2022 Vol. 49, No. 4
Article Contents

ZHOU Pan, YE Siyuan, WANG Jin, YU Changbin, YUAN Hongming, PEI Lixin, DING Xigui, YANG Juan, Hans Brix. 2022. Glomalin-related soil protein distribution and its relation to mineral weathering in the wetlands along the Bohai Sea, China[J]. Geology in China, 49(4): 1075-1087. doi: 10.12029/gc20220404
Citation: ZHOU Pan, YE Siyuan, WANG Jin, YU Changbin, YUAN Hongming, PEI Lixin, DING Xigui, YANG Juan, Hans Brix. 2022. Glomalin-related soil protein distribution and its relation to mineral weathering in the wetlands along the Bohai Sea, China[J]. Geology in China, 49(4): 1075-1087. doi: 10.12029/gc20220404

Glomalin-related soil protein distribution and its relation to mineral weathering in the wetlands along the Bohai Sea, China

    Fund Project: Supported by the Marine S & T Fund of Shandong Province for the Pilot National Laboratory for Marine Science and Technology (Qingdao) (No.2022QNLM040003-3), the National Key R & D Program of China (No.2016YFE0109600), the project of China Geological Survey (No.DD20189503, No.DD20160144, No.GZH201200503), Ministry of Land and Resources program: (No.201111023)and National Natural Science Foundation of China (No.41240022, No.40872167)
More Information
  • Author Bio: ZHOU Pan, male, born in 1994, doctor candidate, engaged in biogeochemistry; E-mail: 541646172@qq.com
  • Corresponding author: YE Siyuan, female, born in 1963, researcher, engaged in biogeochemistry; E-mail: siyuanye@hotmail.com 
  • This paper is the result of environmental geological survey engineering.

    Objective

    As a refractory soil protein secreted by arbuscular mycorrhizal fungi (AMF), glomalin-related soil protein (GRSP) is an important component of long-term carbon storage and widely distributed in sediment of terrestrial ecosystem.The distribution of GRSP in coastal wetlands is still not well documented.In this study, the spatial distribution of GRSP in the sediments of the typical wetlands along the Bohai Sea coasts in China were characterized, and the distribution of GRSP in different wetland habitats and its relation to sediment weathering in wetlands were discussed.

    Methods

    Particle size, major elements and GRSPs of 166 surface samples (0-5 cm) and 4 sediment cores (~35 cm long) in the wetlands of the Liaohe delta (LHD), Beidagang Lake (BDG) and Yellow River delta (YRD) were tested, and the corresponding chemical index of alteration (CIA) was calculated.

    Results

    The GRSP in surface sediments were significantly affected by the vegetation types, ranged from 0.06 to 11.31 mg/g, with an average of (2.35± 0.16) mg/g; The sediments in the three study areas were mainly silty sand and sand, the distribution range of CIA values were 44.79-69.59, some areas reached moderate chemical weathering; The concentrations of GRSP were significantly correlated with CIAs (R=~0.49, p < 0.01).In general, CIA increased first with increasing GRSP until the GRSP concentrations reached a certain critical level.

    Conclusions

    The distribution of GRSP concentrations in coastal wetland sediments was affected by habitat differences, and its correlation with CIA indicated that AMF and its metabolites play potential ecological functions during the processes of geological weathering.

  • 加载中
  • Adame M F, Neil D, Wright S F, Lovelock C E. 2010. Sedimentation within and among mangrove forests along a gradient of geomorphological settings[J]. Estuarine, Coastal and Shelf Science, 86(1): 21-30. doi: 10.1016/j.ecss.2009.10.013

    CrossRef Google Scholar

    Arocena J M, Velde B, Robertson S J. 2012. Weathering of biotite in the presence of arbuscular mycorrhizae in selected agricultural crops[J]. Applied Clay Science, 64: 12-17. doi: 10.1016/j.clay.2011.06.013

    CrossRef Google Scholar

    Bago B, Vierheilig H, Piché Y, AzcóN-Aguilar C. 1996. Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture[J]. New Phytologist, 133(2): 273-280. doi: 10.1111/j.1469-8137.1996.tb01894.x

    CrossRef Google Scholar

    Barker W W, Welch S A, Chu S, Banfield J F. 1998. Experimental observations of the effects of bacteria on aluminosilicate weathering[J]. American Mineralogist, 83(11/12 Part 2): 1551-1563.

    Google Scholar

    Berner R A. 1997. The rise of plants and their effect on weathering and atmospheric CO2 [J]. Science, 276(8): 506-511.

    Google Scholar

    Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 72(s 1/2): 248-254.

    Google Scholar

    Caravaca F, Alguacil M d M, Torres P, Roldán A. 2005. Microbial activities and arbuscular mycorrhizal fungi colonization in the rhizosphere of the salt marsh plantInula crithmoides L. along a spatial salinity gradient[J]. Wetlands, 25(2): 350-355. doi: 10.1672/11

    CrossRef Google Scholar

    Cao Wanjie, Ji Hongbing, Zhu Xianfang, Zhao Xinyuan, Qiao Minmin. 2012. Contrast of geochemical features of the typical weathered profiles in Guizhou Plateau[J]. Carsologica Sinica, 31(2): 131-138(in Chinese with English abstract).

    Google Scholar

    Chen Yang, Chen Jun, Liu Lianwen. 2001. Chemical composition and characterization of chemical weathering of late tertiary red clay in Xifeng, Gansu Province[J]. Journal of Geomechanics, 7(2): 167-175(in Chinese with English abstract).

    Google Scholar

    Driver J D, Holben W E, Rillig M C. 2005. Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi[J]. Soil Biology & Biochemistry, 37(1): 101-106.

    Google Scholar

    Gao M, Hou G, Dang X, Huang X. 2020. Sediment distribution characteristics and environment evolution within 100 years in western Laizhou Bay, Bohai Sea, China[J]. China Geology, 3(3): 445-454.

    Google Scholar

    Guo X, Gong J. 2014. Differential effects of abiotic factors and host plant traits on diversity and community composition of root-colonizing arbuscular mycorrhizal fungi in a salt-stressed ecosystem[J]. Mycorrhiza, 24(2): 79. doi: 10.1007/s00572-013-0516-9

    CrossRef Google Scholar

    Harner M J, Ramsey P W, Rillig M C. 2004. Protein accumulation and distribution in floodplain soils and river foam[J]. Ecology Letters, 7(9): 829-836. doi: 10.1111/j.1461-0248.2004.00638.x

    CrossRef Google Scholar

    He L, Xue C, Ye S, Laws E A, Yuan H, Yang S, Du X. 2018. Holocene evolution of the Liaohe Delta, a tide-dominated delta formed by multiple rivers in Northeast China[J]. Journal of Asian Earth Sciences, 152: 52-68. doi: 10.1016/j.jseaes.2017.11.035

    CrossRef Google Scholar

    He L, Xue C, Ye S, Amorosi A, Yuan H, Yang S, Laws E A. 2019. New evidence on the spatial-temporal distribution of superlobes in the Yellow River Delta Complex[J]. Quaternary Science Reviews, 214: 117-138. doi: 10.1016/j.quascirev.2019.05.003

    CrossRef Google Scholar

    He X, Li Y, Zhao L. 2010. Dynamics of arbuscular mycorrhizal fungi and glomalin in the rhizosphere of Artemisia ordosica Krasch. in Mu Us sandland, China[J]. Soil Biology and Biochemistry, 42(8): 1313-1319. doi: 10.1016/j.soilbio.2010.03.022

    CrossRef Google Scholar

    Johansen A, Jakobsen I, Jensen E S. 1993. Hyphal transport by a vesicular-arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate[J]. Biology and Fertility of Soils, 16(1): 66-70. doi: 10.1007/BF00336518

    CrossRef Google Scholar

    Jongmans A G, van Breemen N, Lundström U, van Hees P A W, Finlay R D, Srinivasan M, Unestam T, Giesler R, Melkerud P A, Olsson M. 1997. Rock-eating fungi[J]. Nature, 389: 682. doi: 10.1038/39493

    CrossRef Google Scholar

    Kemper W D, Koch E J. 1966. Aggregate stability of soils from western United States and Canada. Measurement Procedure, correlation with soil constituents[M]. U.S. : Government Printing Office, .

    Google Scholar

    Kleber M, Sollins P, Sutton R. 2007. A conceptual model of organo-mineral interactions in soils: Self-assembly of organic molecular fragments into zonal structures on mineral surfaces[J]. Biogeochemistry, 85(1): 9-24. doi: 10.1007/s10533-007-9103-5

    CrossRef Google Scholar

    Koele N, Dickie I A, Blum J D, Gleason J D, de Graaf L. 2014. Ecological significance of mineral weathering in ectomycorrhizal and arbuscular mycorrhizal ecosystems from a field-based comparison[J]. Soil Biology and Biochemistry, 69: 63-70. doi: 10.1016/j.soilbio.2013.10.041

    CrossRef Google Scholar

    Li Gonggang, Hu Bangqi, Li Jun, Bu Ruyuan, Yang Ming, Dou Yanguang. 2012. Geochemistry of major elements in the surface sediments of the offshore area of Shandong peninsula and its geological implications [J]. Marine Geology & Quaternary Geology, (3): 45-54(in Chinese with English abstract).

    Google Scholar

    Li Guanhua, Xia Dunsheng, Liu Jiabo, Wen Yanglei, Zhao Shuang, Jia Jia. 2013. Characteristics of major geochemical elements of tacheng loess deposits in xinjiang and its paleoenvironmental implications[J]. Marine Geology & Quaternary Geology, 33(4): 183-191(in Chinese with English abstract).

    Google Scholar

    Li Tongtong, Ye Siyuan, Han Zongzhu, Yuan Hongming, Pei Lixin. 2019. Weathering characteristics of the surface sediments and their indications for biological process in the Liaohe Delta wetlands [J]. Geological Review, 65(1): 40-51(in Chinese with English abstract).

    Google Scholar

    Liu Jin, Ye Siyuan, Wang Jiasheng. 2017. Organic carbon distribution, function and its burial processes in the coastal wetlands of the Liaohe Delta, Northeast of China[J]. Acta Geoscientica Sinica, 38(b11): 83-86(in Chinese with English abstract).

    Google Scholar

    López-Merino L, Serrano O, Adame M F, Mateo M á, Martínez Cortizas A. 2015. Glomalin accumulated in seagrass sediments reveals past alterations in soil quality due to land-use change[J]. Global and Planetary Change, 133: 87-95. doi: 10.1016/j.gloplacha.2015.08.004

    CrossRef Google Scholar

    Lovelock C E, Wright S F, Clark D A, Ruess R W. 2004. Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape[J]. Journal of Ecology, 92(2): 278-287. doi: 10.1111/j.0022-0477.2004.00855.x

    CrossRef Google Scholar

    McLennan S M. 1993. Weathering and Global Denudation[J]. Journal of Geology, 101(2): 295-303. doi: 10.1086/648222

    CrossRef Google Scholar

    Mo B, Lian B. 2010. Study on feldspar weathering and analysis of relevant impact factors[J]. Earth Science Frontiers, 17(3): 281-289.

    Google Scholar

    Nesbitt H W, Markovics G, Price R C. 1980. Chemical processes affecting alkalis and alkaline earths during continental weathering[J]. Geochimica et Cosmochimica Acta, 44(11): 1659-1666. doi: 10.1016/0016-7037(80)90218-5

    CrossRef Google Scholar

    Nesbitt H W, Young G M, McLennan S M, Keays R R. 1996. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies[J]. Journal of Geology, 104(5): 525-542. doi: 10.1086/629850

    CrossRef Google Scholar

    Nichols, K A, Wright, S F. 2005. Comparison of glomalin and humic acid in eight native U.S. soils[J]. Soil Science, 170(170): 985-997.

    Google Scholar

    Rillig M C. 2004. Arbuscular mycorrhizae, glomalin, and soil aggregation[J]. Canadian Journal of Soil Science, 84(4): 355-363. doi: 10.4141/S04-003

    CrossRef Google Scholar

    Rillig M C, Ramsey P W, Morris S, Paul E A. 2003. Glomalin, an arbuscular-mycorrhizal fungal soil protein, responds to land-use change[J]. Plant & Soil, 253(2): 293-299.

    Google Scholar

    Singh A K, Rai A, Pandey V, Singh N. 2017. Contribution of glomalin to dissolve organic carbon under different land uses and seasonality in dry tropics[J]. J. Environ. Manage., 192: 142-149. doi: 10.1016/j.jenvman.2017.01.041

    CrossRef Google Scholar

    Singh A K, Rai A, Singh N. 2016. Effect of long term land use systems on fractions of glomalin and soil organic carbon in the Indo-Gangetic plain[J]. Geoderma, 277: 41-50. doi: 10.1016/j.geoderma.2016.05.004

    CrossRef Google Scholar

    Spohn M, Giani L. 2010. Water-stable aggregates, glomalin-related soil protein, and carbohydrates in a chronosequence of sandy hydromorphic soils[J]. Soil Biology and Biochemistry, 42(9): 1505-1511. doi: 10.1016/j.soilbio.2010.05.015

    CrossRef Google Scholar

    Treseder K K, Turner K M. 2007. Glomalin in Ecosystems[J]. Soil Science Society of America Journal, 71(4): 1257-1266. doi: 10.2136/sssaj2006.0377

    CrossRef Google Scholar

    Tan Yuanlong, Qiao Yansong, Zhao Zhizhong, Wang Yan. 2013. Chemical weathering characteristics and paleoclimatic significance of the eolian deposits in Chengdu plain[J]. Journal of Geomechanics, 19(1): 26-34(in Chinese with English abstract).

    Google Scholar

    Villa J A, Bernal B. 2018. Carbon sequestration in wetlands, from science to practice: An overview of the biogeochemical process, measurement methods, and policy framework[J]. Ecological Engineering, 114: 115-128. doi: 10.1016/j.ecoleng.2017.06.037

    CrossRef Google Scholar

    Wang Q, Li J, Chen J, Hong H, Lu H, Liu J, Dong Y, Yan C. 2018. Glomalin-related soil protein deposition and carbon sequestration in the Old Yellow River delta[J]. Science of The Total Environment, 625: 619-626. doi: 10.1016/j.scitotenv.2017.12.303

    CrossRef Google Scholar

    Wang Q, Lu H, Chen J, Hong H, Liu J, Li J, Yan C. 2018. Spatial distribution of glomalin-related soil protein and its relationship with sediment carbon sequestration across a mangrove forest[J]. Science of the Total Environment, 613-614: 548-556. doi: 10.1016/j.scitotenv.2017.09.140

    CrossRef Google Scholar

    Wang Q, Wang W, He X, Zhang W, Song K, Han S. 2015. Role and variation of the amount and composition of glomalin in soil properties in farmland and adjacent plantations with reference to a primary forest in North-Eastern China[J]. PLoS One, 10(10): e0139623. doi: 10.1371/journal.pone.0139623

    CrossRef Google Scholar

    Weston N B, Neubauer S C, Velinsky D J. 2011. Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils[J]. Biogeochemistry, 102(1/3): 135-151.

    Google Scholar

    Wilson G W T, Rice C W, Rillig M C, Springer A, Hartnett D C. 2009. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: Results from long-term field experiments[J]. Ecology Letters, 12(5): 452-461. doi: 10.1111/j.1461-0248.2009.01303.x

    CrossRef Google Scholar

    Wright S F, Franke-Snyder M, Morton J B, Upadhyaya A. 1996. Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots[J]. Plant and Soil, 181(2): 193-203. doi: 10.1007/BF00012053

    CrossRef Google Scholar

    Wright S F, Upadhyaya A. 1996. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi[J]. Soil Science, 161(9): 575-586. doi: 10.1097/00010694-199609000-00003

    CrossRef Google Scholar

    Wright S F, Upadhyaya A. 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant and Soil, 198(1): 97-107. doi: 10.1023/A:1004347701584

    CrossRef Google Scholar

    Xie H, Li J, Zhang B, Wang L, Wang J, He H, Zhang X. 2015. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates[J]. Scientific Reports, 5: 14687. doi: 10.1038/srep14687

    CrossRef Google Scholar

    Xu Z, Ban Y, Jiang Y, Zhang X, Liu X. 2016. Arbuscular mycorrhizal fungi in wetland habitats and their application in constructed wetland: A review[J]. Pedosphere, 26(5): 592-617. doi: 10.1016/S1002-0160(15)60067-4

    CrossRef Google Scholar

    Ying Lichao, Liang Bin, Wang Quanwei, Zhu Bing, Hao Xuefeng, Liu Liang, Wen Long, Yan Zhonglin, Fu Xiaofang. 2013. Geochemical characteristics of Chengdu clay and their implications for provenance and weathering intensity [J]. Geology in China, 40(5): 1666-1674(in Chinese with English abstract).

    Google Scholar

    Ye S, Laws E A, Yuknis N, Ding X, Yuan H, Zhao G, Wang J, Yu X, Pei S, DeLaune R D. 2015. Carbon sequestration and soil accretion in coastal wetland communities of the Yellow River Delta and Liaohe Delta, China[J]. Estuaries and Coasts, 38(6): 1885-1897. doi: 10.1007/s12237-014-9927-x

    CrossRef Google Scholar

    Zhang Z, Wang Q, Wang H, Nie S, Liang Z. 2017. Effects of soil salinity on the content, composition, and ion binding capacity of glomalin-related soil protein (GRSP)[J]. Science of the Total Environment, 581: 657-665.

    Google Scholar

    Zhu Fei. 2010. Relationships among glomalin related soil protein, SOC and soil texture under different land use types [J]. Journal of Anhui Agri, 38(23): 12499-12502(in Chinese with English abstract).

    Google Scholar

    Zhang Liankai, Ji Hongbing, Liu Xiuming, Wei Xiao, Luo Gang, Wang Shijie, Nguyen Dại Trung, Nguyen Quoc Dinh. 2021. Genetic mechanism and elemental evolution of weathering laterite crust overlying carbonate rocks in tropical areas[J]. Geology in China, 48(2): 651-660(in Chinese with English abstract).

    Google Scholar

    Zhang Wei, Dong Yingwei, Yu Yang, Liu Beibei, Li Yonghua, Li Yuanyuan, Wang Meixia. 2013. Chemical weathering of the loess in the south of Liaoning province and its implications for environmental change[J]. Marine Geology & Quaternary Geology, 33(5): 163-171(in Chinese with English abstract).

    Google Scholar

    Zhu Yongguan, Duan Guilan, Chen Baodong, Peng Xinhua, Chen Zheng, Sun Guoxin. 2014. Mineral weathering and element cycling in soil-microbe-plant systems[J]. Science China: Earth Sciences, 1(6): 1107-1116(in Chinese with English abstract). doi: 10.1007/s11430-014-4861-0

    CrossRef Google Scholar

    曹万杰, 季宏兵, 朱先芳, 赵兴媛, 乔敏敏. 2012. 贵州高原地区典型风化剖面地球化学特征及其对比研究[J]. 中国岩溶, 31(2): 131-138. doi: 10.3969/j.issn.1001-4810.2012.02.004

    CrossRef Google Scholar

    陈旸, 陈骏, 刘连文. 2001. 甘肃西峰晚第三纪红粘土的化学组成及化学风化特征[J]. 地质力学学报, 7(2): 167-175. doi: 10.3969/j.issn.1006-6616.2001.02.012

    CrossRef Google Scholar

    李国刚, 胡邦琦, 李军, 布如源, 杨敏, 窦衍光. 2012. 山东半岛沿岸海域表层沉积物的常量元素及其地质意义[J]. 海洋地质与第四纪地质, (3): 45-54.

    Google Scholar

    李冠华, 夏敦胜, 柳加波, 温仰磊, 赵爽, 贾佳. 2013. 新疆塔城黄土沉积常量地球化学元素特征及其环境意义[J]. 海洋地质与第四纪地质, 33(4): 183-191.

    Google Scholar

    李通通, 叶思源, 韩宗珠, 袁红明, 裴理鑫. 2019. 辽河三角洲湿地表层沉积物的风化特征及其对生物作用的指示意义[J]. 地质论评, 65(1): 40-51.

    Google Scholar

    刘瑾, 叶思源, 王家生. 2017. 辽河三角洲滨海湿地有机碳的时空演变、环境功能及其埋藏机制[J]. 地球学报, 38(b11): 83-86.

    Google Scholar

    谭元隆, 乔彦松, 赵志中, 王燕. 2013. 成都平原风尘堆积的化学风化特征及其古气候意义[J]. 地质力学学报, 19(1): 26-34. doi: 10.3969/j.issn.1006-6616.2013.01.003

    CrossRef Google Scholar

    应立朝, 梁斌, 王全伟, 朱兵, 郝雪峰, 刘亮, 文龙, 燕钟林, 付小方. 2013. 成都粘土地球化学特征及其对物源和风化强度的指示[J]. 中国地质, 40(5): 1666-1674. doi: 10.3969/j.issn.1000-3657.2013.05.029

    CrossRef Google Scholar

    祝飞. 不同土地利用方式下球囊霉素相关土壤蛋白与有机碳及土壤质地的关系[J]. 安徽农业科学, (23): 12499-12502. doi: 10.3969/j.issn.0517-6611.2010.23.072

    CrossRef Google Scholar

    张连凯, 季宏兵, 刘秀明, 魏晓, 罗刚, 王世杰, NGUYEN Dại Trung, NGUYEN Quoc Dinh. 2021. 热带地区碳酸盐岩上覆红色风化壳的成因机理及元素演化[J]. 中国地质, 48(2): 651-660.

    Google Scholar

    张威, 董应巍, 于洋, 刘蓓蓓, 李永化, 李媛媛, 王美霞. 2013. 辽南黄土化学风化特点及其环境意义[J]. 海洋地质与第四纪地质, 33(5): 163-171.

    Google Scholar

    朱永官, 段桂兰, 陈保冬, 彭新华, 陈正, 孙国新. 2014. 土壤-微生物-植物系统中矿物风化与元素循环[J]. 中国科学: 地球科学, 1(6): 1107-1116.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(3)

Article Metrics

Article views(2451) PDF downloads(120) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint