2022 Vol. 49, No. 5
Article Contents

LI Wenyuan, ZHANG Zhaowei, GAO Yongbao, HONG Jun, CHEN Bo, ZHANG Zhibing. 2022. Tectonic transformation of the Kunlun Paleo-Tethyan orogenic belt and related mineralization of critical mineral resources of nickel, cobalt, manganese and lithium[J]. Geology in China, 49(5): 1385-1407. doi: 10.12029/gc20220503
Citation: LI Wenyuan, ZHANG Zhaowei, GAO Yongbao, HONG Jun, CHEN Bo, ZHANG Zhibing. 2022. Tectonic transformation of the Kunlun Paleo-Tethyan orogenic belt and related mineralization of critical mineral resources of nickel, cobalt, manganese and lithium[J]. Geology in China, 49(5): 1385-1407. doi: 10.12029/gc20220503

Tectonic transformation of the Kunlun Paleo-Tethyan orogenic belt and related mineralization of critical mineral resources of nickel, cobalt, manganese and lithium

  • This paper is the result of the mineral exploration engineering.
    [Objective] There are increasing evidences show that the Tethys tectonic domain can be divided into three stages of the ProtoTethys, the Paleo- Tethys and the Neo- Tethys, among which the research on the formation and evolution of the Paleo- Tethys Ocean and related mineralization are relatively weak. [Methods] On the basis of the discovery of the Early Devonian Xiarihamu super-large nickel-cobalt sulfide deposit in the East Kunlun, the Late Carboniferous Malkansu large volcanic source sedimentary type manganese-rich deposit in the Pamir and the late Triassic Dahongliutan large pegmatite type lithium-beryllium deposit in the West Kunlun, this study focuses on the formation environment and tectonic evolution as the main line to find out their connection. It is proposed that the three large ore deposits represent the products of the tectonic transformation of Paleo- Tethys break, ocean expansion and ocean closure to continental collision, respectively. [Results] It is believed that after the closure of the Proto-Tethys ocean and continental collision, which was contemporaneous with the Paleo-Asian ocean at the end of the Silurian, the modified asthenosphere was partially melted and the northern margin of Gondwana continent breakup due to the mantle plume activity, forming the Xiarihamu super-large magmatic nickel-cobalt sulfide deposit related to the mantle-derived mafic-ultramafic rocks. With the further expansion of the Paleo- Tethys Ocean, the mature ocean was formed in the Early Carboniferous. In the Late Carboniferous, with transformation from rapid expansion to ocean subduction, the Malkansu large rhodochrosite-rich deposit was formed in the carbonate sedimentary of the ocean floor due to the ore forming material provided by the eruption of the mid-ocean ridge. After the closure of the Paleo-Tethys Ocean, it entered the collision orogenic stage in the Middle Triassic. In the Late Triassic post- collisional stage, high temperature hydrothermal fluid of S- type granite formed by the crust remelting, which lead to the formation of Dahongliutan large pegmatite-type lithium-beryllium deposit. The Early Paleozoic and Late Paleozoic alternation was the beginning of the Paleo- Tethys Ocean breakup. At this time the Qinling- Qilian- Kunlun Ocean as the representative of the Proto-Tethys Ocean has closed. Although the Paleo-Asian Ocean as a back-arc basin of the Proto-Tethys has not closed yet, the Xiarihamu nickel-cobalt deposit is the product of the re-cracking of continental crust after the Proto-Tethys orogeny, and it’ s not formed in the environment of the Proto - Tethys island arc or post- collision. Manganese is a lithophilic element, which is not enriched in magmatism. However, it enriched in exogenous deposition, which indicates that the new oceanic crust of the Early Carboniferous of Paleo-Tethys is rich in manganese, and the leached manganese ions formed sedimentary manganese carbonate in the alkaline environment of relatively quiet ocean floor in the Late Carboniferous, which represents the transition from a strong magmatism stage to a relatively quiet sedimentary environment. In the Dahongliutan, the distribution of S-type granitic batholith and its large-scale pegmatite-type lithium-beryllium ore deposit reflect the geodynamic background of crust remelting caused by strong collisional orogeny. Therefore, it’ s suggested the formation environment is post-orogeny or post-collision extension of the Paleo- Tethys. [Conclusions] As far as the existing facts of mineralization concerned, the Kangxiwa- Animaqing Paleo- Tethys suture zone in East Kunlun is of more geological significance than that of the Xijinwulan-Jinshajajiang in the southern Bayankara and the Longmuco-Shuanghu Paleo-Tethys suture zone in the Qiangtang.
  • 加载中
  • Akmaz R M, Uysal I, Saka S. 2014. Compositional variations of chromite and solid inclusions in ophiolitic chromitites from the southeastern Turkey: Implications for chromitite genesis[J]. Ore Geology Reviews, 58: 208-224.

    Google Scholar

    Cao Rui, Gao Yongbao, Chen Bin, Leon Bagas, Yan Shengchao, Huang Chao, Zhao Hui. 2021. Pegmatite magmatic evolution and rare metal mineralization of the Dahongliutan pegmatite field, Western Kunlun Orogen: Constraints from the B isotopic composition and mineral-chemistry[J]. International Geology Review, 30: 1-20.

    Google Scholar

    Chen Denghui, Sui Qinglin, Zhao Xiaojian, Jing Delong, Teng Jiaxin, Gao Yongbao. 2019. Geology, geochemical characteristics, and sedimentary environment of Mn-bearing carbonate from the Late Carboniferous Muhu manganese deposit in West Kunlun [J]. Acta Sedimentologica Sinica, 37(3): 477-490(in Chinese with English abstract).

    Google Scholar

    Craig J R. 1979. Geochemical aspects of the origins of ore deposits,review of research on modern problems in geochemistry[J]. Earth Sciences, 16: 225-272.

    Google Scholar

    Dai Liqun, Zheng Yongfei, He Huaiyu, Zhao Zifu. 2016. Postcollisional mafic igneous rocks record recycling of noble gases by deep subduction of continental crust[J]. Lithos, 252/253: 135-144.

    Google Scholar

    Ding Kun, Liang Ting, Zhou Yi, Feng Yonggang, Zhang Ze, Ding Liang, Li Kan. 2020. Petrogenesis of Dahongliutan biotite moonzogranite in western Kunlun orogeny: Evidence from zircon U-Pb age and Li-Hf isotope[J]. Northwestern Geology, 53(1): 24-34(in Chinese with English abstract).

    Google Scholar

    Fang Aimin, Ma Jianying, Wang Shigang, Zhao Yue, Hu Jianmin. 2009. Sedimentary tectonic evolution of the southwestern Tarim Basin and west Kunlun orogeny since Late Paleozoic [J]. Acta Petrologica Sinica, 25(12): 3396-3406(in Chinese with English abstract).

    Google Scholar

    Feng Yonggang, Liang Ting, Yang Xiuqing, Zhang Ze, Wang Yiqian. 2019. Chemical evolution of Nb-Ta oxides and cassiterite in phosphorus-rich albite-spodumene pegmatites in the Kangxiwa-Dahongliutan pegmatite field, Western Kunlun Orogen, China[J]. Minerals, 9: 166-204.

    Google Scholar

    Franco P. 2000. Ore Deposits and Mantle Plumes[M]. London: Kluwer Academic Publishers, 1-540.

    Google Scholar

    Gao Yongbao, Bagas Leon, Li Kan, Jin Moushun, Liu Yuegao, Teng Jiaxin. 2020. Newly discovered Triassic Li deposits in the Dahongliutan area, NW China: A case study for the detection of Li-bearing pegmatite deposits in rugged terrains using remote-sensing data and images[J]. Frontiers in Earth Science, DOI: 10.3389/feart.2020.591966.

    Google Scholar

    Gao Yongbao, Teng Jiaxin, Li wenyuan, Chen Denghui, Sui Qinglin, Jing Delong, He Yongkang, Bai Jianke. 2018. Geology, geochemistry and ore genesis of the Aoertuokanashi manganese deposit, West Kunlun, Xinjiang, Northwest China [J]. Acta Petrologica Sinica, 34(8): 2341-2358(in Chinese with English abstract).

    Google Scholar

    Kesler S E, Gruber P W, Medina P A, Keoleian G A, Everson M P ,Wallington T J. 2012. Global lithium resources: Relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews, 48: 55-69.

    Google Scholar

    Hu Chaobin. 2021. Paleozoic Mantle-derived Magmatic Process and Mineralization in Qimantage, East Kunlun[D]. Beijing: Chinese Academy of Geological Sciences, 1-181(in Chinese with English abstract).

    Google Scholar

    Li Cai, Xie Shaoming,Wang Ming, Wu Yangwang, Hu Peiyuan, Zhang Xiuzheng Xu Fen, Fan Jiangjun, Wu Hao, Liu Yiming, Peng Hu, Jiang Qinyang, Chen Jingwen, Xu Jiangxin, Zhai Qinguao, Dong Yyongsheng, Zhang Tanyu, Huang Xiaopeng. 2016. Geology in the Qiangtang Region[M]. Bejing: Geological Publishing House, 1-681(in Chinese).

    Google Scholar

    Li Cai. 1987. Longmuco-shuanghu-lancang plate suture zone and the northern boundary of the Carboniferous Permian Gondwana[J].Journal of Changchun Institute of Geology, 17(2): 155-166(in Chinese with English abstract).

    Google Scholar

    Li C S, Zhang Z W, Li W Y, Wang Y L, Sun T, Ripley E M. 2015. Geochronology, petrology and Hf-S isotope geochemistry of the newly-discovered Xiarihamu magmatic Ni-Cu sulfide deposit in the Qinghai- Tibei plateau, western China[J]. Lithos, 216-217: 224-240.

    Google Scholar

    Li R B, Pei X Z, Li Z C, Patias D, Su Z G, Pei L. 2020. Late Silurian to Early Devonian volcanics in the East Kunlun orogen, northern Tibetan Plateau: Record of postcollisional magmatism related to the evolution of the Proto-Tethys Ocean[J]. Journal of Geodynamics, 140: 101780.

    Google Scholar

    Li Shijin, Sun Fengyue, Gao Yongwan, Zhao Junwei, Li Liansong, Yan Qian. 2012. The Theoretical guidance and the practice of small intrusions forming large deposits-the enlightenment and significance for searching breakthrough of Cu-Ni sulfide deposit in Xiarihamu, East Kunlun, Qinghai[J]. Northwestern Geology, 45(4):185-191(in Chinese with English abstract).

    Google Scholar

    Li Tong.1992. Geochemical characteristics and resource prognosis of manganese[J]. Mineral Deposits, 11(4): 301-306(in Chinese with English abstract).

    Google Scholar

    Li Wenyuan, Zhang Z W, Wang Y L. 2022. Tectonic transformation of Proto and Paleo Tethys and the metallization of magmatic Ni-Cu-Co sulfide deposits in Kunlun orogeny, Northwest China[J]. Journal of Earth Sciences and Environment, 44(1): 1-19.

    Google Scholar

    Li Wenyuan, Wang Yalei, Qian Bing, Liu Yuegao, Han Yixiao. 2020. Discussion on formation of magmatic Cu-Ni-Co sulfide deposits in margin of Tarim Block[J]. Earth Science Frontiers, 27(2): 276-293(in Chinese with English abstract).

    Google Scholar

    Li Wenyuan, Hong Jun, Chen Bo, Liu Jiang, Ma Zhongping, Yang Bo. 2019. Distribution regularity and main scientific issues of strategic mineral resources in Central Asia and adjacent regions[J]. Bulletin of National Natural Science Foundation of China, 33(2): 119-124(in Chinese with English abstract).

    Google Scholar

    Li Wenyuan. 2018. The Primary discussion on the relationship between Paleo-Asian Ocean and Paleo-Tethys Ocean[J]. Acta Petrologica Sinica, 34(8): 2201-2210(in Chinese with English abstract).

    Google Scholar

    Li Wenyuan. 2015. Metallogenic geological characteristics and newly discovered ore deposits in Northwest China[J]. Geology in China, 42(3): 365-380(in Chinese with English abstract).

    Google Scholar

    Li Wenyuan. 2007. Research status and development trend of magmatic Cu-Ni-PGE deposits [J]. Northwestern Geology, 40(2): 1-28(in Chinese with English abstract).

    Google Scholar

    Li Wenyuan.1996. Mineralization Series and Geochemistry of Copper-nickel Sulfide Deposits in China[M]. Xi'an: Xi'an Map Publishing House, 1-228.

    Google Scholar

    Liu X Q, Zhang C L, Ye X T, Ye X T, Zou H B, Hao X S. 2019. Cambrian mafic and granitic intrusions in the Mazar-Tianshuihai terrane, West Kunlun Orogenic Belt:Constraints on the subduction orientation of the Proto-Tethys Ocean[J]. Lithos, 350-351:105226.

    Google Scholar

    Liu Y G, Li WY, Jia Q Z, Zhang Z W, Wang Z A, Zhang Z B, Zhang J W, Qian B. 2018. The dynamic sulfide saturation process and a possible slab break-off model for the giant Xiarihamu magmatic nickel ore deposit in the eas Kunlun orogenic belt, northern Qinghai-Tibet Plateau, China[J]. Economic Geology, 113(6): 1383-1417.

    Google Scholar

    Liu Xun. 2001. Sedimentary-tectonic evolutionary history of the Tianshan to West Kunlun area in West China: The sedimentary-tectonic evolution of the terranes in the corridor of the Xinjiang geotransect and its adjacent area [J]. Journal of Palaeo-geography, 3(3): 21-31(in Chinese with English abstract).

    Google Scholar

    Maier W D, Groves D I. 2011. Temporal and spatial controls on the formation of magmatic PGE and Ni–Cu deposits [J]. Mineralium Deposita, 46(8): 841-857.

    Google Scholar

    Mckenzie D, Bickle M J. 1988. The volume and composition of melt generated by extension of the lithosphere[J]. Journal of Petrology, 29(3): 625-679.

    Google Scholar

    Pagé P, Barnes S J. 2009. Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford Mines ophiolite, Québec, Canada[J]. Economic Geology, 104(7): 997-1018.

    Google Scholar

    Pei Xianzhi, Li Ruibo, Li Zuochen, Liu Chengjun, Chen Youxi, Pei Lei, Liu Zhangqin, Chen Guochao, Li Xiaobing and Wang Men. 2018. Composition feature and formation process of Buqingshan composite accretionary mélange belt in southern margin of East Kunlun orogen[J]. Earth Science, 43(12): 4498-4520(in Chinese with English abstract).

    Google Scholar

    Qiao Gengbiao, Wu Yuezhong, Liu Tuo. 2020. Formation age of the Dahongliutan pegmatite type rare metal deposit in Western Kunlun Mountains: Evidence from muscovite 40Ar/ 39Ar isotopic dating [J]. Geology in China, 47(5): 1591-1593(in Chinese with English abstract).

    Google Scholar

    Stöcklin J. 1974. Possible ancient continental margins in Iran[C]//Burk C A, Drake C L(eds.). The Geology Continental Margins. Berlin:Springer-Verlag, 873-887.

    Google Scholar

    Sengör A M C. 1979. Mid-Mesozoic closure of Permo-Triassic Tethys and its implications[J]. Nature, 279(5714): 590-593.

    Google Scholar

    Song X Y, Yi J N, Chen L M, She Y W, Liu C Z, Dang X Y, Yang Q A, Wu S K. 2016. The giant Xiarihamu Ni-Co sulfide deposit in the East Kunlun orogenic belt, Northern Tibet Plateau, China[J]. Economic Geology, 111(1): 29-55.

    Google Scholar

    Tang Yanjie, Zhang Hongfu, Ying Jifeng. 2009. Discussion on fractionation mechanism of lithium isotopes [J]. Earth Science—Journal of China University of Geosciences, 34(1): 43-55(in Chinese with English abstract).

    Google Scholar

    Tang Zhongli, Li Wenyuan. 1995. Mineralization Mode and Geological Comparison of Jinchuan Copper-nickel Sulfide (Including Platinum) Deposit[M]. Beijing: Geological Publishing House,1-209(in Chinese).

    Google Scholar

    Vogt J H L. 1894. Beitrage zur genetischen classification der durch magmatische differentiations processe und der durch previnathloyse entslandenen erzvoskommen. Z Prakt[J]. Geology, 2: 381-399.

    Google Scholar

    Wang H, Gao H, Zhang X Y, Yan Q H, Xu Y G, Zhou K L, Dong R, Li P. 2020. Geology and geochronology of the super-large Bailongshan Li-Rb-(Be) rare-metal pegmatite deposit, West Kunlun Orogenic Belt, NW China[J]. Lithos, 360/361: 105449.

    Google Scholar

    Wu Fuyuan, Wan Bo, Zhao Liang, Xiao Wenjiao and Zhu Rixiang. 2020. Tethyan geodynamics[J]. Acta Petrologica Sinica, 36(6):1627-1674(in Chinese with English abstract).

    Google Scholar

    Wang Guan, Sun Fengyue, Li Bile, Li Shijin, Zhao Junwei, Ao Cong, Yang Qian. 2014. Petrography, zircon U-Pb geochronology and geochemistry of the mafic-ultramafic intrusion in Xiarihamu Cu-Ni deposit from East Kunlun,with implications for geodynamic setting[J]. Earth Science Frontiers, 21(6): 381-401(in Chinese with English abstract).

    Google Scholar

    Xiao Wenjiao, Hou Quanlin, Li Jiliang,Windley BF, Hao Jie, Fang Aaimin, Zhou Hui, Wang Zzihong, Chen Hanlin, Zhang Guocheng and Yuan Chao. 2000. Tectonic facies and the archipelago-accretion process of the West Kunlun, China[J]. Science China ( Seri.D ): Earth Sciences, 30 ( Supp.1): 22-28(in Chinese).

    Google Scholar

    Xia L Q. 2014. The geochemical criteria to distinguish continental basalts from arc related ones[J]. Earth Science Reviews, 139: 195-212.

    Google Scholar

    Xu Gang. 2013. The Minerogenesis of Heishan Nickel-copper Sulfide Deposit, Gansu Beishan, China[D]. Xi'an: Chang'an University, 1-198(in Chinese with English abstract).

    Google Scholar

    Xu Z Q, Dilek Y, Cao H, Yang J S, Robinson P, Ma C Q, Li H Q, Jolivet M, Roger F, Chen X J. 2015. Paleo-Tethyan evolution of Tibet as recorded in the East Cimmerides and West Cathaysides[J]. Journal of Asian Earth Sciences, 105: 320-337.

    Google Scholar

    Xu Zhiqin, Wang Rucheng, Zhu Wenbin, Qin Yulong, Fu Xiaofang and Li Guangwei. 2020. Scientific drilling project of granite-pegmatite-type lithium deposit in western Sichuan: scientific problems and significance[J]. Acta Geologica Sinica, 94(8): 2177-2188(in Chinese with English abstract).

    Google Scholar

    Yan Q H, Qiu Z W, Wang H, Wang M, Wei XP, Li P, Zhang R Q, Li C Y, Liu J P. 2018. Age of the Dahongliutan rare metal pegmatite deposit, West Kunlun, Xinjiang (NW China): Constraints from LA-ICP-MS U-Pb dating of columbite-(Fe) and cassiterite[J]. Ore Geology Reviews, 100: 561-573.

    Google Scholar

    Yu L, Sun FY, Li L, Li BL, Peng B, Xu CH, Li RH, Wang F, Shen D L. 2019. Geochronology, geochemistry and Sr-Nd-Hf isotopic compositions of mafic-ultramafic intrusions in the Niubiziling Ni-(Cu) sulifide deposit, North Qaidam Orogenic Belt, NW China: Implications for magmatic source, geodynamic setting and petrogenesis[J]. Lithos, 326-327:158-173.

    Google Scholar

    Zhang Banglu, Zhang Lianchang, Feng Jing, Xu Shiqi, Feng Chqngrong, Hao Yanhai, Zhang Mengtian, Zhu Mingtian, Wang Changle, Peng Zidong, Dong Zhiguo. 2018. Genesis of the large-scale Orto Karnash manganese Carbonate deposit in the Malkansu district, Western Kunlun: evidence from geological features [J]. Geological Review, 64(2): 361-377(in Chinese with English abstract).

    Google Scholar

    Zhang Lianchang, Zhang Banglu, Dong Zhiguo, Xie Yueqiao, Li Wenjun, Peng Zidong, Zhu Mingtian, Wang Changle. 2020. Tectonic setting and metallogenetic conditions of Carboniferous Malkansu giant manganese belt in West Kunlun orogeny[J]. Journal of Jilin University (Earth science Edition), 50(5): 1340-1350(in Chinese with English abstract).

    Google Scholar

    Zhang Zuoheng, Wang Zhiliang, Wang yanbin, Zuo Guochao, Wang Longsheng, Lu Linsu. 2007. Shrimp zircon U-Pb dating of diorite from Qingbulake basic complex in western Tianshan Mountains of Xinjiang and its geological significance [J]. Mineral Deposit, 26(4): 353-360(in Chinese with English abstract).

    Google Scholar

    Zhang Z W, Li W Y, Gao Y B. 2014. Sulfide mineralization associated with arc magmatism in the Qilian Block, western China: Zircon U-Pb age and Sr-Nd-Os-S isotope constraints from the Yulonggou and Yaqu gabbroic intrusions[J]. Mineralium Deposita, 49 (2): 279-292.

    Google Scholar

    Zhang Z W, Wang Y L, Wang C Y, Qian B, Li W Y, Zhang J W, You M X. 2019. Mafic-ultramafic magma activity and copper-nickel sulfide metallogeny during Paleozoic in the Eastern Kunlun Orogenic Belt, Qinghai Province, China[J]. China Geology, 2: 467-477.

    Google Scholar

    Zhang Zhibing. 2016. Genetic Significances from Mineralogy of Xiarihamu Ni-Cu Sulfide Deposit,Eastern Kunlun Orogenic Belt [D]. Beijing: China University of Geosciences, 1-150(in Chinese with English abstract).

    Google Scholar

    Zhao G C, Wang Y J, Huang B C, Huang B C, Dong Y P, Li S Z, Zhang G W, Yu S. 2018. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews, 186: 262-286.

    Google Scholar

    Zheng Yongfei, Xu Zheng, Chen Long, Dai Liqun and Zhao Zifu. 2019. Chemical geodynamics of mafic magmatism above subduction zones[J]. Journal of Asian Earth Sciences, 194: 104185.

    Google Scholar

    Zheng Fei, Dai Liqun, Zhao Zifu, Zheng Yongfei, Ma Litao, Fang Wei. 2020. Syn-exhumation magmatism during continental collision: Geochemical evidence from the Early Paleozoic Fushui mafic rocks in the Qinling orogen, Central China[J]. Lithos, 352-353: 105318.

    Google Scholar

    附中文参考文献

    Google Scholar

    陈登辉, 隋清霖, 赵晓健, 荆德龙, 滕家欣, 高永宝.2019.西昆仑西昆仑穆呼锰矿晚石炭世含锰碳酸盐岩地质地球化学特征及其沉积环境[J].沉积学报, 37(3): 477-490.

    Google Scholar

    丁坤, 梁婷, 周义, 风永刚, 张泽, 丁亮, 李侃. 2020. 西昆仑大红柳滩黑云母二长花岗岩岩石成因:来自锆石U-Pb年龄及Li-Hf同位素的证据[J]. 西北地质, 53(1): 24-34.

    Google Scholar

    方爱民, 马建英, 王世刚, 赵越, 胡建民. 2009.西昆仑—塔西南坳陷晚古生代以来的沉积构造演化[J]. 岩石学报, 25(12): 3396-3406.

    Google Scholar

    高永宝, 滕家欣, 李文渊, 陈登辉, 隋清霖, 荆德龙, 贺永康, 白建科. 2018.新疆西昆仑奥尔托喀讷什锰矿地质、地球化学及成因[J].岩石学报, 34(8): 2341-2358.

    Google Scholar

    胡朝斌. 2021. 东昆仑祁漫塔格古生代幔源岩浆过程与成矿作用[D]. 北京: 中国地质科学院, 1-181.

    Google Scholar

    黎彤. 1992. 锰的成矿地球化学特征及其资源预测[J].矿床地质, 11(4):301-306.

    Google Scholar

    李世金, 孙丰月, 高永旺, 赵俊伟, 李连松, 杨启安. 2012.小岩体成大矿理论指导与实践: 青海东昆仑夏日哈木铜镍矿找矿突破的启示及意义[J].西北地质, 45(4): 185-191.

    Google Scholar

    李才.1987. 龙木错)—双湖—澜沧江板块缝合带与石炭二叠纪冈瓦纳北界[J].长春地质学院学报, 17(2): 155-166.

    Google Scholar

    李才, 解邵明, 王明, 吴彦旺, 胡培远, 张修政, 徐锋, 范建军, 吴浩, 刘一鸣, 彭虎, 江庆源, 陈景文, 徐建鑫, 翟庆国, 董永胜, 张天羽, 黄小鹏.2016. 羌塘地质[M]. 北京:地质出版社, 1-681.

    Google Scholar

    李文渊, 张照伟, 王亚磊, 张江伟, 尤敏鑫, 张志炳, 南卡俄吾. 2022.东昆仑原、古特提斯构造转换与岩浆铜镍钴硫化物矿床成矿作用[J].地球科学与环境学报, 44(1):1-19.

    Google Scholar

    李文渊, 王亚磊, 钱兵, 刘月高, 韩一筱. 2020. 塔里木陆块周缘岩浆Cu-Ni-Co硫化物矿床形成的探讨[J]. 地学前缘, 27(2): 276-293.

    Google Scholar

    李文渊, 洪俊, 陈博, 刘江, 马中平, 杨博. 2019. 中亚及邻区战略性关键矿产的分布规律与主要科学问题[J]. 中国科学基金, 2: 119-123.

    Google Scholar

    李文渊. 2018. 古亚洲洋与古特提斯洋关系初探[J]. 岩石学报, 34(8):2201-2210.

    Google Scholar

    李文渊. 2015. 中国西北部成矿地质特征及找矿新发现[J]. 中国地质, 42(3): 365-380.

    Google Scholar

    李文渊. 2007. 岩浆Cu-Ni-PGE矿床研究现状及发展趋势[J].西北地质, 40(2):1-28.

    Google Scholar

    李文渊. 1996.中国铜镍硫化物矿床成矿系列与地球化学[M].西安:西安地图出版社, 1-228.

    Google Scholar

    刘训. 2001.天山—西昆仑地区沉积-构造演化史: 新疆地学断面走廊域及邻区不同地体的沉积-构造演化[J].古地理学报, 3(3):21-31.

    Google Scholar

    裴先治, 李瑞宝, 李作臣, 刘成军, 陈有炘, 裴磊, 刘战庆, 陈国超, 李小兵, 王盟. 2018. 东昆仑南缘布青山复合增生型构造混杂岩带组成特征及其形成演化过程[J]. 地球科学, 43(12): 4498-4520.

    Google Scholar

    乔耿彪, 伍跃中, 刘拓. 2020. 西昆仑大红柳滩伟晶岩型稀有金属矿的形成时代:来自白云母40Ar/39Ar同位素年龄的证据[J]. 中国地质, 47(5): 1591-1593.

    Google Scholar

    汤艳杰, 张宏福, 英基丰. 2009. 锂同位素分馏机制讨论[J].地球科学——中国地质大学学报, 34(1): 43-55.

    Google Scholar

    汤中立, 李文渊, 1995. 金川铜镍硫化物 (含铂) 矿床成矿模式及地质对比[M].北京: 地质出版社: 1-209

    Google Scholar

    吴福元, 万博, 赵亮, 肖文交, 朱日祥. 2020.特提斯地球动力学[J]. 岩石学报, 36(6): 1627-1674.

    Google Scholar

    王冠, 孙丰月, 李碧乐, 李世金, 赵俊伟, 奥琮, 杨启安. 2014.东昆仑夏日哈木铜镍矿镁铁质-超镁铁质岩体岩相学、锆石U-Pb年代学、地球化学及其构造意义[J].地学前缘, 21(6): 381-401.

    Google Scholar

    肖文交, 侯泉林, 李继亮, 肖文交, 侯泉林, 李继亮, Windley B F, 郝杰, 方爱民, 周辉, 王志洪, 陈汉林, 张国成, 袁超. 2000.西昆仑大地构造相解剖及其多岛增生过程[J].中国科学(D 辑): 地球科学, 30(增刊1): 22-28.

    Google Scholar

    许志琴, 王汝成, 朱文斌, 秦宇龙, 付小芳, 李广伟. 2020.川西花岗-伟晶岩型锂矿科学钻探:科学问题和科学意义[J]. 地质学报, 94(8):2177-2188.

    Google Scholar

    徐刚. 2013.甘肃北山黑山铜镍硫化物矿床成矿作用研究[D].西安:长安大学, 1-198.

    Google Scholar

    张作衡, 王志良, 王彦斌, 左国朝, 王龙生, 吕林素. 2007. 新疆西天山菁布拉克基性杂岩体闪长岩锆石SHRIMP 定年及其地质意义[J]. 矿床地质, 26(4): 353-360.

    Google Scholar

    张连昌, 张帮禄, 董志国, 谢月娇, 李文君, 彭自栋, 朱明田, 王长乐. 2020.西昆仑玛尔坎苏石炭纪大型锰矿带构造背景与成矿条件[J].吉林大学学报(地球科学版), 50(5): 1340-1357.

    Google Scholar

    张帮禄, 张连昌, 冯京, 徐仕琪, 冯昌荣, 郝延海, 郑梦天, 彭自栋, 董志国. 2018.西昆仑玛尔坎苏地区奥尔托喀讷什大型碳酸锰矿床地质特征及成因探讨[J].地质论评, 64(2): 361-377.

    Google Scholar

    张志炳. 2016. 东昆仑夏日哈木铜镍硫化物矿床矿物成因意义探讨[D]. 北京: 中国地质大学(北京), 1-118.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2059) PDF downloads(419) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint