carbon Industries[R].

    Google Scholar

    Cui Zhendong, Liu Da'an, Zeng Rongshu, Niu Jingrui. 2011. Potential geological and environmental risks and its prevention measures for CO2 geological storage projects[J]. Geological Review, 57(5): 700-706 (in Chinese with English abstract).

    Google Scholar

    Dai Shixin, Dong Yanjiao, Wang Feng, Xing Zhenhan, Hu Pan, Yang Fu. 2022. A sensitivity analysis of factors affecting in geologic CO2 storage in the Ordos Basin and its contribution to carbon neutrality[J]. China Geology, 5: 359-371.

    Google Scholar

    Diao Yujie, Zhang Senqi, Guo Jianqiang, Li Xufeng, Zhang Hui. 2011. Geological safety evaluation method for CO2 geological storage in deep saline aquifer[J]. Geology in China, 38(3): 786-792 (in Chinese with English abstract).

    Google Scholar

    Diao Yujie, Zhu Guowei, Jin Xiaolin, Zhang Chao, Li Xufeng. 2017. Theoretical potential assessment of CO2 geological utilization and storage in the Sichuan Basin[J]. Geological Bulletin of China, 36 (6): 1088-1095 (in Chinese with English abstract).

    Google Scholar

    Diao Yujie, Li Xufeng, Jin Xiaolin, Guo Jianqiang, Zhang Senqi. 2019. Exploration, Evaluation and Engineering Control Technology of Carbon Dioxide Geological Storage in Deep Saltwater[M]. Beijing: Geological Publishing House (in Chinese).

    Google Scholar

    Diao Y, Zhu G, Li X, Bai B, Zhang B. 2020. Characterizing CO2 plume migration in multi-layer reservoirs with strong heterogeneity and low permeability using time-lapse 2D VSP technology and numerical simulation[J]. International Journal of Greenhouse Gas Control, 92: 102880. doi: 10.1016/j.ijggc.2019.102880

    CrossRef Google Scholar

    Ding Zhongli. 2021. Research on China's "Carbon Neutralization Framework Roadmap"[R] (in Chinese).

    Google Scholar

    Furre A K, Eiken O, Alnes H, Vevatne J N, Kiær A F. 2017. 20 Years of monitoring CO2- injection at sleipner[J]. Energy Procedia, 114(1): 3916-3926.

    Google Scholar

    Ghosh R, Sen M K, Vedanti N. 2015. Quantitative interpretation of CO2 plume from Sleipner (North Sea), using post-stack inversion and rock physics modeling[J]. International Journal of Greenhouse Gas Control, 32: 147-158. doi: 10.1016/j.ijggc.2014.11.002

    CrossRef Google Scholar

    Goodman A, Hakala A, Bromhal G, Deel D, Rodosta T, Frailey S, Small M, Allen D, Romanov V, Fazio J, Huerta N, McIntyre D, Kutchko B, Guthrie G. 2011. U.S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale[J]. International Journal of Greenhouse Gas Control, 5: 952-965. doi: 10.1016/j.ijggc.2011.03.010

    CrossRef Google Scholar

    Guo Jianqiang, Wen Dongguang, Zhang Senqi, Jia Xiaofeng, Fan Jijiao. 2014. The Atlas of Carbon Dioxide Geological Storage Potential and Suitability Assessments of China Major Sedimentary Basins[M]. Beijing: Geological Publishing House (in Chinese).

    Google Scholar

    Huang Jing. 2021. National Assessment Report on Development of Carbon Capture Utilization and Storage Technology in China[M]. Beijing: Science Press (in Chinese).

    Google Scholar

    IEA GHG. 2009. Development of Storage Coefficients for CO2 Storage in Deep Saline Formations[R]. IEA Greeen House Gas R & D Programme (IEA GHG).

    Google Scholar

    Li C, Zhang K N, Wang Y S, Guo C B, Maggi F. 2016. Experimental and numerical analysis of reservoir performance for geological CO2 storage in the Ordos Basin in China[J]. International Journal of Greenhouse Gas Control, 45: 216-232. doi: 10.1016/j.ijggc.2015.11.011

    CrossRef Google Scholar

    Li Qi, Cai Bofeng, Chen Fan, Liu Guizhen, Liu Lancui. 2019. Review of environmental risk assessment methods for carbon dioxide geological storage[J]. Environmental Engineering, 37(2): 13-21 (in Chinese with English abstract).

    Google Scholar

    Li X C, Wei N, Jiao Z S, Liu S N, Dahowski R. 2019. Cost curve of large-scale deployment of CO2- enhanced water recovery technology in modern coal chemical industries in China[J]. International Journal of Greenhouse Gas Control, 81: 66-82. doi: 10.1016/j.ijggc.2018.12.012

    CrossRef Google Scholar

    Li Xiaochun, Liu Yanfeng, Bai Bing, Fang Zhiming. 2006. Ranking and screening of CO2 saline aquifer storage zones in China[J]. Chinese Journal of Rock Mechanics and Engineering, 25(5): 963-968 (in Chinese with English abstract).

    Google Scholar

    Ma Bing, Jia Lingxiao, Yu Yang, Wang Huan, Chen Jing, Zhong Shuai, Zhu Jichang. 2021. Geoscience and carbon neutralization: Current status and development direction[J]. Geology in China, 48(2): 347-358 (in Chinese with English abstract).

    Google Scholar

    Ma Xin, Li Xufeng, Wen Dongguang, Luo Xingwang, Diao Yujie, Yang Guodong, Yin Shuguo, Cao Wei. 2021. A study of the potential of field-scale of CO2 geological storage and enhanced water recovery in the Eastern Junggar Area of Xinjiang[J]. Hydrogeology & Engineering Geology, 48(6): 196-205 (in Chinese with English abstract).

    Google Scholar

    Metz Bert, Davidson Ogunlade, De Coninck H C, Loos Manuela, Meyer Leo. 2005. IPCC Special Report on Carbon Dioxide Capture and Storage[M]. Cambridge: Cambridge University Press.

    Google Scholar

    Raknes E B, Arntsen B, Weibull W. 2015. Three-dimensional elastic full waveform inversion using seismic data from the Sleipner area[J]. Geophysical Journal International, 202: 1877-1894. doi: 10.1093/gji/ggv258

    CrossRef Google Scholar

    USDOE. 2006. Carbon Sequestration Atlas of the United States and Canada: Appendix A - Methodology for development of carbon sequestration capacity estimates[R].

    Google Scholar

    Wang Huan, Zheng Yuzhou, Wang Wei. 2022. The major work and implication of Geoscience Australia on geological carbon sequestration[J]. Geology in China, 49(3): 1005-1008 (in Chinese with English abstract).

    Google Scholar

    Wang Yao, Guo Chihui, Zhuang Shurong, Chen Xijie, Jia Liqiong, Chen Zeyu, Xia Zilong, Wu Zhen. 2021. Major contribution to carbon neutrality by China's geosciences and geological technologies[J]. China Geology, 4: 329-352.

    Google Scholar

    Wei N, Li X, Wang Y, Dahowski R T, Davidson C L, Bromhal G S. 2013. A preliminary sub-basin scale evaluation framework of site suitability for onshore aquifer-based CO2 storage in China[J]. International Journal of Greenhouse Gas Control, 12: 231-246. doi: 10.1016/j.ijggc.2012.10.012

    CrossRef Google Scholar

    Wei N, Jiao Z S, Ellett K, Ku A Y, Liu S N, Middleton R, Li X C. 2021. Decarbonizing the coal-fired power sector in China via carbon capture, geological utilization, and storage technology[J]. Environmental Science & Technology, 55: 13164-13173.

    Google Scholar

    Wei N, Li X C, Jiao Z S, Stauffer P H, Liu S N, Ellett K, Middleton R S. 2022. A hierarchical framework for CO2 storage capacity in deep saline aquifer formations[J]. Frontiers in Earth Science, 9: 1-121.

    Google Scholar

    Xie Heping, Xie Lingzhi, Wang Yufei, Zhu Jiahua, Liang Bin, Ju Yang. 2012. CCU: A more feasible and economic strategy than CCS for reducing CO2 emissions[J]. Journal of Sichuan University (Engineering Science Edition), 44(4): 1-5 (in Chinese with English abstract).

    Google Scholar

    Xie Jian, Zhang Keni, Wang Yongsheng, Tan Liqing, Guo Chaobin. 2016. Performance assessment of CO2 geological storage in deep saline aquifers in Ordos Basin, China[J]. Rock and Soil Mechanics, 37(1): 166-174 (in Chinese with English abstract).

    Google Scholar

    Yang Hong, Zhao Xisen, Kang Yulong, Chen Longlong, Huang Chunxia, Wang Hong. 2019. Evaluation on geological sequestration suitability and potential of CO2 in Ordos Basin[J]. Climate Change Research, 15(1): 95-102 (in Chinese with English abstract).

    Google Scholar

    Zhang Bing, Liang Kaiqian, Wang Weibo, Chen Longlong, Wang Hong. 2019. Evaluation of effective CO2 geological sequestration potential of deep saline aquifer in Ordos Basin[J]. Unconventional Oil & Gas, 6(3): 15-20 (in Chinese with English abstract).

    Google Scholar

    Zhang Hongtao, Wen Dongguang, Li Yilian, Zhang Jiaqiang, Lu Jincai. 2005. Conditions for CO2 geological sequestration in China and some suggestions[J]. Geological Bulletin of China, 24(12): 1107-1110 (in Chinese with English abstract).

    Google Scholar

    Zhang K N, Xie J, Li C, Hu L T, Wu X Z, Wang Y S. 2016. A full chain CCS demonstration project in northeast Ordos Basin, China: Operational experience and challenges[J]. International Journal of Greenhouse Gas Control, 50: 218-230. doi: 10.1016/j.ijggc.2016.04.025

    CrossRef Google Scholar

    崔振东, 刘大安, 曾荣树, 牛晶蕊. 2011. CO2地质封存工程的潜在地质环境灾害风险及防范措施[J]. 地质论评, 57(5): 700-706.

    Google Scholar

    刁玉杰, 张森琦, 郭建强, 李旭峰, 张徽. 2011. 深部咸水层CO2地质储存地质安全性评价方法研究[J]. 中国地质, 38(3): 786-792.

    Google Scholar

    刁玉杰, 朱国维, 金晓琳, 张超, 李旭峰. 2017. 四川盆地理论CO2地质利用与封存潜力评估[J]. 地质通报, 36(6): 1088-1095.

    Google Scholar

    刁玉杰, 李旭峰, 金晓琳, 郭建强, 张森琦. 2019. 深部咸水层二氧化碳地质储存勘查评价与工程控制技术[M]. 北京: 地质出版社.

    Google Scholar

    丁仲礼. 2021. 中国"碳中和框架路线图"研究[R].

    Google Scholar

    郭建强, 文冬光, 张森琦, 贾小丰, 范基姣. 2014. 中国主要沉积盆地二氧化碳地质储存潜力与适宜性评价图集[M]. 北京: 地质出版社.

    Google Scholar

    黄晶. 2021. 中国碳捕集利用与封存技术评估报告[M]. 北京: 科学出版社.

    Google Scholar

    李琦, 蔡博峰, 陈帆, 刘桂臻, 刘兰翠. 2019. 二氧化碳地质封存的环境风险评价方法研究综述[J]. 环境工程, 37(2): 13-21.

    Google Scholar

    李小春, 刘延锋, 白冰, 方志明. 2006. 中国深部咸水含水层CO2储存优先区域选择[J]. 岩石力学与工程学报, 25(5): 963-968.

    Google Scholar

    马冰, 贾凌霄, 于洋, 王欢, 陈静, 钟帅, 朱吉昌. 2021. 地球科学与碳中和: 现状与发展方向[J]. 中国地质, 48(2): 347-358.

    Google Scholar

    马鑫, 李旭峰, 文冬光, 罗兴旺, 刁玉杰, 杨国栋, 尹书郭, 曹伟. 2021. 新疆准东地区场地尺度二氧化碳地质封存联合深部咸水开采潜力评估[J]. 水文地质工程地质, 48(6): 196-205.

    Google Scholar

    王欢, 郑宇舟, 王为. 2022. 澳大利亚地球科学局在地质碳封存方面开展的主要工作与启示[J]. 中国地质, 49(3): 1005-1008.

    Google Scholar

    谢和平, 谢凌志, 王昱飞, 朱家骅, 梁斌, 鞠杨. 2012. 全球二氧化碳减排不应是CCS, 应是CCU[J]. 四川大学学报: 工程科学版, 44(4): 1-5.

    Google Scholar

    谢健, 张可霓, 王永胜, 覃莉清, 郭朝斌. 2016. 鄂尔多斯深部咸水层CO2地质封存效果评价[J]. 岩土力学, 37(1): 166-174.

    Google Scholar

    杨红, 赵习森, 康宇龙, 陈龙龙, 黄春霞, 王宏. 2019. 鄂尔多斯盆地CO2地质封存适宜性与潜力评价[J]. 气候变化研究进展, 15(1): 95-102.

    Google Scholar

    张冰, 梁凯强, 王维波, 陈龙龙, 王宏. 2019. 鄂尔多斯盆地深部咸水层CO2有效地质封存潜力评价[J]. 非常规油气, 6(3): 15-20.

    Google Scholar

    张洪涛, 文冬光, 李义连, 张家强, 卢进才. 2005. 中国CO2地质埋存条件分析及有关建议[J]. 地质通报, 24(12): 1107-1110.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(4)

Article Metrics

Article views(3810) PDF downloads(451) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint