2024 Vol. 51, No. 2
Article Contents

ZHOU Yinzhu, MA Tao, YUAN Lei, LI Fucheng, HAN Shuangbao, ZHOU Jinlong, LI Yong. 2024. Hydrochemistry−isotope characteristics and quality assessment of groundwater in the Beiluo River Basin, Shaanxi Province[J]. Geology in China, 51(2): 663-675. doi: 10.12029/gc20220401003
Citation: ZHOU Yinzhu, MA Tao, YUAN Lei, LI Fucheng, HAN Shuangbao, ZHOU Jinlong, LI Yong. 2024. Hydrochemistry−isotope characteristics and quality assessment of groundwater in the Beiluo River Basin, Shaanxi Province[J]. Geology in China, 51(2): 663-675. doi: 10.12029/gc20220401003

Hydrochemistry−isotope characteristics and quality assessment of groundwater in the Beiluo River Basin, Shaanxi Province

    Fund Project: Supported by the project of China Geological Survey (No.DD20190333).
More Information
  • Author Bio: ZHOU Yinzhu, female, born in 1990, senior engineer, engaged in the research of hydrogeological survey and isotopic hydrogeochemistry; E-mail: yinzhu_zhou@qq.com
  • Corresponding author: HAN Shuangbao, male, born in 1983, professor level senior engineer, engaged in the research of hydrogeology and water resources; E-mail: hanshuangbao@mail.cgs.gov.cn
  • This paper is the result of hydrogeological survey engineering.

    Objective

    The Beiluo River Basin is an important secondary tributary of the Yellow River. Research on groundwater quality in typical tributary basin of theYellow River is of significant for ecological protection and high−quality development. To ensure local drinking water safety, we systematically identified status of groundwater quality and delineated inferior groundwater region in the Beiluo River Basin.

    Methods

    Besides, based on analysis of D−18O isotope in groundwater, characteristics and evolution mechanism of groundwater hydrochemistry were studied and effects of hydrogeological condition and anthropogenic activities on groundwater hydrochemistry were revealed.

    Results

    Groundwater hydrochemical composition was jointly affected by rock weathering and evaporation concentration, part of which was influenced by anthropogenic activities. D−18O isotope composition suggested that evaporation concentration is the major influence factor of groundwater hydrogeochemistry.

    Conclusions

    Leaching of soluble minerals such as gypsum halite in clasolite and evaporation concentration of pore water in Cenozoic faulted basin in the downstream caused salt accumulation and high TDS in groundwater in the upstream and downstream, respectively. Hydrochemical composition of groundwater in Ordovician karst aquifer and Cenozoic faulted basin aquifer was mainly controlled by evaporites and anthropogenic activities. While hydrochemical composition in Cretaceous aquifer and Carboniferous−Jurassic aquifer was mainly controlled by rock weathering (especially silicate rocks and evaporite) and less affected by anthropogenic activities. Moreover, groundwater in the upstream and downstream was significantly affected by industrial and mining activities. While groundwater in the midstream is of good quality due to less influence of industrial/mining activities, agricultural activities and domestic wastewater.

  • 加载中
  • [1] Abhijit M, Alan E F. 2008. Deeper groundwater chemistryand geochemical modeling of the arsenic affected western Bengal basin, West Bengal, India[J]. Applied Geochemistry, 23(4): 863−894. doi: 10.1016/j.apgeochem.2007.07.011

    CrossRef Google Scholar

    [2] Dong Ying, Song Yougui, Zhang Maosheng, Lan Minwen, Fu Xiaofen, Liu Huifang, Ning Qiangqiang. 2019. Several key basic geological problems on the development of the Guanzhongurban agglomeration[J]. Northwestern Geology, 52(2): 12−26 (in Chinese with English abstract).

    Google Scholar

    [3] Gaillardet J, Dupré B, Louvat P, Allègre C. J. 1999. Global silicateweathering and CO2 consumption rates deduced from thechemistry of large rivers[J]. Chemical Geology, 159(1/4): 3−30. doi: 10.1016/S0009-2541(99)00031-5

    CrossRef Google Scholar

    [4] Ge Fenli. 2013. Analysis of feature variation of water sediment and probing of reasons in upstream area of Beiluo River[J]. Journal of Water Resources and Water Engineering, 4: 145−150 (in Chinese with English abstract).

    Google Scholar

    [5] Gibbs R J. 1970. Mechanisms controlling world water chemistry[J]. Science, 170(3962): 1088−1090. doi: 10.1126/science.170.3962.1088

    CrossRef Google Scholar

    [6] Han Shuangbao. 2021. Introduction of China Geological Survey project ‘Hydrogeological Survey of the Yellow River Basin’[J]. Geology in China, 48(6): 1664 (in Chinese).

    Google Scholar

    [7] Han Shuangbao, Li Fucheng, Wang Sai1, LiHaixue, Yuan Lei, Liu Jingtao, Shen Haoyong, Zhang Xueqing, Li Changqing, Wu Xi, Ma Tao, Wei Shibo, Zhao Minmin. 2021. Groundwater resource and eco−environmental problem of the Yellow River Basin[J]. Geology in China, 48(4): 1001−1019 (in Chinese with English abstract).

    Google Scholar

    [8] Han Shuangbao, Wang Sai, Zhao Minmin, Wu Xi, Yuan Lei, Li Haixue, Li Fucheng, Ma Tao, Li Wenpeng, Zheng Yan. 2023. Ecological environmental changes and its impact on water resources and water–sediments relationship in Beiluo River Basin[J]. Hydrogeology & Engineering Geology, 50(6): 14–24 (in Chinese with English abstract).

    Google Scholar

    [9] Jiang Guantao. 2016. Responses of Runoff and Sediment to Land Use Cover Changes in the Upper Reaches of Beiluo River Based on SWAT Model [D]. Yangling: Northwest Agriculture and Forestry University, 1−82(in Chinese with English abstract).

    Google Scholar

    [10] Jing Yong, Chen Fangli, Ge Fenli, Gu Mingxing. 2010. Characteristics of water and sediment in source area of Beiluohe River[J]. Hydrology, 4: 92−96 (in Chinese with English abstract).

    Google Scholar

    [11] Kang Yuan. 2008. Environmental Issue and Information System Construction of Oil Exploration and Exploitation in the Upper Stream of Beiluohe River in Northern Shaanxi Province [D]. Xi'an: Northwest University, 1−76 (in Chinese with English abstract).

    Google Scholar

    [12] Liang Xing, Zhang Jingwei, Lan Kun, Shen Shuai, Ma Teng. 2020. Hydrochemical characteristics of groundwater and analysis of groundwater flow systems in Jianghan Plain[J]. Geological Science and Technology Information, 39(1): 21−33 (in Chinese with English abstract).

    Google Scholar

    [13] Luo Xinyan. 2021. Analysis on the transformation relationship between surface water and groundwater in the Yellow River Basin[J]. Mineral Resources and Geology, 35(3): 517−522 (in Chinese with English abstract).

    Google Scholar

    [14] Ma Tao, Li Wenli, Han Shuangbao, Zhang Hongqiang, Wang Wenke, Li Fucheng, Li Haixue, He Xubo, Zhao Meimei. 2023. Distribution characteristics, influencing factors and development potential of groundwater resources in Shaanxi Province of the Yellow River Basin[J]. Geology in China, 50(5): 1432−1445 (in Chinese with English abstract).

    Google Scholar

    [15] Ma Yukun. 2017. Analysis of water resources situation in the lower reaches of Beiluo River [J]. Shaanxi Water Resources, 6: 3, 15 (in Chinese with English abstract).

    Google Scholar

    [16] Pu Junbing, Yuan Daoxian, Jiang Yongjun, Gou Pengfei, Yin Jianjun. 2010. Hydrogeochemistry and environmental meaning of Chongqing subterranean karst streams in China[J]. Advances in Water Science, 21(5): 628−636 (in Chinese with English abstract).

    Google Scholar

    [17] Qiao Wen, Cao Wengeng, Gao Zhipeng, PanDeng, Ren Yu, Li Zeyan, Zhang Zhuo. 2022. Contrasting behaviors of groundwater arsenic and fluoride in the lower reaches of the Yellow River basin, China: Geochemical and modeling evidences [J]. Science of the Total Environment, 851(Pt 1): 158134.

    Google Scholar

    [18] Qin Pengyi, Xu Xianfeng, Cai Wutian, Li Guiheng, Wei Shenghui. 2020. Analysis on aquifers hydrochemical distribution characteristics and genesis of the alluvial fan in Anyang, Henan Province[J]. Hydrology, 40(6): 89−96 (in Chinese with English abstract).

    Google Scholar

    [19] Qin Wei, Zhu Qingke, Liu Guangquan, Zhang Yan. 2010. Regulation effects of runoff and sediment of ecological conservation in the upper reaches of Beiluo River[J]. Journal of Hydraulic Engineering, 11: 1325−1332 (in Chinese with English abstract).

    Google Scholar

    [20] Tan Kaijun, Zhang Fan, Yin Lu, Dai Dongdong, Qi Wen. 2012. Preservation conditions for formation water and hydrocarbon in Wuxia area, Junggar Basin[J]. Petroleum Geology & Experiment, 1: 36−39.

    Google Scholar

    [21] Tong Xiaoxia, Tang Hui, Gan Rong, Li Zitao, He Xinlin, Gu Shuqian. 2022. Characteristics and causes of changing groundwater quality in the boundary line of the middle and lower Yellow River (right bank)[J]. Water, 14(12): 1846. doi: 10.3390/w14121846

    CrossRef Google Scholar

    [22] Wang Xueping, Li Wenzhe. 2010. Geological tectonics control on the karstic water in the south margin of the Ordos Basin[J]. Northwestern Geology, 43(3): 106−112 (in Chinese with English abstract).

    Google Scholar

    [23] Xing Lina, Guo Huaming, Zhan Yanhong. 2013. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain[J]. Journal of Asian Earth Sciences, 70−71: 250−264. doi: 10.1016/j.jseaes.2013.03.017

    CrossRef Google Scholar

    [24] Xu Wenmei, Lian Zhenmin. 2007. Factors of vegetation change in Beiluo River Valley[J]. Journal of Yanan University (Social Science), 29(2): 79−81 (in Chinese with English abstract).

    Google Scholar

    [25] Yu Songyan, Xu Zongxue, Wu Wei, Li yanli. 2014. Spatial variation of water quality and its response to landuse in the Beiluo River Basin[J]. Acta Scientiae Circumstantiae, 34(5): 1309−1315 (in Chinese with English abstract).

    Google Scholar

    [26] Zhang Fan, Wang Guangcai, Zhang Maosheng, Sun Pingping, Han Xu, Guo Jiangbo. 2023. Identification of produced water and characteristics of hydrochemistry and stable hydrogen−oxygen isotopes of contaminated groundwater[J]. Northwestern Geology, 56(3): 98–108 (in Chinese with English abstract).

    Google Scholar

    [27] Zhao Ming, Huang Chunchang, Pang Jiangli, ZhaXiaochun, Yao Ping. 2011. Palaeo−flood hydrological studies in the middle reaches of Beiluo River[J]. Journal of Natural Disasters, 20(5): 155−161 (in Chinese with English abstract).

    Google Scholar

    [28] Zhi Chuanshun, Cao Wengeng, Wang Zhen, Li Zeyan. 2021. High−arsenic groundwater in paleochannels of the lower Yellow River, China: Distribution and genesis mechanisms[J]. Water, 13(3): 338. doi: 10.3390/w13030338

    CrossRef Google Scholar

    [29] Zhou Qiaoli, Song Yumei, Zhou Yibo, Zhang Tuxiu, SuLiukun. 2019. Analysis of air and groundwater pollution in a municipal solid waste landfill site in Guangzhou[J]. Environmental Chemistry, 38(4): 761−767 (in Chinese with English abstract).

    Google Scholar

    [30] Zhu B Q, Yang X P, Rioual P, Qin X G, Liu Z T, Xiong Heigang, Yu Jingjie. 2011. Hydrogeochemistry of three watersheds (the Erlqis, Zhungarer and Yili) in northern Xinjiang, NW China[J]. Applied Geochemistry, 26(8): 1535−1548. doi: 10.1016/j.apgeochem.2011.06.018

    CrossRef Google Scholar

    [31] 董英, 宋友桂, 张茂省, 兰敏文, 付晓芬, 刘慧芳, 宁强强. 2019. 关中盆地城市群发展中几个关键基础地质问题[J]. 西北地质, 52(2): 12−26.

    Google Scholar

    [32] 葛芬莉. 2013. 北洛河上游区水沙特性变化分析研究[J]. 水资源与水工程学报, 4: 145−150.

    Google Scholar

    [33] 韩双宝. 2021. 中国地质调查局黄河流域水文地质调查工程简介[J]. 中国地质, 48(6): 1664.

    Google Scholar

    [34] 韩双宝, 李甫成, 王赛, 李海学, 袁磊, 刘景涛, 申豪勇, 张学庆, 李长青, 吴玺, 马涛, 魏世博, 赵敏敏. 2021. 黄河流域地下水资源状况及其生态环境问题[J]. 中国地质, 48(4): 1001−1019.

    Google Scholar

    [35] 韩双宝, 王赛, 赵敏敏, 吴玺, 袁磊, 李海学, 李甫成, 马涛, 李文鹏, 郑焰. 2023. 北洛河流域生态环境变迁及对水资源和水沙关系的影响[J]. 水文地质工程地质, 50(6): 14–24.

    Google Scholar

    [36] 蒋观滔. 2016. 基于SWAT模型的北洛河上游土地利用/覆被变化水沙响应研究 [D]. 杨凌: 西北农林科技大学, 1−82.

    Google Scholar

    [37] 井涌, 陈芳莉, 葛芬莉, 古明兴. 2010. 北洛河源头区水沙特性变化分析[J]. 水文, 4: 92−96.

    Google Scholar

    [38] 康媛. 2008. 陕北北洛河上游石油勘探开发的环境问题及信息系统建设[D]. 西安: 西北大学, 1−76.

    Google Scholar

    [39] 梁杏, 张婧玮, 蓝坤, 沈帅, 马腾. 2020. 江汉平原地下水化学特征及水流系统分析[J]. 地质科技情报, 39(1): 21−33.

    Google Scholar

    [40] 罗新燕. 2021. 黄河流域内地表水与地下水转化关系分析[J]. 矿产与地质, 35(3): 517−522.

    Google Scholar

    [41] 马涛, 李文莉, 韩双宝, 张红强, 王文科, 李甫成, 李海学, 贺旭波, 赵梅梅. 2023. 黄河流域陕西省地下水资源分布特征、影响因素及开发潜力[J]. 中国地质, 50(5): 1432−1445.

    Google Scholar

    [42] 马禹锟. 2017. 北洛河下游水资源情况及分析[J]. 陕西水利, 6: 3, 15.

    Google Scholar

    [43] 蒲俊兵, 袁道先, 蒋勇军, 苟鹏飞, 殷建军. 2010. 重庆岩溶地下河水文地球化学特征及环境意义[J]. 水科学进展, 21(5): 628−636.

    Google Scholar

    [44] 秦鹏一, 徐先锋, 蔡五田, 李贵恒, 魏盛辉. 2020. 河南安阳冲洪积扇含水层水化学分布特征及成因分析[J]. 水文, 40(6): 89−96.

    Google Scholar

    [45] 秦伟, 朱清科, 刘广全, 张岩. 2010. 北洛河上游生态建设的水沙调控效应[J]. 水利学报, 11: 1325−1332.

    Google Scholar

    [46] 谭开俊, 张帆, 尹路, 代冬冬, 齐雯. 2012. 准噶尔盆地乌夏地区地层水与油气保存条件[J]. 石油实验地质, 1: 36−39.

    Google Scholar

    [47] 王学平, 李稳哲. 2010. 地质构造对鄂尔多斯盆地南缘岩溶地下水的控制作用[J]. 西北地质, 43(3): 106−112.

    Google Scholar

    [48] 徐文梅, 廉振民. 2007. 试析北洛河流域植被变迁的原因[J]. 延安大学学报, 29(2): 79−81.

    Google Scholar

    [49] 于松延, 徐宗学, 武玮, 李艳利. 2014. 北洛河流域水质空间异质性及其对土地利用结构的响应[J]. 环境科学学报, 34(5): 1309−1315.

    Google Scholar

    [50] 张帆, 王广才, 张茂省, 孙萍萍, 韩绪, 郭江波. 2023. 产出水识别及受污染地下水水化学和氢氧稳定同位素特征[J]. 西北地质, 56(3): 98–108.

    Google Scholar

    [51] 赵明, 黄春长, 庞奖励, 查小春, 姚平. 2011. 北洛河中游白水段峡谷全新世特大洪水水文学研究[J]. 自然灾害学报, 20(5): 155−161.

    Google Scholar

    [52] 周巧丽, 宋玉梅, 周漪波, 张土秀, 苏流坤. 2019. 广州市某生活垃圾填埋场空气及地下水污染状况分析[J]. 环境化学, 38(4): 761−767.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(724) PDF downloads(43) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint