2024 Vol. 51, No. 2
Article Contents

LIU Lin, WANG Dazhao, CHEN Aizhang, CAI Xiongwei. 2024. Distribution, occurrence and exploration prospect of associated rare earth elements in Yichang phosphate deposit, Hubei Province[J]. Geology in China, 51(2): 525-546. doi: 10.12029/gc20221027003
Citation: LIU Lin, WANG Dazhao, CHEN Aizhang, CAI Xiongwei. 2024. Distribution, occurrence and exploration prospect of associated rare earth elements in Yichang phosphate deposit, Hubei Province[J]. Geology in China, 51(2): 525-546. doi: 10.12029/gc20221027003

Distribution, occurrence and exploration prospect of associated rare earth elements in Yichang phosphate deposit, Hubei Province

    Fund Project: Supported by Hubei Natural Science Foundation (No.2019CFB551).
More Information
  • Author Bio: LIU Lin, male, born in 1990, assistant researcher, engaged in the study of mineral resources; E-mail: 615787470@qq.com
  • Corresponding author: WANG Dazhao, male, born in 1991, doctor, assistant researcher, engaged in the study of mineral deposits research; E-mail: wangdazhao@ecut.edu.cn
  • This paper is the result of mineral exploration engineering.

    Objective

    The Yichang phosphate ore in Hubei Province contains associated rare earth elements. Studying their distribution patterns and occurrence states is of significant importance for the recycling and utilization of rare earth elements. Additionally, the comprehensive utilization of associated minerals is expected to become a crucial source for future rare earth ores.

    Methods

    This study primarily focuses on rare earth−containing phosphate rocks. Based on systematic sampling, analyses including rock and mineral identification, whole−rock geochemical analysis, XRD diffraction analysis, SEM observation, and LA−ICP−MS testing are carried out.

    Results

    The total rare earth element content (ΣREE+Y) in phosphate rock ranges from 63.5×10−6 to 271.8×10−6. There are variations in rare earth element contents among different layers or rock types of phosphate rock.

    Conclusions

    The content of rare earth elements is notably controlled by rock types, with an increase from dolomite → dolomitic phosphorite → dense massive phosphorite → argillaceous banded phosphorite to mudstone. Trace elements compositions reflect the ancient climate of the Yichang phosphate deposits, characterized mainly by a dry and hot climate, with a slightly warm and humid characteristic in the northwest. Ce anomaly, V/Ni and Y/Ho ratio reflect the oxidation of seawater conditions from the bottom to the top, corresponding to the the Ph22 to the Ph13 phosphogenesis periods. The total rare earth elements content in the Yichang phosphate deposit are relatively low, and mudstone has higher content compared to phosphate rocks, indicating a higher concentration of adsorbed rare earth elements than the isomorphic rare earth elements. The rare earth resources associated with the Yichang phosphate deposit can be comprehensively recovered using appropriate technologies, holding significant importance for the rational utilization of the Yichang phosphate ore resources and economic development.

  • 加载中
  • [1] Abedini A, Calagari A A. 2017. REEs geochemical characteristics of Lower Cambrian phosphatic rocks in the Gorgan−Rasht Zone, northern Iran: Implications for diagenetic effects and depositional conditions[J]. Journal of African Earth Sciences, 135: 115−124. doi: 10.1016/j.jafrearsci.2017.08.018

    CrossRef Google Scholar

    [2] Anderson R F, Fleisher M Q, LeHuray A P. 1989. Concentration, oxidation state, and particulate flux of uranium in the Black Sea[J]. Geochimica et Cosmochimica Acta, 53: 2215−2224. doi: 10.1016/0016-7037(89)90345-1

    CrossRef Google Scholar

    [3] Bau M, Balan S, Schmidt K, Koschinsky A. 2010. Rare earth elements in mussel shells of the Mytilidae family as tracers for hidden and fossil high−temperature hydrothermal systems[J]. Earth and Planetary Science Letters, 299: 310−316. doi: 10.1016/j.jpgl.2010.09.011

    CrossRef Google Scholar

    [4] Bau M, Möller P, Dulski P. 1997. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox−cycling[J]. Marine Chemistry, 56: 123−131. doi: 10.1016/S0304-4203(96)00091-6

    CrossRef Google Scholar

    [5] Boström K. 1983. Genesis of Ferromanganese Deposits−Diagnostic Criteria for Recent and Old Deposits. In: Rona P A, Boström K, Laubier L, Smith K L. (eds.). Hydrothermal Processes at Seafloor Spreading Centers [C]// NATO Conference Series, 12. Boston: Springer.

    Google Scholar

    [6] Breit G N, Wanty R B. 1991. Vanadium accumulation in carbonaceous rocks: A review of geochemical controls during deposition and diagenesis[J]. Chemical Geology, 91: 83−97. doi: 10.1016/0009-2541(91)90083-4

    CrossRef Google Scholar

    [7] Cao J, Wu M, Chen Y, Hu K, Bian L, Wang L, Zhang Y. 2012. Trace and rare earth element geochemistry of Jurassic mudstones in the northern Qaidam Basin, northwest China[J]. Geochemistry, 72: 245−252. doi: 10.1016/j.chemer.2011.12.002

    CrossRef Google Scholar

    [8] Chen Manzhi, Fu Yong, Xia Yong, Xie Zhuojun, Zhou Kelin, Zhang Peng. 2019. A prospective analysis on REE resources of the phosphorite−type REE ore deposits in China[J]. Acta Mineralogica Sinica, 39(4): 345−358 (in Chinese with English abstract).

    Google Scholar

    [9] Chen Wenxiang, Zheng Song, Yan Chunjie, Liang Dongyun, Hong Qiuyang, Li Bo, Meng Qingtian, Chen Yongke, Zuo Jiali. 2022. The occurrence of rare earth elements(REE) in the REE−bearing phosphate ores of the Damachang block in Zhijin County, Guizhou Province, China[J]. Acta Mineralogica Sinica, 42(2): 203−212 (in Chinese with English abstract).

    Google Scholar

    [10] Douville E, Bienvenu P, Charlou J L, Donval J P, Fouquet Y, Appriou P, Gamo T. 1999. Yttrium and rare earth elements in fluids from various deep−sea hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 63: 627−643. doi: 10.1016/S0016-7037(99)00024-1

    CrossRef Google Scholar

    [11] Duan Kaibo, Wang Denghong, Xiong Xianxiao, Lian Wei, Gao Peng, Wang Yinglin, Zhang Jason. 2014. A review of a preliminary quantitative study and genetic analysis for rare earth elements of ionic adsorption state in phosphate ore deposit in Zhijin, Guizhou Province[J]. Rock and Mineral Analysis, 33(1): 118−125 (in Chinese with English abstract).

    Google Scholar

    [12] Fan H, Wen H, Zhu X, Hu R, Tian S. 2013. Hydrothermal activity during Ediacaran–Cambrian transition: Silicon isotopic evidence[J]. Precambrian Research, 224: 23−35. doi: 10.1016/j.precamres.2012.09.004

    CrossRef Google Scholar

    [13] Ferhaoui S, Kechiched R, Bruguier O, Sinisi R, Kocsis L, Mongelli G, Bosch D, Ameur−Zaimeche O, Laouar R. 2022. Rare earth elements plus yttrium (REY) in phosphorites from the Tébessa region (Eastern Algeria): Abundance, geochemical distribution through grain size fractions, and economic significance[J]. Journal of Geochemical Exploration, 241: 107058. doi: 10.1016/j.gexplo.2022.107058

    CrossRef Google Scholar

    [14] Francois R. 1988. A study on the regulation of the concentrations of some trace metals (Rb, Sr, Zn, Pb, Cu, V, Cr, Ni, Mn and Mo) in Saanich Inlet Sediments, British Columbia, Canada[J]. Marine Geology, 83: 285−308. doi: 10.1016/0025-3227(88)90063-1

    CrossRef Google Scholar

    [15] Huang S Q, Ning S Z, Zhang J Q, Zhang L, Liu K. 2021. REE characteristics of the coal in the Erlian Basin, Inner Mongolia, China, and its economic value[J]. China Geology, 4: 256−265.

    Google Scholar

    [16] Ilyin A V. 1998. Rare−earth geochemistry of “old” phosphorites and probability of syngenetic precipitation and accumulation of phosphate1In memory of Richard P. Sheldon[J]. Chemical Geology, 144: 243−256. doi: 10.1016/S0009-2541(97)00134-4

    CrossRef Google Scholar

    [17] Jarvis I, Burnett W C, Nathan Y, Almbaydin F S M, Attia A K M, Castro L N, Flicoteaux R, Hilmy M E, Husain V, Qutawnah A A, Serjani A, Zanin Y N. 1994. Phosphorite geochemistry: State−of−the−art and environmental concerns[J]. Eclogae Geologicae Helvetiae, 87: 643−700.

    Google Scholar

    [18] Jiang Xunxiong, Feng Linyong, Wang Shengdong. 2012. Study on comprehensive recovery of associated rare earth in phosphate rock [C]//Proceedings of Symposium on Comprehensive Utilization of Rare Earth Resources and Environmental Protection in China (in Chinese with English abstract).

    Google Scholar

    [19] Jin Huixin, Wang Hua, Li Junqi. 2007. Research status on phosphorite resources and extracting of rare earth from phosporite[J]. Hydrometallurgy of China, 26(4): 179−183 (in Chinese with English abstract).

    Google Scholar

    [20] Jones B, Manning D A C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 111: 111−129. doi: 10.1016/0009-2541(94)90085-X

    CrossRef Google Scholar

    [21] Kidder D L, Krishnaswamy R, Mapes R H. 2003. Elemental mobility in phosphatic shales during concretion growth and implications for provenance analysis[J]. Chemical Geology, 198: 335−353. doi: 10.1016/S0009-2541(03)00036-6

    CrossRef Google Scholar

    [22] Koopman C, Witkamp G J. 2000. Extraction of lanthanides from the phosphoric acid production process to gain a purified gypsum and a valuable lanthanide by−product[J]. Hydrometallurgy, 58: 51−60. doi: 10.1016/S0304-386X(00)00127-4

    CrossRef Google Scholar

    [23] Lécuyer C, Reynard B, Grandjean P. 2004. Rare earth element evolution of Phanerozoic seawater recorded in biogenic apatites[J]. Chemical Geology, 204: 63−102. doi: 10.1016/j.chemgeo.2003.11.003

    CrossRef Google Scholar

    [24] Lewan M D, Maynard J B. 1982. Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks[J]. Geochimica et Cosmochimica Acta, 46: 2547−2560. doi: 10.1016/0016-7037(82)90377-5

    CrossRef Google Scholar

    [25] Lewan M D. 1984. Factors controlling the proportionality of vanadium to nickel in crude oils[J]. Geochimica et Cosmochimica Acta, 48: 2231−2238. doi: 10.1016/0016-7037(84)90219-9

    CrossRef Google Scholar

    [26] Li Tong. 1992. The statistical characteristics of the abundance of chemical elements in the Earth’s crust[J]. Geology and Prospecting, 28(10): 3−9 (in Chinese with English abstract).

    Google Scholar

    [27] Li Wei, Gao Hui, Luo Yingie, Gao Jun. 2015. Status, trends and suggestions of phosphorus ore resources at home and abroad[J]. China Mining Magazine, 24(6): 6−10 (in Chinese with English abstract).

    Google Scholar

    [28] Li Wenchang, Li Jianwei, Xie Guiqing, Zhang Xiangfei, Liu Hong. 2022. Critical minerals in China: Current status, research focus and resource strategic analysis[J]. Earth Science Frontiers, 29(1): 1−13 (in Chinese with English abstract).

    Google Scholar

    [29] Liang Kunping, He Mingqin, Tian Huanhuan, Zhang Feng, Zheng Maoyao. 2022. The geochemical characterics of rare earth elements in the Chuanyandong oreblock of the Wengfu Phosphorus deposit, Guizhou, China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 41(3): 572−586 (in Chinese with English abstract).

    Google Scholar

    [30] Liu Ling, Cai Xiongwei. 2018. Study on geological characteristics and ore characteristics of Ph13 phosphate deposits in Yinjiagou mining area at Yulinxi ore section of Yichang phosphate mine[J]. Resources, Environment and Engineering, 32(2): 181−188 (in Chinese with English abstract).

    Google Scholar

    [31] Liu Shirong, Hu Ruizhong, Yao Linbo, Zhou Guofu. 2006. Independent rare earth minerals were first discovered in Xinhua phosphate deposit, Zhijjin, Guizhou[J]. Acta Mineralogica Sinica, (1): 118 (in Chinese).

    Google Scholar

    [32] Liu Shirong, Hu Ruizhong, Zhou Guofu, Gong Guohong, Jin Zhisheng, Zheng Wenqin. 2008. Study on the mineral compostion of the clastic phosphate in Zhijin phosphate deposttion, China[J]. Acta Mineralogica Sinica, (3): 244−250 (in Chinese with English abstract).

    Google Scholar

    [33] Liu Yi, Chen Ting, Zheng Song, Chen Wenxiang, Yan Chunjie, Wang Hongquan, Zhou Sen, Zhang Sheng, Mudenda Chipenzi, Lu Hongjun, Yang Xiang. 2019. Mode occurrence of REE and flotation processing of the low phosphorous phosphorite−type REE ore in the Zhijin deposit, Guizhou[J]. Acta Mineralogica Sinica, 39: 397−402 (in Chinese with English abstract).

    Google Scholar

    [34] McArthur J M, Walsh J N. 1984. Rare−earth geochemistry of phosphorites[J]. Chemical Geology, 47: 191−220. doi: 10.1016/0009-2541(84)90126-8

    CrossRef Google Scholar

    [35] Michard A, Albarède F, Michard G, Minster J F, Charlou J L. 1983. Rare−earth elements and uranium in high−temperature solutions from East Pacific Rise hydrothermal vent field (13 °N)[J]. Nature, 303: 795−797. doi: 10.1038/303795a0

    CrossRef Google Scholar

    [36] Pan Jiayong, Zhang Qian, Ma Dongsheng, Li Chaoyang. 2001. Characteristics of silicecous rocks and their relationship with mineralization in Xucla copper deposit, westerm Yunnan[J]. Science China (Series D: Earth Science), (1): 10−16 (in Chinese).

    Google Scholar

    [37] Picard S, Lécuyer C, Barrat J A, Garcia J P, Dromart G, Sheppard S M F. 2002. Rare earth element contents of Jurassic fish and reptile teeth and their potential relation to seawater composition (Anglo−Paris Basin, France and England)[J]. Chemical Geology, 186: 1−16. doi: 10.1016/S0009-2541(01)00424-7

    CrossRef Google Scholar

    [38] Ptáček P. 2016. Apatites and Their Synthetic Analogues [M]. Rijeka: IntechOpen.

    Google Scholar

    [39] Ross D J K, Bustin R M. 2006. Sediment geochemistry of the Lower Jurassic Gordondale Member, northeastern British Columbia[J]. Bulletin of Canadian Petroleum Geology, 54: 337−365. doi: 10.2113/gscpgbull.54.4.337

    CrossRef Google Scholar

    [40] Salama W, Khirekesh Z, Amini A, Bafti B S. 2018. Diagenetic evolution of the Upper Devonian phosphorites, Alborz Mountain Range, northern Iran[J]. Sedimentary Geology, 376: 90−112. doi: 10.1016/j.sedgeo.2018.08.001

    CrossRef Google Scholar

    [41] Shi Chunhua, Hu Ruizhong, Wang Guozhi. 2006. Element geochemistry of Zhijin phosphorites, Guizhou Province[J]. Acta Mineralogica Sinica, 26(2): 169−174 (in Chinese with English abstract).

    Google Scholar

    [42] Shields G A, Webb G E. 2004. Has the REE composition of seawater changed over geological time?[J]. Chemical Geology, 204: 103−107. doi: 10.1016/j.chemgeo.2003.09.010

    CrossRef Google Scholar

    [43] Shields G, Stille P. 2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology, 175: 29−48. doi: 10.1016/S0009-2541(00)00362-4

    CrossRef Google Scholar

    [44] Song Shengqiong, LI Shibin, Guan Yongsheng, Ran Qiyang, Zhen Fang, Zhu Yiqing, Sun Yali, Zeng Zhaoxia. 2020. Problems and suggestions on the development and utilization of phosphate ores and associated ores in Guizhou Province[J]. China Mining Magazine, 29: 24−28 (in Chinese with English abstract).

    Google Scholar

    [45] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [J]. Geological Society, London, Special Publications, 42: 313−345.

    Google Scholar

    [46] Sverjensky D A. 1984. Europium redox equilibria in aqueous solution[J]. Earth and Planetary Science Letters, 67: 70−78. doi: 10.1016/0012-821X(84)90039-6

    CrossRef Google Scholar

    [47] Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution[M]. Oxford: Blackwell Scientific Publications.

    Google Scholar

    [48] USGS. 2022. Mineral Commodity Summaries 2022[M]. Reston: U. S. Geological Survey.

    Google Scholar

    [49] Valetich M, Zivak D, Spandler C, Degeling H, Grigorescu M. 2022. REE enrichment of phosphorites: An example of the Cambrian Georgina Basin of Australia[J]. Chemical Geology, 588: 120654. doi: 10.1016/j.chemgeo.2021.120654

    CrossRef Google Scholar

    [50] Wang Shengdong, Jiang Kaixi, Jiang Xunxiong, Feng Lingyong, Fan Yanqing, Jiang Wei. 2012. Leaching REEs from phosphorite with returning acid[J]. Nonferrous Metals (Extractive Metallurgy), (11): 33−36 (in Chinese with English abstract).

    Google Scholar

    [51] Wang Wei, Liu Lin, Liu Hongzhao, Zhang Bo, Cao Yaohua, Wang Hongliang. 2020. Progress and trend of rare earth resources extraction technology[J]. Conservation and Utilization of Mineral Resources, 40(5): 32−36 (in Chinese with English abstract).

    Google Scholar

    [52] Wang Y, Guo C H, Zhuang S R, Chen, X J, Jia L Q, Chen Z Y, Xia Z L, Wu Z. 2021. Major contribution to carbon neutrality by China’s geosciences and geological technologies[J]. China Geology, 4: 329−352.

    Google Scholar

    [53] Wright J, Schrader H, Holser W T. 1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite[J]. Geochimica et Cosmochimica Acta, 51: 631−644. doi: 10.1016/0016-7037(87)90075-5

    CrossRef Google Scholar

    [54] Wu Jian, Zhang Wensheng, Jiang Xunxiong, Jin Xianyu. 2015. Experimental study on rare earth separation of Zhijin phosphate rock[J]. Phosphate and Compound Fertilizer, (4): 33−34 (in Chinese with English abstract).

    Google Scholar

    [55] Xie Jun, Zhang Qin, Mao Song. 2020. Study on the occurrence state of rare earth element Y in Guizhou Zhijin phosphorite[J]. Journal of Guizhou University (Natural Sciences), 37(1): 4l−47 (in Chinese with English abstract).

    Google Scholar

    [56] Yang Gangzhong, Liao Zongming, Li Fanghui, Liu Shengde. 2008. Geological characteristics and Bonanza distribution of the Middle Phosphorite Layer(Ph2) in the north of Yichang phosphorite deposit[J]. Resources Environment and Engineering, (4): 406−411 (in Chinese with English abstract).

    Google Scholar

    [57] Yang Gangzhong, Song Yinqiao, Nie Kaihong, Li Fuxi, Luo Hong, Liao Zongming. 2010. Analysis on metallogenetic geological features and deep prospecting model for Yichang phosphate ore field[J]. Journal of Mineralogy and Petrology, 30(2): 50−59 (in Chinese with English abstract).

    Google Scholar

    [58] Yang H, Zhao Z, Xia Y, Xiao J. 2021. REY enrichment mechanisms in the Early Cambrian phosphorite from South China[J]. Sedimentary Geology, 426: 106041. doi: 10.1016/j.sedgeo.2021.106041

    CrossRef Google Scholar

    [59] Yang Haiying, Xiao Jiafei, Hu Ruizhong, Xia Yong, He Hongxi. 2020. Formation environment and metallogenic mechanism of Weng'an phosphorite in the Early Sinian, Central Guizhou Province[J]. Journal of Palaeogeography (Chinese Edition), 22: 929−946 (in Chinese with English abstract).

    Google Scholar

    [60] Yang R, Wang W, Zhang X, Liu L, Wei H, Bao M, Wang J. 2008. A new type of rare earth elements deposit in weathering crust of Permian basalt in western Guizhou, NW China[J]. Journal of Rare Earths, 26: 753−759. doi: 10.1016/S1002-0721(08)60177-5

    CrossRef Google Scholar

    [61] Ye Mingfu, Wang Miaomiao, Yang Gang, Zhang Wenxing, Chen Guochang, Xu Lixin. 2020. Research on separation and enrichment of rare earth from acidic leaching solution of Zhijin phosphorite[J]. Rare Metals and Cemented Carbides, 48: 1−4,17 (in Chinese with English abstract).

    Google Scholar

    [62] Yi Haisheng, Peng Jun, Xia Wenjie. 1995. The Late Precambrian paleo−ocean evolution of the southeast Yangtze continental margin: REE record[J]. Acta Sedimentologica Sinica, (4): 131−137 (in Chinese with English abstract).

    Google Scholar

    [63] Zhang J F, Zhai G Y, Wang D M, Bao S J, Chen K, Li H H, Song T, Wang P, Zhou Z. 2020. Tectonic evolution of the Huangling dome and its control effect on shale gas preservation in the north margin of the Yangtze Block, South China[J]. China Geology, 3: 28−37. doi: 10.31035/cg2020025

    CrossRef Google Scholar

    [64] Zhang Jie, Zhang Qin, Chen Dailiang. 2003. REE geochemistry of the ore−bearing REE in Xinhua phosphorite, Zhijin, Guizhou[J]. Journal of Mineralogy and Petrology, 23(3): 35−38 (in Chinese with English abstract).

    Google Scholar

    [65] Zhang K, Jin W, Lin H, Dong C, Wu S. 2018. Major and trace elemental compositions of the Upper Carboniferous Batamayineishan mudrocks, Wulungu area, Junggar Basin, China: Implications for controls on the formation of the organic−rich source rocks[J]. Marine and Petroleum Geology, 91: 550−561. doi: 10.1016/j.marpetgeo.2018.01.003

    CrossRef Google Scholar

    [66] Zhang Qu, Teng Geer, Zhang Zhirong, Qin Jianzhong. 2007. Oil source of oil seepage and solid bitumen in the Kaili−Majiang area[J]. Acta Geologica Sinica, (8): 1118−1124 (in Chinese with English abstract).

    Google Scholar

    [67] Zhang Wenxing, Zheng Song, Chen Wenxiang, Zhang Zhouwei, Huang Yuanling, Ye Taiping, Yang Gang, Wu Haiqin. 2019. Study on the REE leaching regularity of siliceous phosphorite−type REE ores of the Zhijin deposit in Guizhou Province[J]. Acta Mineralogica Sinica, 39: 389−396 (in Chinese with English abstract).

    Google Scholar

    [68] Zhang Yanbin, Gong Meiling, Li Hua. 2007. Occurrence of REE in rare earth phosphorite in Zhijin Area, Guizhou[J]. Journal of Earth Sciences and Environment, (4): 362−368 (in Chinese with English abstract).

    Google Scholar

    [69] Zhang Yueyue. 2015. The Rare Earth Elements Characteristics and the Comprehensive Utilization Research of Devonian Shifang Phosphate Deposit[M]. Mianyang: Southwest University of Science and Technology (in Chinese with English abstract).

    Google Scholar

    [70] Zhao Lijun, Nie Dengpan, He Hao, Wang Zhenjie, Xue An, Wu Subin. 2014. Study on leaching of Rare Earth from Middle−low grade collophanite with hydrochloric acid[J]. Nonferrous Metals (Extractive Metallurgy), (4): 45−47 (in Chinese with English abstract).

    Google Scholar

    [71] Zhen Haifei, Hao Ruixiao. 2007. General Geochemistry [M]. Beijing: Peking University Press (in Chinese with English abstract).

    Google Scholar

    [72] Zheng Rongcai, Liu Meiqing. 1999. Study on palaeosalinity of Chang 6 oil reservoir set in Ordos Basin[J]. Oil and Gas Geology, (1): 22−27 (in Chinese with English abstract).

    Google Scholar

    [73] 陈满志, 付勇, 夏勇, 谢卓君, 周克林, 张鹏. 2019. 中国磷块岩型稀土矿资源前景分析[J]. 矿物学报, 39(4): 345−358.

    Google Scholar

    [74] 陈文祥, 郑松, 严春杰, 梁冬云, 洪秋阳, 李波, 孟庆田, 陈永科, 左佳丽. 2022. 贵州省织金县打麻厂矿区含稀土磷矿中稀土元素赋存规律[J]. 矿物学报, 42(2): 203−212.

    Google Scholar

    [75] 段凯波, 王登红, 熊先孝, 连卫, 高鹏, 王英林, 张杨. 2014. 贵州织金磷矿床中离子吸附型稀土的存在及初步定量[J]. 岩矿测试, 33(1): 118−125.

    Google Scholar

    [76] 蒋训雄, 冯林永, 汪胜东. 2012. 磷矿中伴生稀土综合回收研究[C]∥中国稀土资源综合利用与环境保护研讨会论文集.

    Google Scholar

    [77] 金会心, 王华, 李军旗. 2007. 磷矿资源及从磷矿中提取稀土的研究现状[J]. 湿法冶金, 26(4): 179−183.

    Google Scholar

    [78] 黎彤. 1992. 地壳元素丰度的若干统计特征[J]. 地质与勘探, 28(10): 3−9.

    Google Scholar

    [79] 李维, 高辉, 罗英杰, 高骏. 2015. 国内外磷矿资源利用现状、趋势分析及对策建议[J]. 中国矿业, 24(6): 6−10.

    Google Scholar

    [80] 李文昌, 李建威, 谢桂青, 张向飞, 刘洪. 2022. 中国关键矿产现状、研究内容与资源战略分析[J]. 地学前缘, 29(1): 1−13.

    Google Scholar

    [81] 梁坤萍, 何明勤, 田欢欢, 张丰, 郑茂尧. 2022. 瓮福磷矿穿岩洞矿段磷块岩稀土元素地球化学特征[J]. 矿物岩石地球化学通报, 41(3): 572−586.

    Google Scholar

    [82] 刘林, 蔡雄威. 2018. 宜昌磷矿殷家沟矿区鱼林溪矿段地质特征及Ph13磷矿层矿石特征研究[J]. 资源环境与工程, 32(2): 181−188.

    Google Scholar

    [83] 刘世荣, 胡瑞忠, 姚林波, 周国富. 2006. 贵州织金新华磷矿床首次发现独立的稀土矿物[J]. 矿物学报, (1): 118.

    Google Scholar

    [84] 刘世荣, 胡瑞忠, 周国富, 龚国洪, 金志升, 郑文勤. 2008. 织金新华磷矿碎屑磷灰石的矿物成分研究[J]. 矿物学报, (3): 244−250.

    Google Scholar

    [85] 刘意, 陈婷, 郑松, 陈文祥, 严春杰, 王洪权, 周森, 张生, Chipenzi M, 陆红军, 杨祥. 2019. 贵州织金低磷层磷矿稀土赋存状态与磷矿浮选工艺研究[J]. 矿物学报, 39: 397−402.

    Google Scholar

    [86] 潘家永, 张乾, 马东升, 李朝阳. 2001. 滇西学拉铜矿区硅质岩特征及与成矿的关系[J]. 中国科学(D辑:地球科学), (1): 10−16.

    Google Scholar

    [87] 施春华, 胡瑞忠, 王国芝. 2006. 贵州织金磷矿岩元素地球化学特征[J]. 矿物学报, 26(2): 169−174.

    Google Scholar

    [88] 宋生琼, 李士彬, 管永胜, 冉启洋, 曾芳, 朱宜清, 孙亚莉, 曾朝霞. 2020. 贵州省磷矿及伴生矿种开发利用面临的问题与对策建议[J]. 中国矿业, 29: 24−28.

    Google Scholar

    [89] 汪胜东, 蒋开喜, 蒋训雄, 冯林永, 范艳青, 蒋伟. 2012. 返酸浸出磷矿中的稀土[J]. 有色金属(冶炼部分), (11): 33−36.

    Google Scholar

    [90] 王威, 柳林, 刘红召, 张博, 曹耀华, 王洪亮. 2020. 稀土资源提取技术进展及趋势[J]. 矿产保护与利用, 40(5): 32−36.

    Google Scholar

    [91] 吴健, 张文胜, 蒋训雄, 金先煜. 2015. 织金磷矿稀土分离试验研究[J]. 磷肥与复肥, (4): 33−34.

    Google Scholar

    [92] 谢俊, 张覃, 卯松. 2020. 贵州织金磷块岩中稀土元素Y赋存状态研究[J]. 贵州大学学报(自然科学版), 37(1): 4l−47.

    Google Scholar

    [93] 杨刚忠, 廖宗明, 李方会, 刘圣德. 2008. 宜昌磷矿北部地区中磷层(Ph22)地质特征及富矿带展布[J]. 资源环境与工程, (4): 406−411.

    Google Scholar

    [94] 杨刚忠, 宋银桥, 聂开红, 李福喜, 罗洪, 廖宗明. 2010. 宜昌磷矿田成矿地质特征及深部找矿模式探析[J]. 矿物岩石, 30(2): 50−59.

    Google Scholar

    [95] 杨海英, 肖加飞, 胡瑞忠, 夏勇, 何洪茜. 2020. 黔中瓮安早震旦世磷块岩的形成环境及成因机制[J]. 古地理学报, 22: 929−946.

    Google Scholar

    [96] 叶明富, 王苗苗, 杨刚, 张文兴, 陈国昌, 许立信. 2020. 织金磷矿酸浸液分离富集稀土研究[J]. 稀有金属与硬质合金, 48: 1−4,17.

    Google Scholar

    [97] 伊海生, 彭军, 夏文杰. 1995. 扬子东南大陆边缘晚前寒武纪古海洋演化的稀土元素记录[J]. 沉积学报, (4): 131−137.

    Google Scholar

    [98] 张杰, 张覃, 陈代良. 2003. 贵州织金新华含稀土磷矿床稀土元素地球化学及生物成矿基本特征[J]. 矿物岩石, 23(3): 35−38.

    Google Scholar

    [99] 张渠, 腾格尔, 张志荣, 秦建中. 2007. 凯里—麻江地区油苗与固体沥青的油源分析[J]. 地质学报, (8): 1118−1124. doi: 10.3321/j.issn:0001-5717.2007.08.011

    CrossRef Google Scholar

    [100] 张文兴, 郑松, 陈文祥, 张周位, 黄苑龄, 叶太平, 杨刚, 吴海琴. 2019. 贵州织金硅质磷块岩型稀土矿稀土浸出规律[J]. 矿物学报, 39: 389−396.

    Google Scholar

    [101] 张彦斌, 龚美菱, 李华. 2007. 贵州织金地区稀土磷块岩矿床中稀土元素赋存状态[J]. 地球科学与环境学报, (4): 362−368.

    Google Scholar

    [102] 张跃跃. 2015. 泥盆纪什邡式磷矿稀土元素特征及综合利用研究[M]. 绵阳: 西南科技大学.

    Google Scholar

    [103] 赵丽君, 聂登攀, 何灏, 王振杰, 薛安, 吴素彬. 2014. 盐酸浸出中低品位胶磷矿中稀土的研究[J]. 有色金属(冶炼部分), (4): 45−47.

    Google Scholar

    [104] 郑海飞, 郝瑞霞. 2007. 普通地球化学[M]. 北京: 北京大学出版社.

    Google Scholar

    [105] 郑荣才, 柳梅青. 1999. 鄂尔多斯盆地长6油层组古盐度研究[J]. 石油与天然气地质, (1): 22−27. doi: 10.11743/ogg19990105

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(6)

Article Metrics

Article views(802) PDF downloads(29) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint