2022 Vol. 49, No. 5
Article Contents

FU Lei, MA Xin, DIAO Yujie, ZHENG Bowen, ZHENG Changyuan, LIU Ting, SHAO Wei. 2022. Economic analysis of carbon storage in CO2 plume geothermal system[J]. Geology in China, 49(5): 1374-1384. doi: 10.12029/gc20220502
Citation: FU Lei, MA Xin, DIAO Yujie, ZHENG Bowen, ZHENG Changyuan, LIU Ting, SHAO Wei. 2022. Economic analysis of carbon storage in CO2 plume geothermal system[J]. Geology in China, 49(5): 1374-1384. doi: 10.12029/gc20220502

Economic analysis of carbon storage in CO2 plume geothermal system

More Information
  • Corresponding author: MA Xin  
  • This paper is the result of the geothermal geological survey engineering.
    [Objective]The CO2- plume geothermal system (CPGS) can achieve geological CO2 storage during heat extraction. Under the background of carbon peaking and carbon neutralization, the economics of CPGS carbon storage attracts much attention. [Methods] Taking the Quantou Formation in the Songliao Basin as example, the influence of injection pressure, well spacing and reinjection temperature on the heat extraction rate were analyzed by numerical simulation in this paper. In addition, the benefit of CPGS and the cost of carbon storage were calculated and compared with conventional hydrothermal geothermal systems. [Results]Results show that the temperature of mining wells in CPGS exhibits a trend of "decrease-stabilization-decrease" due to the transformation of heat-carrying medium and thermal breakthrough. Typically, the well spacing has a significant impact on the temperature drop of the mining well. Smaller the well spacing contributes to larger temperature drop of the mining well. The heat extraction rate has a positive correlation with the reinjection pressure and a negative correlation with the reinjection temperature. The influence of well spacing on the heat extraction rate is limited. Compared with the conventional hydrothermal geothermal system, CPGS has three stages of heat recovery, namely, high, low and high stages successively. A low reinjection pressure and a close reinjection temperature with the reservoir temperature helps to shorten the time required for the CPGS to recover a similar heat energy with the water medium. [Conclusions]Taking the price of CO2 and the benefits of heat extraction into account only, the well spacing has a dominating impact on the unit cost of CO2 storage after the heating revenue offsets part of the cost of carbon storage. Small well spacing contributes to quick decrease of the unit cost of CO2 storage. The unit cost of CO2 storage can be reduced to 160 yuan/ton after 30 years of continuous mining when the well spacing is 300 m.
  • 加载中
  • Adams B M, Kuehn T H, Bielicki J M, Randolph J B, Saar M O. 2014. On the importance of the thermosiphon effect in CPG (CO2 plume geothermal) power systems[J]. Energy, 69: 409-418.

    Google Scholar

    Ahmadi P, Chapo Y A, Burgass R. 2021. Thermophysical properties of typical CCUS fluids: Experimental and modeling investigation of density[J]. Journal of Chemical & Engineering Data, 66(1): 116-129.

    Google Scholar

    Bai Jing, Xu Xingyou, Chen Shan, Liu Weibin, Liu Chang, Zhang Changsheng. 2020. Sedimentary characteristics and paleo- environment restoration of the first member of Qingshankou Formation in Qian'an area, Changling sag, Songliao Basin: A case study of Jiyeyou 1 Well[J]. Geology in China, 47(1): 220-235(in Chinese with English abstract).

    Google Scholar

    Bao Xinhua, Zhang Yu, Li Ye, Wu Yongdong, Ma Dan, Zhou Guanghui. 2017. Evaluation of development selection for enhanced geothermal system in Songliao basin[J]. Journal of Jilin University (Earth Science Edition), 47(2): 564-572(in Chinese with English abstract).

    Google Scholar

    Benjamin M Adams, Daniel Vogler, Thomas H Kuehn, Jeffrey M Bielicki, Nagasree Garapati, Martin O Saar. 2021. Heat depletion in sedimentary basins and its effect on the design and electric power output of CO2 plume geothermal (CPG) systems[J]. Renewable Energy, 172: 1393-1403.

    Google Scholar

    Benjamin M Adams, Thomas H Kuehn, Jeffrey M Bielicki, Jimmy B Randolph, Martin O Saar. 2015. A comparison of electric power output of CO2 plume geothermal (CPG) and brine geothermal systems for varying reservoir conditions[J]. Applied Energy, 140: 365-377.

    Google Scholar

    Buah E, Linnanen L, Wu H. 2021. Augmenting the communication and engagement toolkit for CO2 capture and storage projects[J]. International Journal of Greenhouse Gas Control, 107(6): 103269.

    Google Scholar

    Cai Bofeng, Li Qi, Lin Qianguo, Ma Jinfeng. 2020. China CO2 capture, utilization and storage (CCUS) report (2019)[R]. Chinese Academy of Environmental Planning(in Chinese).

    Google Scholar

    Cui G, Ren S, Rui Z, Justin E, Zhang L, Wang H, Yan J. 2018. The influence of complicated fluid-rock interactions on the geothermal exploitation in the CO2 plume geothermal system[J]. Applied Energy, 227: 49-63.

    Google Scholar

    Cui G, Ren Z, Zhang L, Zhuang Y, Wang Y, Gong Z, Su S. 2016. Effects of rock-fluid interaction and water back flow on heat mining efficiency of geothermal development via carbon dioxide injection[J]. Journal of Chemical Engineering of Chinese Universities, 30(5): 1043-1052(in Chinese with English abstract).

    Google Scholar

    Diao Yujie, Yang Yang, Li Xufeng, Hu Lisha, Zheng Changyuan, Ma Xin. 2021. Management on developing deep underground space for CO2 geological storage[J]. Proceedings of the CSEE, 41(4): 1267-1274(in Chinese with English abstract).

    Google Scholar

    Feng Guanhong, Li jiaqi, Xu Tianfu, Shi Yan. 2013. Effects of property of reservoir on heat extraction in CO2 plume geothermal system[J]. Renewable Energy Resources, 31(7): 85-92(in Chinese with English abstract).

    Google Scholar

    Fleming M R, Adams B M, Kuehn T H, Bielicki J M, Saar M O. 2020. Increased power generation due to exothermic water exsolution in CO2 plume geothermal (CPG) power plants[J]. Geothermics, 88: 101865.

    Google Scholar

    Garapati N, Randolph J B, Saar M O. 2015. Brine displacement by CO2, energy extraction rates, and lifespan of a CO2-limited CO2-Plume Geothermal (CPG) system with a horizontal production well[J]. Geothermics, 55(5): 182-194.

    Google Scholar

    Garapati N, Randolph J B, Valencia J L, Saar M O. 2014. CO2-plume geothermal (CPG) heat extraction in multi-layered geologic reservoirs[J]. Energy Procedia, 63:7631-7643.

    Google Scholar

    Kang Xiaoqian, Feng Xuan, Hou Hesheng, Sun Chengcheng, Liu Qian, Yu Hailong. 2019. Carboniferous- Permian stratigraphic thickness in northern Songliao Basin: Evidence from deep reflection seismic data[J]. Geology in China, 46(5): 1116-1125(in Chinese with English abstract).

    Google Scholar

    Li Jingyan, Liu Zhongliang, Zhou Yu, Li Yanxia. 2019. Study of thermal-hydrologic-mechanical numerical simulation model on CO2 plume geothermal system[J]. CIESC Journal, 70(1): 72-82(in Chinese with English abstract).

    Google Scholar

    Li Qi, Cai Bofeng, Chen Fan, Liu Guizhen, Liu Lancui. 2019. Review of environmental risk assessment methods for carbon dioxide geological storage[J]. Environmental Engineering, 37(2): 16-24(in Chinese with English abstract).

    Google Scholar

    Li Qi, Wei Yani. 2013. Progress in combination of CO2 geological storage and deep saline water recovery[J]. Science & Technology Review, 31(27): 65-70(in Chinese with English abstract).

    Google Scholar

    Lu Ping, Bai Yong, Liu Weigang, Chen Xi, Zheng Huaan, Liu Jie, Chen Yongzhen, Gao Jianping. 2021. Optimization of favorable areas for carbon dioxide geological storage in Majiagou Formation in Ordos Basin[J]. Geological Review, 67(3): 816-827(in Chinese with English abstract).

    Google Scholar

    Mrityunjay Singh, Sri Kalyan Tangirala, Abhijit Chaudhuri. 2020. Potential of CO2 based geothermal energy extraction from hot sedimentary and dry rock reservoirs, and enabling carbon geo-sequestration[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6: 1-32.

    Google Scholar

    Qiao Z, Cao Y, Yin Y, Zhao L, Si F. 2020a. Solvation structure of supercritical CO2 and brine mixture for CO2 plume geothermal applications: A molecular dynamics study[J]. The Journal of Supercritical Fluids, 159: 104783.

    Google Scholar

    Qiao Zongliang, Cao Yue, Li Peiyu, Wang Xingchao, Carlos E. Romero, Lehua Pan. 2020b. Thermoeconomic analysis of a CO2 plume geothermal and supercritical CO2 Brayton combined cycle using solar energy as auxiliary heat source[J]. Journal of Cleaner Production, 256: 120374.

    Google Scholar

    Qiao Z, Tang Y, Wang X, Pan C, Si F, Zhao L. 2019. Numerical simulation and predictive model of mining characteristics of CO2 plume geothermal system[J]. Journal of Southeast University(Natural Science Edition), 49(4): 764-772(in Chinese with English abstract).

    Google Scholar

    Qin Jishun, Li Yongliang, Wu Debin, Weng Hui, Wang Gaofeng. 2020. CCUS global progress and China's policy suggestions[J]. Petroleum Geology and Recovery Efficiency, 27(1): 20-28(in Chinese with English abstract).

    Google Scholar

    Randolph J B, Saar M O. 2011. Combining geothermal energy capture with geologic carbon dioxide sequestration[J]. Geophysical Research Letters, 38(10): L10401.

    Google Scholar

    Shi Yan, Feng Bo, Xu Tianfu, Wang Fugang, Feng Guanhong, Tian Hailong, Lei Hongwu. 2014. Water-Rock-Gas interaction of CO2-plume geothermal system in Quantou Formation of Songliao basin[J]. Journal of Jilin University: Earth Science Edition, 44(6): 1980-1987(in Chinese with English abstract).

    Google Scholar

    Stocker T, Plattner G K, Dahe Q. 2014. IPCC climate change 2013: The physical science basis-findings and lessons learned[C]// EGU General Assembly Conference. EGU General Assembly Conference Abstracts, 2-21.

    Google Scholar

    Sun Y Z, Xie L Z, He B, Gao C, Wang J. 2016. Effects of effective stress and temperature on permeability of sandstone from CO2-plume geothermal reservoir[J]. Journal of Rock Mechanics and Geotechnical Engineering, 8: 819-827.

    Google Scholar

    Tang Y, Qiao Z, Cao Y, Si F, Rubio-Maya C. 2020. Numerical analysis of separation performance of an axial-flow cyclone for supercritical CO2-water separation in CO2 plume geothermal systems[J]. Separation and Purification Technology, 248: 116999.

    Google Scholar

    Vulin D, Muhasilovi L, Arnaut M. 2020. Possibilities for CCUS in medium temperature geothermal reservoir [J]. Energy, 200: 117549.

    Google Scholar

    Wei Mingcong, Yang Bing, Xu Tianfu, Shi Yan, Feng Guanhong, Feng Bo. 2015. Effect of well spacing and reservor permeability on heat extraction in CO2 plume geothermal system: A case study of Songliao basin[J]. Geologic Science and Technology Information, 34(2): 194-199(in Chinese with English abstract).

    Google Scholar

    Yuan Xu, Lei Zhu, Daejun Chang, Michael Tsimplis, Chris Greig, Steven Wright. 2021. International chains of CO2 capture, utilization and storage (CCUS) in a carbon-neutral world[J]. Resources Conservation and Recycling, 167: 105433.

    Google Scholar

    Zhang Wei, Li Yilian, Zheng Yan, Jiang Ling, Qiu Gengbiao. 2008. CO2 storage capacity estimation in geological sequestration: Issusand research progress[J]. Advances in Earth Science, 23(10): 1061-1069(in Chinese with English abstract).

    Google Scholar

    Zhang Wei, Lü Peng. 2013. Density-driven convection in carbon dioxide geological storage: A review[J]. Hydrogeology & Engineering Geology, 40(2): 101-107(in Chinese with English abstract).

    Google Scholar

    附中文参考文献

    Google Scholar

    白静, 徐兴友, 陈珊, 刘卫彬, 刘畅, 张昌盛. 2020. 松辽盆地长岭凹陷乾安地区青山口组一段沉积相特征与古环境恢复——以吉页油1井为例[J]. 中国地质, 47(1): 220-235.

    Google Scholar

    鲍新华, 张宇, 李野, 吴永东, 马丹, 周广慧. 2017. 松辽盆地增强型地热系统开发选区评价[J]. 吉林大学学报(地球科学版), 42(2): 564-572.

    Google Scholar

    蔡博峰, 李琦, 林千果, 马劲风. 2020. 中国二氧化碳捕集、利用与封存(CCUS)报告(2019)[R]. 生态环境部环境规划院, 1-4.

    Google Scholar

    崔国栋, 任韶然, 张亮, 庄园, 王延永, 宫智武, 苏帅杰. 2016. 二氧化碳羽流地热系统中地层水回流和岩石-流体作用对采热能力的影响[J]. 高校化学工程学报, 30(5): 1043-1052.

    Google Scholar

    刁玉杰, 杨扬, 李旭峰, 胡丽莎, 郑长远, 马鑫. 2021. CO2地质封存深部地下空间利用管理法规探讨[J]. 中国电机工程学报, 41(4):1267-1274.

    Google Scholar

    封官宏, 李佳琦, 许天福, 石岩. 2013. 二氧化碳羽流地热系统中储层物性参数对热提取率的影响[J]. 可再生能源, 31(7): 85-92.

    Google Scholar

    康晓倩, 冯晅, 侯贺晟, 孙成城, 刘乾, 俞海龙. 2019. 松辽盆地北部石炭—二叠纪地层厚度:来自深反射地震的证据[J]. 中国地质, 46(5): 1116-1125.

    Google Scholar

    李静岩, 刘中良, 周宇, 李艳霞. 2019. CO2羽流地热系统热开采过程热流固耦合模型及数值模拟研究[J]. 化工学报, 70(1): 72-82.

    Google Scholar

    李琦, 蔡博峰, 陈帆, 刘桂臻, 刘兰翠. 2019. 二氧化碳地质封存的环境风险评价方法研究综述[J]. 环境工程, 37(2): 16-24.

    Google Scholar

    李琦, 魏亚妮. 2013. 二氧化碳地质封存联合深部咸水开采技术进展[J]. 科技导报, 31(27): 65-70.

    Google Scholar

    路萍, 白勇, 刘伟刚, 陈曦, 郑化安, 刘杰, 陈永振, 高建平. 2021. 鄂尔多斯盆地马家沟组二氧化碳地质封存有利区优选[J]. 地质论评, 67(3): 816-827.

    Google Scholar

    乔宗良, 汤有飞, 王兴超, 潘春健, 司风琪, 赵伶玲. 2019. CO2羽流地热系统开采特性数值模拟及预测模型[J]. 东南大学学报:自然科学版, 49(4): 764-772.

    Google Scholar

    秦积舜, 李永亮, 吴德斌, 翁慧, 王高峰. 2020. CCUS全球进展与中国对策建议[J]. 油气地质与采收率, 27(1): 20-28.

    Google Scholar

    石岩, 冯波, 许天福, 王福刚, 封官宏, 田海龙, 雷宏武. 2014. 二氧化碳羽流地热系统水岩气相互作用:以松辽盆地泉头组为例[J]. 吉林大学学报(地球科学版), 44(6): 1980-1987.

    Google Scholar

    魏铭聪, 杨冰, 许天福, 石岩, 封官宏, 冯波. 2015. 二氧化碳羽流地热系统中井间距和储层渗透率对热提取率的影响:以松辽盆地为例[J]. 地质科技情报, 34(2): 194-199.

    Google Scholar

    张炜, 李义连, 郑艳, 姜玲, 邱耿彪. 2008. 二氧化碳地质封存中的储存容量评估:问题和研究进展[J]. 地球科学进展, 23(10): 1061-1069.

    Google Scholar

    张炜, 吕鹏. 2013. 二氧化碳地质封存中“对流混合”过程的研究进展[J]. 水文地质工程地质,40(2): 101-107.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(2024) PDF downloads(109) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint