2024 Vol. 51, No. 3
Article Contents

CHEN Peng, ZHANG Bing, MA Rong, SHI Jiansheng, SI Letian, WU Jun, ZHAO Lefan. 2024. Ecosystem degradation risk based on health and resilience: A case study of Chahannur Lake basin on Bashang Plateau[J]. Geology in China, 51(3): 1034-1045. doi: 10.12029/gc20220415002
Citation: CHEN Peng, ZHANG Bing, MA Rong, SHI Jiansheng, SI Letian, WU Jun, ZHAO Lefan. 2024. Ecosystem degradation risk based on health and resilience: A case study of Chahannur Lake basin on Bashang Plateau[J]. Geology in China, 51(3): 1034-1045. doi: 10.12029/gc20220415002

Ecosystem degradation risk based on health and resilience: A case study of Chahannur Lake basin on Bashang Plateau

    Fund Project: Supported by the project of China Geological Survey (No.DD20221773) and Chinese Academy of Geological Sciences Basic Research Fund (No.SK202327).
More Information
  • Author Bio: CHEN Peng, male, born in 1994, Ph.D., assistant researcher, mainly engaged in water resources investigation and research; E–mail: chenpeng789@foxmail.com
  • Corresponding author: ZHANG Bing, male, born in 1983, master, engineer, mainly engaged in water resources investigation and research; E–mail: zhangbing@mail.cgs.gov.cn
  • This paper is the result of geological survey engineering.

    Objective

    Based on the health status and resilience of the ecosystem, a risk assessment system of lake basin ecosystem degradation was constructed to provide a scientific basis for ecological environment protection and sustainable development at the basin scale.

    Methods

    Taking the Chahannur Lake basin on Bashang Plateau as an example, the interactive risk assessment matrix of ecosystem health and resilience was created, the ecological degradation risk assessment system was established, and the risk assessment of ecosystem degradation in the ChahannurLakebasin was carried out.

    Results

    91.10% of the region's ecological health was in a good state, and 6.66% was excellent. In the basin, 22.76% of the regional ecological resilience level is 1–2, and 75.00% is 3–4. The results of the interactive assessment showed that 27.51% of the basin was in a state of low risk of ecological degradation, and 70.25% of the basin was in a state of medium risk.

    Conclusions

    The ecosystem of the Chahannur Lake basin is generally good, but the risk of ecological degradation is moderate in local areas due to poor resilience. The assessment method proposed in this study can accurately classify the risk level of ecological degradation at the watershed scale and provide a basis for the scientific decision−making of precise ecological protection and degradation control measures.

  • 加载中
  • [1] Chen P, Ma R, Shi J, Si L. 2022a. Effects of groundwater depth and salt content on vegetation in dry lake basins: A case study of Chahan Lake, Northern China[J]. Geofluids, 2022: 1−14.

    Google Scholar

    [2] Chen X, Wang Y, Pei H, Guo Y, Zhang J, Shen Y. 2022b. Expansion of irrigation led to inland lake shrinking in semi−arid agro−pastoral region, China: A case study of Chahannur Lake[J]. Journal of Hydrology: Regional Studies, 41: 101086. doi: 10.1016/j.ejrh.2022.101086

    CrossRef Google Scholar

    [3] Chen Xiaolu, Wang Yanfang, Zhang Hongmei, Liu Fenggui, Shen Yanjun. 2021. Study on extraction method of irrigated farmland based on ESTARFM NDVI in Chahanur Basin[J]. Chinese Journal of Eco−Agriculture, 29(6): 1105−1116 (in Chinese with English abstract).

    Google Scholar

    [4] Cheng X, Chen L, Sun R, Kong P. 2018. Land use changes and socio–economic development strongly deteriorate river ecosystem health in one of the largest basins in China[J]. Science of the Total Environment, 616–617: 376–385.

    Google Scholar

    [5] Das A, Basu T, 2020. Assessment of peri–urban wetland ecological degradation through importance–performance analysis (IPA): A study on Chatra Wetland, India[J]. Ecological Indicators, 114: 106274.

    Google Scholar

    [6] Dong Jiaqiu, Zhang Jun, Gu Xiaofan, GaoHaibo, Yang Bo, Yang Xiaodong, Zhao Chunguang, Zhang Tiegang, Yin Lihe, Wang Xiaoyong. 2023. Assessment of the degree of vegetation dependence on groundwater at basin scale in semi–arid region: A case study of Tuhe River Basin, Ordos Plateau [J/OL]. Geology in China: 1–19 http://kns.cnki.net/kcms/detail/11.1167.P.20220822.1556.026.html.(in Chinese with English abstract).

    Google Scholar

    [7] Ebrahimi Khusfi Z, Khosroshahi M, Roustaei F, Mirakbari M. 2020. Spatial and seasonal variations of sand–dust events and their relation to atmospheric conditions and vegetation cover in semi–arid regions of central Iran[J]. Geoderma, 365: 114225. doi: 10.1016/j.geoderma.2020.114225

    CrossRef Google Scholar

    [8] Fu Mengdi, Tang Wenjia, Liu Weiwei, He Yuejun, Zhu Yanpeng. 2021. Ecological risk assessment and spatial identification of ecological restoration based on the perspective of ecosystem services: A case study of the source region of the Yangtze River[J]. Acta Ecologica Sinica, 41(10): 3846−3855 (in Chinese with English abstract).

    Google Scholar

    [9] Fu Zhenghui, Yang Yang, Jiang Xia, Guo Yunyan, Wang Shuhang. 2021. Risk assessment of human activities on ecological health in watersheds: A case study of Hulun Lake Basin[J]. Environmental Science Research, 34(4): 785−791 (in Chinese with English abstract).

    Google Scholar

    [10] Guo Shanshan. 2022. Research on the Coupling and Coordination of Ecosystem Health and Urbanisation in the Yellow River Basin[D]. Beijing: China University of Mining and Technology, 1–227 (in Chinese with English abstract).

    Google Scholar

    [11] Guo Xiaodong, Wang Xiaoguang, Liu Qiang, Wang Changqi, Xiao Changlai, Cheng Xuxue. 2021. Groundwater resources and their ecological and environmental problems in the Songhua–Liaohe river basin[J]. Geology in China, 48(4): 1062−1074 (in Chinese with English abstract).

    Google Scholar

    [12] Han Shuangbao, Li Fucheng, Wang Sai, Li Haixue, Yu Lei, Liu Jingtao, Shen Haoyong, Zhang Xueqing, Li Changqing, Wu Xi, Ma Tao, Wei Shibo, Zhao Minmin. 2021. Status of groundwater resources and its ecological and environmental problems in the Yellow River Basin[J]. Geology in China, 48(4): 1001−1019 (in Chinese with English abstract).

    Google Scholar

    [13] Huang Zhou. 2017. Ecological Health Assessment of Nanxi River Basin Based on GIS and RS[D]. Hangzhou: Zhejiang University, 1–84 (in Chinese with English abstract).

    Google Scholar

    [14] Huo H, Sun C. 2021. Spatiotemporal variation and influencing factors of vegetation dynamics based on Geodetector: A case study of the northwestern Yunnan Plateau, China[J]. Ecological Indicators, 130: 108005. doi: 10.1016/j.ecolind.2021.108005

    CrossRef Google Scholar

    [15] Jaiswal D, Pandey J. 2021. River ecosystem resilience risk index: A tool to quantitatively characterize resilience and critical transitions in human–impacted large rivers[J]. Environmental Pollution, 268: 115771. doi: 10.1016/j.envpol.2020.115771

    CrossRef Google Scholar

    [16] Jiang W, Lü J, Wang C, Chen Z, Liu Y. 2017. Marsh wetland degradation risk assessment and change analysis: A case study in the Zoige Plateau, China[J]. Ecological Indicators, 82: 316−326. doi: 10.1016/j.ecolind.2017.06.059

    CrossRef Google Scholar

    [17] Jin K, Wang F, Zong Q, Qin P, Liu C. 2020. Impact of variations in vegetation on surface air temperature change over the Chinese Loess Plateau[J]. Science of the Total Environment, 716: 136967. doi: 10.1016/j.scitotenv.2020.136967

    CrossRef Google Scholar

    [18] Kang P, Chen W, Hou Y, Li Y. 2018. Linking ecosystem services and ecosystem health to ecological risk assessment: A case study of the Beijing–Tianjin–Hebei urban agglomeration[J]. Science of the Total Environment, 636: 1442−1454. doi: 10.1016/j.scitotenv.2018.04.427

    CrossRef Google Scholar

    [19] Li Meina, Yin Ping, Duan Xiaoyong, Dong Chao, Cao Ke, Yang Lei, Chen Xuanbo. 2022. Study on land use change and ecological environment effect in the typical coastal zone of Yangtze River Delta in the past 20 years[J]. Geology in China, 49(4): 1114−1126 (in Chinese with English abstract).

    Google Scholar

    [20] Li Xinpeng, Wang Chaoping, Zou Songbing, Yue Wei, Luo Shan, Wang Wenshu, Qin Yihao, San Jun, Qian Jikun, Wang Chunmiao. 2022. Evaluation of ecosystem resilience in the upper Yellow River water–holding area based on hierarchical analysis—A case study of Gannan and Linxia Prefectures[J/OL]. Desert China, (6): 1–9 (in Chinese with English abstract).

    Google Scholar

    [21] Li Y, Xie Z, Qin Y, Zheng Z. 2019. Estimating relations of vegetation, climate change, and human activity: A case study in the 400 mm annual precipitation fluctuation zone, China[J]. Remote Sensing, 11(10): 1159. doi: 10.3390/rs11101159

    CrossRef Google Scholar

    [22] Li Tuo, Jiang Weiguo, Wang Wenjie, Lü Jinxia, Chen Zheng. 2020. Wetland degradation risk assessment method and its application: A case study of Tianjin[J]. Journal of Environmental Engineering Technology, 10(1): 17−24 (in Chinese with English abstract).

    Google Scholar

    [23] Li T, Zhang Q, Singh V P, Zhao J, Song J. 2022. Identification of degradation areas of ecological environment and degradation intensity assessment in the Yellow River Basin[J]. Frontiers in Earth Science, 10: 922013. doi: 10.3389/feart.2022.922013

    CrossRef Google Scholar

    [24] Liu Yaling, Xin Zhongbao, Li Zongshan, KeymuBaildang. 2020. Differences in radial growth response of poplar plantation forests to climate change in the Bashang area of Hebei in the last 40 years[J]. Journal of Ecology, 40(24): 9108−9119 (in Chinese with English abstract).

    Google Scholar

    [25] Liu Yanxu, Peng Jian, Wang An, Xie Pan, Han Yinan. 2015. Progress in ecosystem health research[J]. Journal of Ecology, 35(18): 5920−5930 (in Chinese with English abstract).

    Google Scholar

    [26] López D R, Brizuela M A, Willems P, Aguiar M R, Siffredi G, Bran D. 2013. Linking ecosystem resistance, resilience, and stability in steppes of North Patagonia[J]. Ecological Indicators, 24: 1−11. doi: 10.1016/j.ecolind.2012.05.014

    CrossRef Google Scholar

    [27] Mu Q, Zhao M, Running S W. 2011. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 115(8): 1781−1800. doi: 10.1016/j.rse.2011.02.019

    CrossRef Google Scholar

    [28] Peng Y, Wang Q, Fan M. 2017. Identification of the key ecological factors influencing vegetation degradation in semi–arid agro–pastoral ecotone considering spatial scales[J]. Acta Oecologica, 85: 62−68. doi: 10.1016/j.actao.2017.09.011

    CrossRef Google Scholar

    [29] Pei Hongwei, Liu Mengzhu, Li Yali, Zhang Hongjuan, Xiao Yuxiao, Yang Guoli. 2022. Study on the impacts of ecological restoration measures on ecosystem services in arid and semi–arid areas: A case study of the Bashang area in Hebei[J]. Research on Soil and Water Conservation, 29(2): 192−199, 205 (in Chinese with English abstract).

    Google Scholar

    [30] Shang Boxuan, Xiao Chunlei, Zhao Dan, Zhu Zhenzhou, Zhang Gaqiang. 2021. Distribution characteristics of lakes in China and proposals for ecological protection and restoration of typical watersheds[J]. China Geological Survey, 8(6): 114−125 (in Chinese with English abstract).

    Google Scholar

    [31] Shen Haoyong, Li Jia, Wang Zhiheng, Xie Hao, Liang Yongping, Xu Yongxin, Han Shuangbao, Ren Jianhui, Pan Yaoyun, Zhao Chunhong, Zhao Yi. 2022. Current status of water resources development and utilisation and ecological and environmental problems in the Fen River Basin, a tributary of the Yellow River[J]. Geology in China, 49(4): 1127−1138 (in Chinese with English abstract).

    Google Scholar

    [32] Song Bo, Zhang Fawang, Yang Huifeng, Liu Chunlei, Meng Ruifang, Nan Tian. 2021. Evaluation of water resources carrying capacity by source based on ecological priority and its application: A case study of Baoding Plain, Hebei[J]. Geology in China, 48(4): 1156−1165 (in Chinese with English abstract).

    Google Scholar

    [33] Sterk M, Gort G, Klimkowska A, Ruijven J, Teeffelen A J A, Wamelink G W W. 2013. Assess ecosystem resilience: Linking response and effect traits to environmental variability[J]. Ecological Indicators, 30: 21−27. doi: 10.1016/j.ecolind.2013.02.001

    CrossRef Google Scholar

    [34] Tang D, Liu X, Zou X. 2018. An improved method for integrated ecosystem health assessments based on the structure and function of coastal ecosystems: A case study of the Jiangsu coastal area, China[J]. Ecological Indicators, 84: 82−95. doi: 10.1016/j.ecolind.2017.08.031

    CrossRef Google Scholar

    [35] Wang Y, Shen Y, Guo Y, Li B, Chen X, Guo X, Yan H. 2022. Increasing shrinkage risk of endorheic lakes in the middle of farming–pastoral ecotone of Northern China[J]. Ecological Indicators, 135: 108523. doi: 10.1016/j.ecolind.2021.108523

    CrossRef Google Scholar

    [36] Wang Y, Zhang Z, Chen X. 2021. Quantifying influences of natural and anthropogenic factors on vegetation changes based on geodetector: A case study in the Poyang Lake Basin, China[J]. Remote Sensing, 13(24): 5081. doi: 10.3390/rs13245081

    CrossRef Google Scholar

    [37] Wang Yanfang, Pei Hongwei. 2018. Evaluation of ecological environment status and countermeasures in the dam area of Hebei from 1980 to 2015[J]. Ecological Economy, 34(1): 186−190, 236 (in Chinese with English abstract).

    Google Scholar

    [38] Wang Cuicui. 2015. Risk Assessment of Degradation of Marshy Wetlands in Ruoergai Plateau and its Evolution Analysis[D]. Beijing: China University of Geosciences (Beijing), 1–85 (in Chinese with English abstract).

    Google Scholar

    [39] Wang Jingbin, Wei Xiaofeng, Zhang Huijiong, Gan Fengwei. 2020. Ecological geological survey method based on geoconstruction: A case study of comprehensive geological survey in national ecological civilisation demonstration area of Chengde City, Hebei Province[J]. Geology in China, 47(6): 1611−1624 (in Chinese with English abstract).

    Google Scholar

    [40] Wu Nan, Chen Hongfeng, Kuang Pidong, Feng Chaoyang, Jiang Hongqiang, Wu Wenjun, Li Daiqing, Zhao Yangduan. 2020. Risk assessment of disturbance and degradation in ecological protection red line areas: A case study in Anhui Province[J]. Journal of Ecology, 40(16): 5571−5578 (in Chinese with English abstract).

    Google Scholar

    [41] Wu Qinyu, Zhang Shaoliang, Yang Yongjun, Hou Huping, Chen Dongxing. 2021. Spatial assessment of ecosystem degradation risk in semi–arid mining areas based on resilience[J]. Journal of Coal, 46(5): 1587−1598 (in Chinese with English abstract).

    Google Scholar

    [42] Wu Aibin, Zhao Yanxia. 2017. Evolution of spatial and temporal pattern of ecological land use and analysis of ecosystem service value in the Bashang plateau[J]. Journal of Agricultural Engineering, 33(2): 283−290 (in Chinese with English abstract).

    Google Scholar

    [43] Xiong Fangyuan, Lu Ying, Liu Han, Cheng Lin, Wu Xinghua, Chen Yushun, Wang Dianchang. 2022. Progress of water ecosystem health research in the source area of the Yangtze River[J]. China Environmental Monitoring, 38(1): 14−26 (in Chinese with English abstract).

    Google Scholar

    [44] Yang Dan, Wang Wenjie, Wu Xiqin, Jiang Weiguo, Zhang Huan. 2021. Steady state transition of the wetland ecosystem and response to climate change in the lakes and wetlands of Angulinao, 1985–2016[J]. Environmental Science Research, 34(12): 2954−2961 (in Chinese with English abstract).

    Google Scholar

    [45] Yang Geng, Cao Yingui, Luo Gubai, Kuang Xinyu, Huang Yuhan, Wang Shufei. 2019. Progress in ecosystem resilience assessment[J]. Zhejiang Agricultural Science, 60(3): 508−513 (in Chinese with English abstract).

    Google Scholar

    [46] Yang Tao, Yan Xiaojuan, Zhao Hansen, Wang Peng, Zhu Tao, Cai Haojie, Zuo Xugang, Xi Rengang, Zhang Yulian, Wang Lishe, Wu Shuo. 2023. Conversion of land use types in the Weihe River Basin and its impact on ecological spatial pattern[J]. Geology in China, 50(5): 1460–1470 (in Chinese with English abstract).

    Google Scholar

    [47] Yu Haochen, Bian Zhengfu, Chen Fu, Mou Shouguo. 2020. Diagnosis of mine land ecosystem degradation and its regulation[J]. Coal Science and Technology, 48(12): 214−223 (in Chinese with English abstract).

    Google Scholar

    [48] Yu L, Wu Z, Du Z, Zhang H, Liu Y. 2021. Insights on the roles of climate and human activities to vegetation degradation and restoration in Beijing–Tianjin sandstorm source region[J]. Ecological Engineering, 159: 106105. doi: 10.1016/j.ecoleng.2020.106105

    CrossRef Google Scholar

    [49] Zhan Jinyan, Yan Haiming, Deng Xiangzheng, Zhang Tao. 2012. Evaluation of forest ecosystem resilience: A case study of Lianhua County, Jiangxi Province[J]. Journal of Natural Resources, 27(8): 1304−1315 (in Chinese with English abstract).

    Google Scholar

    [50] Zhang Wenfa, Su Tao, Lei Bo, Wang Lei, Sun Haoran, Xu Yueyue. 2021. Analysis of actual evapotranspiration during crop fertility in Chahannur Basin, Inner Mongolia based on multi–source data[J]. Water Saving Irrigation, (10): 1−6 (in Chinese with English abstract).

    Google Scholar

    [51] Zhang Yingrui. 2017. Ecological Health Assessment of Xiaoqing River Basin[D]. Jinan: Shandong University, 1–78 (in Chinese with English abstract).

    Google Scholar

    [52] Zhang Q, Wang G, Yuan R, Singh V P, Wu W, Wang D. 2022. Dynamic responses of ecological vulnerability to land cover shifts over the Yellow river Basin, China[J]. Ecological Indicators, 144: 109554. doi: 10.1016/j.ecolind.2022.109554

    CrossRef Google Scholar

    [53] Zheng Yiwen, Li Fojie, Liu Xiaohuang, Chang Ming, Zhao Honghui, Lai Ming, Zhang Zifan. 2022. Spatial and temporal changes of natural resources and their ecological and environmental effects in Northeast China over the past 30 years under the background of industrialisation[J]. Geology in China, 49(5): 1361−1373 (in Chinese with English abstract).

    Google Scholar

    [54] Zhu L, Ke Y, Hong J, Zhang Y, Pan Y. 2022. Assessing degradation of lake wetlands in Bashang Plateau, China based on long–term time series Landsat images using wetland degradation index[J]. Ecological Indicators, 139: 108903. doi: 10.1016/j.ecolind.2022.108903

    CrossRef Google Scholar

    [55] Zhu L J, Meng J, Zhu L K. 2020. Applying Geodetector to disentangle the contributions of natural and anthropogenic factors to NDVI variations in the middle reaches of the Heihe River Basin[J]. Ecological Indicators, 117: 106545. doi: 10.1016/j.ecolind.2020.106545

    CrossRef Google Scholar

    [56] Zhuo Zhaojun, Ke Yinghai, Hong Jianming, Zhu Lijuan, Zhang Yuhu. 2022. The value of ecosystem services and its changes in the Zhangjiakou Bashang Plateau since 2000[J]. Wetland Science, 20(2): 162−175 (in Chinese with English abstract).

    Google Scholar

    [57] 陈晓璐, 王彦芳, 张红梅, 刘峰贵, 沈彦俊. 2021. 基于ESTARFM NDVI的察汗淖尔流域灌溉耕地提取方法研究[J]. 中国生态农业学报(中英文), 29(6): 1105−1116.

    Google Scholar

    [58] 董佳秋, 张俊, 顾小凡, 高海波, 杨波, 杨晓东, 赵春光, 张铁钢, 尹立河, 王晓勇. 2023. 半干旱区流域尺度植被依赖地下水程度评价: 以鄂尔多斯高原海流兔河流域为例[J/OL]. 中国地质: 1–19. http://kns.cnki.net/kcms/detail/11.1167.P.20220822.1556.026.html.

    Google Scholar

    [59] 付梦娣, 唐文家, 刘伟玮, 何跃君, 朱彦鹏. 2021. 基于生态系统服务视角的生态风险评估及生态修复空间辨识—以长江源区为例[J]. 生态学报, 41(10): 3846−3855.

    Google Scholar

    [60] 付正辉, 张扬, 姜霞, 郭云艳, 王书航. 2021. 人类活动对流域生态健康影响风险评估方法研究: 以呼伦湖流域为例[J]. 环境科学研究, 34(4): 785−791.

    Google Scholar

    [61] 郭珊珊. 2022. 黄河流域生态系统健康与城镇化耦合协调研究[D]. 北京: 中国矿业大学: 1–227.

    Google Scholar

    [62] 郭晓东, 王晓光, 刘强, 王长琪, 肖长来, 程旭学. 2021. 松花江—辽河流域地下水资源及其生态环境问题[J]. 中国地质, 48(4): 1062−1074.

    Google Scholar

    [63] 韩双宝, 李甫成, 王赛, 李海学, 袁磊, 刘景涛, 申豪勇, 张学庆, 李长青, 吴玺, 马涛, 魏世博, 赵敏敏. 2021. 黄河流域地下水资源状况及其生态环境问题[J]. 中国地质, 48(4): 1001−1019. doi: 10.12029/gc20210402

    CrossRef Google Scholar

    [64] 黄舟. 2017. 基于GIS与RS的楠溪江流域生态健康评估[D]. 杭州: 浙江大学: 1–84.

    Google Scholar

    [65] 李梅娜, 印萍, 段晓勇, 董超, 曹珂, 杨磊, 陈选博. 2022. 近20年来长江三角洲海岸带典型区土地利用变化与生态环境效应研究[J]. 中国地质, 49(4): 1114−1126. doi: 10.12029/gc20220406

    CrossRef Google Scholar

    [66] 李鑫鹏, 王朝平, 邹松兵, 岳玮, 罗珊, 王文澍, 秦艺豪, 桑骏, 钱继坤, 王春苗. 2022. 基于层次分析法的黄河上游水源涵养区生态系统恢复力评价—以甘南州、临夏州为例[J/OL]. 中国沙漠, (6): 1–9.

    Google Scholar

    [67] 荔琢, 蒋卫国, 王文杰, 吕金霞, 陈征. 2020. 湿地退化风险评估方法及其应用—以天津市为例[J]. 环境工程技术学报, 10(1): 17−24. doi: 10.12153/j.issn.1674-991X.20190100

    CrossRef Google Scholar

    [68] 刘亚玲, 信忠保, 李宗善, 克依木买尔当. 2020. 近40年河北坝上地区杨树人工林径向生长对气候变化的响应差异[J]. 生态学报, 40(24): 9108−9119.

    Google Scholar

    [69] 刘焱序, 彭建, 汪安, 谢盼, 韩忆楠. 2015. 生态系统健康研究进展[J]. 生态学报, 35(18): 5920−5930.

    Google Scholar

    [70] 裴宏伟, 刘孟竹, 李雅丽, 张红娟, 肖雨霄, 杨国丽. 2022. 生态修复措施对干旱半干旱地区生态系统服务影响研究—以河北坝上地区为例[J]. 水土保持研究, 29(2): 192−199, 205. doi: 10.3969/j.issn.1005-3409.2022.2.stbcyj202202029

    CrossRef Google Scholar

    [71] 尚博譞, 肖春蕾, 赵丹, 朱振洲, 张高强. 2021. 中国湖泊分布特征及典型流域生态保护修复建议[J]. 中国地质调查, 8(6): 114−125.

    Google Scholar

    [72] 申豪勇, 李佳, 王志恒, 谢浩, 梁永平, Xu Yongxin, 韩双宝, 任建会, 潘尧云, 赵春红, 赵一. 2022. 黄河支流汾河流域水资源开发利用现状及生态环境问题[J]. 中国地质, 49(4): 1127−1138. doi: 10.12029/gc20220407

    CrossRef Google Scholar

    [73] 宋博, 张发旺, 杨会峰, 刘春雷, 孟瑞芳, 南天. 2021. 基于生态优先的水资源承载力分源评价及应用—以河北保定平原为例[J]. 中国地质, 48(4): 1156−1165. doi: 10.12029/gc20210412

    CrossRef Google Scholar

    [74] 王彦芳, 裴宏伟. 2018. 1980—2015年河北坝上地区生态环境状况评价与对策研究[J]. 生态经济, 34(1): 186−190, 236.

    Google Scholar

    [75] 王翠翠. 2015. 若尔盖高原沼泽湿地退化风险评估及其演变分析[D]. 北京: 中国地质大学(北京), 1–85.

    Google Scholar

    [76] 王京彬, 卫晓锋, 张会琼, 甘凤伟. 2020. 基于地质建造的生态地质调查方法—以河北省承德市国家生态文明示范区综合地质调查为例[J]. 中国地质, 47(6): 1611−1624. doi: 10.12029/gc20200601

    CrossRef Google Scholar

    [77] 吴楠, 陈红枫, 匡丕东, 冯朝阳, 蒋洪强, 吴文俊, 李岱青, 赵洋尘. 2020. 生态保护红线区干扰退化风险评价—以安徽省为例[J]. 生态学报, 40(16): 5571−5578.

    Google Scholar

    [78] 吴秦豫, 张绍良, 杨永均, 侯湖平, 陈东兴. 2021. 基于恢复力的半干旱矿区生态系统退化风险空间评估[J]. 煤炭学报, 46(5): 1587−1598.

    Google Scholar

    [79] 武爱彬, 赵艳霞. 2017. 坝上高原生态用地时空格局演变与生态系统服务价值分析[J]. 农业工程学报, 33(2): 283−290. doi: 10.11975/j.issn.1002-6819.2017.02.039

    CrossRef Google Scholar

    [80] 熊芳园, 陆颖, 刘晗, 程琳, 吴兴华, 陈宇顺, 王殿常. 2022. 长江源区水生态系统健康研究进展[J]. 中国环境监测, 38(1): 14−26.

    Google Scholar

    [81] 杨丹, 王文杰, 吴秀芹, 蒋卫国, 张欢. 2021. 1985—2016年安固里淖湖泊湿地生态系统稳态转变及对气候变化的响应[J]. 环境科学研究, 34(12): 2954−2961.

    Google Scholar

    [82] 杨庚, 曹银贵, 罗古拜, 况欣宇, 黄雨晗, 王舒菲. 2019. 生态系统恢复力评价研究进展[J]. 浙江农业科学, 60(3): 508−513.

    Google Scholar

    [83] 杨涛, 阎晓娟, 赵寒森, 王鹏, 朱涛, 蔡浩杰, 左旭刚, 奚仁刚, 张雨莲, 王立社, 吴硕. 2023. 渭河流域土地利用类型转换及其对生态空间格局的影响[J]. 中国地质, 50(5): 1460–1470.

    Google Scholar

    [84] 于昊辰, 卞正富, 陈浮, 牟守国. 2020. 矿山土地生态系统退化诊断及其调控研究[J]. 煤炭科学技术, 48(12): 214−223.

    Google Scholar

    [85] 战金艳, 闫海明, 邓祥征, 张韬. 2012. 森林生态系统恢复力评价—以江西省莲花县为例[J]. 自然资源学报, 27(8): 1304−1315. doi: 10.11849/zrzyxb.2012.08.005

    CrossRef Google Scholar

    [86] 张文发, 苏涛, 雷波, 王蕾, 孙浩然, 许越越. 2021. 基于多源数据的内蒙古察汗淖尔流域作物生育期实际蒸散发分析[J]. 节水灌溉, (10): 1−6. doi: 10.3969/j.issn.1007-4929.2021.10.001

    CrossRef Google Scholar

    [87] 张颖睿. 2017. 小清河流域生态健康评估研究[D]. 济南: 山东大学: 1–78.

    Google Scholar

    [88] 郑艺文, 李福杰, 刘晓煌, 常铭, 赵宏慧, 赖明, 张子凡. 2022. 工业化背景下30年来中国东北地区自然资源时空变化及其生态环境效应[J]. 中国地质, 49(5): 1361−1373. doi: 10.12029/gc20220501

    CrossRef Google Scholar

    [89] 卓昭君, 柯樱海, 洪剑明, 朱丽娟, 张玉虎. 2022. 2000年以来张家口坝上高原生态系统服务价值及其变化[J]. 湿地科学, 20(2): 162−175.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(8)

Article Metrics

Article views(942) PDF downloads(108) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint