2025 Vol. 52, No. 1
Article Contents

XIA Yubo, WANG Bing, LI Haitao, MA Zhen, GUO Xu, ZHAO Kai, ZHAO Changrong, ZHANG Xi, WANG Xiaoxu. 2025. Study on hydrochemical origins and health geology regionalization of shallow groundwater in Xiong'an New Area[J]. Geology in China, 52(1): 331-346. doi: 10.12029/gc20220323007
Citation: XIA Yubo, WANG Bing, LI Haitao, MA Zhen, GUO Xu, ZHAO Kai, ZHAO Changrong, ZHANG Xi, WANG Xiaoxu. 2025. Study on hydrochemical origins and health geology regionalization of shallow groundwater in Xiong'an New Area[J]. Geology in China, 52(1): 331-346. doi: 10.12029/gc20220323007

Study on hydrochemical origins and health geology regionalization of shallow groundwater in Xiong'an New Area

    Fund Project: Supported by the projects of China Geological Survey (No.DD20189122, No.DD20189142, No.DD20190338 and No.DD20221759).
More Information
  • Author Bio: XIA Yubo, male, born in 1982, professor level senior engineer, engaged in the survey and evaluation of urban geological, hydrogeology, engineering geology and environmental geology; E-mail: sosodragon@163.com
  • Corresponding author: LI Haitao, male, born in 1979, professor level senior engineer, engaged in hydrogeological and environmental geological survey, monitoring, evaluation and comprehensive research; E-mail: lihaitao@mail.cgs.gov.cn
  • This paper is the result of hydrogeological survey engineering.

    Objective

    In hydrogeological contexts, biological growth and human health are closely linked to the concentrations of elements present in the surrounding environment, including water and soil. Investigating the formation and evolutionary conditions of both macro and trace elements associated with health in groundwater, as well as establishing regional health geology, is beneficial for advancing the implementation of the Healthy China strategy.

    Methods

    Xiong'an New Area was chosen as the primary research site. The hydrogeochemical characteristics and sources of mineral composition in shallow groundwater were analyzed using multivariate statistical analysis, as well as the Piper and Chadha diagrams. This study restored the water quality by identifying the material element sources of shallow groundwater along a typical profile, delineated hydrochemical types, and classified the differentiation areas of macro and trace elements based on biological necessity, environmental factors, and element abundance or deficiency. Furthermore, it established a health geology regionalization for Xiong'an New Area.

    Results

    The parameters of groundwater exhibited significant variability. The water−rock interactions indicate that the dissolution of albite contributes sodium ions (Na+), while the dissolution of fluorite and gypsum contributes fluoride ions (F) and sulfate ions (SO42−), consuming calcium ions (Ca2+), magnesium ions (Mg2+), and bicarbonate ions (HCO3), alongside the precipitation of calcite and dolomite, with reverse ion exchange also occurring. In the northern part of the study area, the predominant hydrochemical types were HCO3–Ca and HCO3–Ca·Mg. This composition transitioned to HCO3·SO4–Na·Mg·Ca, HCO3·Cl–Na·Ca·Mg, and HCO3·SO4·Cl–Na·Mg in the middle section, ultimately evolving into SO4·HCO3–Na·Mg in Baiyangdian and downstream of the Daqing River. Xiong'an New Area can be categorized into three regions: A health geology regionalization characterized by a deficiency of elements in the northern alluvial−proluvial plain; A health geology regionalization with moderate element levels in the interaction zone between the alluvial−proluvial plain and the alluvial−lacustrine plain; And a health geology regionalization with an excess of elements in the alluvial−lacustrine plain. Prolonged consumption of groundwater from both the deficient and excess areas may lead to health issues.

    Conclusions

    It is essential to examine the endemic diseases associated with the local surplus and deficiency of fluoride (F), sulfate (SO42−), total hardness, and iodide (I) in Xiong'an New Area. Additionally, identifying alternative water sources or supplementing the necessary elements for human health is crucial to support the Healthy China strategy.

  • 加载中
  • [1] Abdalla O, Al–Abri R Y. 2014. Factors affecting groundwater chemistry in regional arid basins of variable lithology: Example of Wadi Umairy, Oman[J]. Arabian Journal of Geosciences, 7: 2861−2870. doi: 10.1007/s12517-013-0981-7

    CrossRef Google Scholar

    [2] Aghazadeh N, Chitsazan M, Golestan Y. 2017. Hydrochemistry and quality assessment of groundwater in the Ardabil area, Iran[J]. Applied Water Science, 7(7): 3599−3616. doi: 10.1007/s13201-016-0498-9

    CrossRef Google Scholar

    [3] Andres M, Paul S. 2018. Groundwater chemistry and the Gibbs diagram[J]. Applied Geochemistry, 97: 209−212. doi: 10.1016/j.apgeochem.2018.07.009

    CrossRef Google Scholar

    [4] Aris A Z, Abdullah M H, Praveena S M. 2009. Evolution of groundwater chemistry in the shallow aquifer of a small tropical Island in Sabah, Malaysia[J]. Sains Malaysiana, 38(6): 805−812.

    Google Scholar

    [5] Bodrud−Doza M, Islam D U, Rume T, Quraishi S B, Bhuiyan M A H. 2020. Groundwater quality and human health risk assessment for safe and sustainable water supply of Dhaka city dwellers in Bangladesh[J]. Groundwater for Sustainable Development, 10: 100374. doi: 10.1016/j.gsd.2020.100374

    CrossRef Google Scholar

    [6] Cao Yuqing, Hu Kuanrong. 2009. Chemical Kinetics of Groundwater and Division of Ecological Environment Area[M]. Beijing: Science Press (in Chinese).

    Google Scholar

    [7] Chadha, D K. 1999. A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data[J]. Hydrogeology Journal, 7(5): 431−439. doi: 10.1007/s100400050216

    CrossRef Google Scholar

    [8] Chen S M, Liu F T, Zhang Z, Zhang Q, Wang W. 2021. Changes of groundwater flow field of Luanhe River Delta under the human activities and its impact on the ecological environment in the past 30 years[J]. China Geology, 4(3): 455−462.

    Google Scholar

    [9] Chen Yi. 2018. Pore–water and Groundwater Hydrochemical Characteristics and Hydrogeochemical Processes in Baiyangdian Lake Basin[D]. Beijing: China University of Geosciences (Beijing), 1–91 (in Chinese with English abstract).

    Google Scholar

    [10] Chudaev O, Schvartsev S, Ryzenko B. 2013. Vernadsky and main research avenues in modern hydrogeochemistry[J]. Procedia Earth and Planetary Science, 7: 163−166. doi: 10.1016/j.proeps.2013.03.044

    CrossRef Google Scholar

    [11] Daniele L, Vallejo Á, Corbella M, Molina L, Pulido–Bosch A. 2013. Hydrogeochemistry and geochemical simulations to assess water–rock interactions in complex carbonate aquifers: The case of Aguadulce (SE Spain)[J]. Applied Geochemistry, 29: 43−54. doi: 10.1016/j.apgeochem.2012.11.011

    CrossRef Google Scholar

    [12] Dehnavi A G, Sarikhani R, Nagaraju D. 2011. Hydro geochemical and rock water interaction studies in east of Kurdistan, N–W of Iran[J]. International Journal of Environmental Sciences and Research, 1(1): 16−22.

    Google Scholar

    [13] Dou Yan. 2010. Study on Hydrogeochemical Evolution and Circulation in North of Ordos Cretaceous Groundwater Basin[D]. Xi’an: Chang’an University 1−160 (in Chinese with English abstract).

    Google Scholar

    [14] Edmunds W M, Carrillo–Rivera J J, Cardona A. 2002. Geochemical evolution of groundwater beneath Mexico City[J]. Journal of Hydrology, 258: 1−24. doi: 10.1016/S0022-1694(01)00461-9

    CrossRef Google Scholar

    [15] Esmaeili–Vardanjani M, Rasa I, Yazdi M, Pazand K. 2016. The hydrochemical assessment of groundwater resources in the Kadkan basin, Northeast of Iran[J]. Carbonates and Evaporites, 31(2): 129−138. doi: 10.1007/s13146-015-0248-3

    CrossRef Google Scholar

    [16] Gabriela M G, Hidalgo M D V, Blesa M A. 2001. Geochemistry of groundwater in the alluvial plain of Tucuman Province, Argentina[J]. Hydrogeology Journal, 9(6): 597−610. doi: 10.1007/s10040-001-0166-4

    CrossRef Google Scholar

    [17] Gallardo A H, Tase N. 2007. Hydrogeology and geochemical characterization of groundwater in a typical small–scale agricultural area of Japan[J]. Journal of Asian Earth Sciences, 29(1): 18−28. doi: 10.1016/j.jseaes.2005.12.005

    CrossRef Google Scholar

    [18] Guo Haipeng, Bai Jinbin, Zhang Youquan, Wang liya, Shi Jusong, Li Wenpeng, Zhang Zuochen, Wang Yunlong, Zhu Juyan, Wang Haigang. 2017. The evolution characteristics and mechanism of the land subsidence in typical areas of the North China Plain[J]. Geology in China, 44(6): 1115−1127 (in Chinese with English abstract).

    Google Scholar

    [19] Guo Shujun, Yu Lei, Ren Zhengwei, Wang Chunhui, Ming Yuanyuan. 2021. Application of high–density resistivity method in fine division of Quaternary geological structure in the starting area of Xiong’an New Area[J]. North China Geology, 44(1): 45−51 (in Chinese with English abstract).

    Google Scholar

    [20] Guo Zhijuan, Zhou Yalong, Wang Qiaolin, Wang Chengwen, Song Yuntao, Liu Fei, Yang Zheng, Kong Mu. 2021. Characteristics of soil heavy metal pollution and health risk in Xiong’an New Area[J]. China Environmental Science, 41(1): 431−441 (in Chinese with English abstract).

    Google Scholar

    [21] Han Bo, Xia Yubo, Ma Zhen, Wang Xiaodan, Guo Xu, Lin Liangjun, Pei Yandong. 2023. Division of engineering geological strata, building of 3D geological structure and its application in urban planning and construction in Xiong'an New Area[J]. Geology in China, 50(6): 1903−1918 (in Chinese with English abstract). doi: 10.12029/gc20210305004

    CrossRef Google Scholar

    [22] He Dengfa, Shan Shuaiqiang, Zhang Yuying, Lu Renqi, Zhang Ruifeng, Cui Yongqian. 2018. 3–D geologic architecture of Xiong’an New Area: Constraints from seismic reflection data[J]. Science China Earth Sciences, 48(9): 1207−1222 (in Chinese with English abstract).

    Google Scholar

    [23] Jia Hongxia, Xiao Xin, Zhang Shuang, Bai Xinlei, Sun Zonglian. 2010. Geochemical environment and common endemic diseases[J]. Energy and Environment, (2): 46−48 (in Chinese).

    Google Scholar

    [24] Kong Xiaole, Wang Shiqin, Zhao Huan, Yuan Ruiqiang. 2015. Distribution characteristics and source of fluoride in groundwater in lower plain area of North China Plain: A case study in Nanpi County[J]. Environmental Science, 36(11): 4051−4059 (in Chinese with English abstract

    Google Scholar

    [25] Lakhvinder K, Madhuri S, Sakshi S, Bhavika S, Renu L, Gagandeep S. 2019. Hydrogeochemical characterization of groundwater in alluvial plains of river Yamuna in northern India: An insight of controlling processes[J]. Journal of King Saud University–Science, 31(4): 1245−1253. doi: 10.1016/j.jksus.2019.01.005

    CrossRef Google Scholar

    [26] Li P, Wu J, Tian R, He S, He X, Xue C, Zhang K. 2018. Geochemistry, hydraulic connectivity and quality appraisal of multilayered groundwater in the Hongdunzi coal mine, Northwest China[J]. Mine Water and the Environment, 37(2): 222−237. doi: 10.1007/s10230-017-0507-8

    CrossRef Google Scholar

    [27] Li Ying, Wu Ping, Zhang Bo, Han Qiangqiang, Li Yang, Xu Zhaoxiang, Yu Kun. 2020. Discussion characteristics and formation factors of high fluoride groundwater in the north of Lingwu City[J]. Environmental Chemistry, 39(9): 2520−2528 (in Chinese with English abstract).

    Google Scholar

    [28] Li Yong, Gao Xubo, Zhang Xin, Luo Wenting, Hu Qinhong. 2017. Geochemistry of arsenic in sediments and groundwater in areas with arsenic polluted groundwater in Yuncheng Basin[J]. Safety and Environmental Engineering, 24(5): 68−74 (in Chinese with English abstract).

    Google Scholar

    [29] Lin Nianfeng. 1991. Medical Environmental Geochemistry[M]. Changchun: Jilin Science and Technology Press (in Chinese).

    Google Scholar

    [30] Liu Bingguo. 2013. Study on Investigation, Evaluation and Application of Population Environmental Health[D]. Qingdao: China University of Petroleum (East China), 1–105 (in Chinese with English abstract).

    Google Scholar

    [31] Liu Hongwei, Wang Guoming, Gao Mingda. 2023. Shallow groundwater ages and implication to the intrinsic vulnerability of aquifers in piedmont plain of Taihang Mountain[J]. North China Geology, 46(2): 63−68 (in Chinese with English abstract).

    Google Scholar

    [32] Liu Kaiming, Xu Qinmian, Duan Lianfeng, Niu Wenchao, Teng Fei, Wang Xiaodan, Zhang Wei, Dong Jie. 2020. Quaternary stratigraphic architecture and sedimentary evolution from borehole GB014 in the western Xiong’an New Area[J]. Chinese Science Bulletin, 65(20): 2145−2160 (in Chinese with English abstract). doi: 10.1360/TB-2020-0021

    CrossRef Google Scholar

    [33] Liu Zhiyuan, Li Xiao, Zhang Yunpeng, Ji Yunping, Yang Jinsong, Wang Kebing. 2021. Research on characteristics of shallow groundwater and Jiehe alluvial fan in piedmont plain of Taihang Mountain in Shunping County, Hebei Province[J]. Chinese Journal of Engineering Geophysics, 18(6): 930−937 (in Chinese with English abstract).

    Google Scholar

    [34] Luo Wei, Huang Manxiang. 2004. Geological environment and endemic diseases[J]. Journal of Geological Hazards and Environment Preservation, 15(4): 1−4,14 (in Chinese with English abstract).

    Google Scholar

    [35] Ma Yan, Li Hongqiang, Sun Jie, Sun Sheng, Xia Yubo, Feng Jie, Long Hui, Zhang Jingmao. 2020. Geophysical technology for underground space exploration in Xiong’an New Area[J]. Acta Geoscientica Sinica, 41(4): 535−542 (in Chinese with English abstract).

    Google Scholar

    [36] Mattos J B, Moreira Cruz M J, De Paula F C F, Sales E F. 2018. Spatio–seasonal changes in the hydrogeochemistry of groundwaters in a highland tropical zone[J]. Journal of South American Earth Sciences, 88: 275−286. doi: 10.1016/j.jsames.2018.08.023

    CrossRef Google Scholar

    [37] Mayo A L, Loucks M D. 1995. Solute and isotopic geo–chemistry and groundwater flow in the Central Wasatch Range, Utah[J]. Journal of Hydrology, 172: 31−59. doi: 10.1016/0022-1694(95)02748-E

    CrossRef Google Scholar

    [38] Meng Ruifang, Yang Huifeng, Bao Xilin, Xu Buyun, Li Lei, Li Jincheng. 2024. Prospect analysis of unconventional water resources utilization and eco−environmental effects in Beijing−Tianjin−Hebei Plain[J]. Geology in China, 51(1): 221−233 (in Chinese with English abstract). doi: 10.12029/gc20220615001

    CrossRef Google Scholar

    [39] Piper A M. 1944. A graphic procedure in the geochemical interpretation of water–analyses[J]. Transactions, American Geophysical Union, 25: 914–928.

    Google Scholar

    [40] Redwan M, Moneim A A A. 2016. Factors controlling groundwater hydrogeochemistry in the area west of Tahta, Sohag, Upper Egypt[J]. Journal of African Earth Sciences, 118: 328−338. doi: 10.1016/j.jafrearsci.2015.10.002

    CrossRef Google Scholar

    [41] Ronaldo H, Antonio P V. 2007. Hydrogeochemistry of the Coxilha das Lombas Aquifer, Brazil[J]. Environmental Chemistry Letters, 5(2): 91−94. doi: 10.1007/s10311-006-0083-9

    CrossRef Google Scholar

    [42] Senthilkumar M, Elango L. 2013. Geochemical processes controlling the groundwater quality in lower Palar river basin, southern India[J]. Journal of Earth System Science, 122: 419−432. doi: 10.1007/s12040-013-0284-0

    CrossRef Google Scholar

    [43] Sun Xiaole, Wang Shiqin, Zhao Huan, Yuan Ruiqiang. 2015. Distribution characteristics and source of fluoride in groundwater in Lower Plain Area of North China Plain: A case study in Nanpi County[J]. Environmental Science, 36(11): 4051−4059 (in Chinese with English abstract).

    Google Scholar

    [44] Takeshi S, Lorenzo S, Hirotaka S, Jean M M, Laurent O, Takato T, Shoichiro H, Per M, Ken K, Toshiko K. 2020. Characterization and comparison of groundwater quality and redox conditions in the Arakawa Lowland and Musashino Upland, southern Kanto Plain of the Tokyo Metropolitan area, Japan[J]. Science of The Total Environment, 722: 137783. doi: 10.1016/j.scitotenv.2020.137783

    CrossRef Google Scholar

    [45] Tao Zhen, Liu Shujun. 1984. Health effects of environmental pollutants–threshold limit values of human exposure to several pollutants[J]. Environmental Science Trends, (2): 31−32 (in Chinese).

    Google Scholar

    [46] Tian Mengsha. 2016. Red Layer of Shallow Groundwater Hydrogeochemical Characteristics of FengHuang Temple in Enyang District of Bazhong[D]. Chengdu: Chengdu University of Technology, 1–80 (in Chinese with English abstract).

    Google Scholar

    [47] Tiwari A K, Singh A K, 2014. Hydrogeochemical investigation and groundwater quality assessment of Pratapgarh district, Uttar Pradesh[J]. Journal of the Geological Society of India, 83(3): 329–343.

    Google Scholar

    [48] Uliana M M, Sharp J M. 2001. Tracing regional flow paths to major springs in Trans–Pecos Texas using geochemical data and geochemical models[J]. Chemical Geology, 179: 53−72. doi: 10.1016/S0009-2541(01)00315-1

    CrossRef Google Scholar

    [49] Vernadsky V I. 2003. History of Natural Waters[M]. Moscow: Nauka.

    Google Scholar

    [50] Wang Jinjin. 2020. Study on Chemical Characteristics and Evolution of Shallow Groundwater in Pinggu Plain of Beijing[D]. Chengdu: Chengdu University of Technology, 1–80 (in Chinese with English abstract).

    Google Scholar

    [51] Wang Q, Zhou X Y, Huo Z B, Shi L, Zhang Y B. 2019. Building an up–and–coming city: An overview of the geological data sharing service platform of the Xiong'an New Area[J]. China Geology, 3(4): 566−568. doi: 10.31035/cg2018136

    CrossRef Google Scholar

    [52] Weaver T R, Frape S K, Cherry J A. 1995. Recent cross–formational fluid flow and mixing in the shallow Michigan basin[J]. Geological Society of America Bulletin, 107(6): 697−707. doi: 10.1130/0016-7606(1995)107<0697:RCFFFA>2.3.CO;2

    CrossRef Google Scholar

    [53] Xia Y B, Chen G F, Liu F T, Zhang J, Ning H. 2024. Hydrogeochemical characteristics and health risk assessment of groundwater in grassland watersheds of cold and arid regions in Xilinhot, China[J]. Water, 16: 2488. doi: 10.3390/w16172488

    CrossRef Google Scholar

    [54] Xing Lina. 2012. Chemical Characteristics and Hydrogeochemical Processes of Groundwater in Typical Sections of North China Plain[D]. Beijing: China University of Geosciences (Beijing), 1–67 (in Chinese with English abstract).

    Google Scholar

    [55] Xing Lina, Guo Huaming, Wei Liang, Zhan Yanhong, Hou Chuntang, Li Ruimin, Wang Yi. 2012. Evolution feature and genesis of fluoride groundwater in shallow aquifer from North China Plain[J]. Journal of Earth Science and Environment, 34(4): 57−67 (in Chinese with English abstract).

    Google Scholar

    [56] Xing Yi, Zhang Surong, Liu Jihong, Wang Changyu. 2019. Effect of crop root soil on agricultural product safety: Take the eastern part of Baoding Hebei province as an example[J]. Geological Survey and Research, 42(3): 219−224,234 (in Chinese with English abstract).

    Google Scholar

    [57] Yang Q, Li Z, Ma H, Wang L, Martin J D. 2016. Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the Southeastern part of Ordos basin, China[J]. Environmental Pollution, 218: 879−888. doi: 10.1016/j.envpol.2016.08.017

    CrossRef Google Scholar

    [58] Yuan Hanqing, Li Qiao, Tao Hongfei, Mahemujiang·Aihemaiti, Yang Wenxin, Su Yanpeng. 2020. Groundwater arsenic enrichment factors of Kuitun River Basin, Xinjiang[J]. Environmental Chemistry, 39(2): 524−530 (in Chinese with English abstract).

    Google Scholar

    [59] Zhao K, Qi J, Yi C, Ma B, Li Y, Guo H, Wang X, Wang L, Li H. 2021. Hydrogeochemical characteristics of groundwater and pore–water and the paleoenvironmental evolution in the past 3.10 Ma in the Xiong'an New Area, North China[J]. China Geology, 4(3): 476−486.

    Google Scholar

    [60] Zhang Zhuo, Liu Futian, Chen Sheming. 2023. Review on the application of H, O, Sr, Ca, Li and B isotopes in the research of high–fluoride groundwater[J]. North China Geology, 46(3): 49−56 (in Chinese with English abstract).

    Google Scholar

    [61] Zhang Zonghu, Shi Dehong, Ren Fuhong, Yin Zhengzhou, Sun Jichao, Zhang Cuiyun. 1997. Discussion on the evolution of Quaternary groundwater system in North China Plain[J]. Science in China (Series D), 27(2): 168−173 (in Chinese).

    Google Scholar

    [62] Zhang Zonghu, Shen Zhaoli, Xue Yuqun, Ren Fuhong, Shi Dehong, Yin Zhengzhou, Zhong Zuoshen, Sun Xinghe. 2000. Evolution of Groundwater Environment in North China Plain[M]. Beijing: Geological Publishing House (in Chinese).

    Google Scholar

    [63] Zhang Zonghu. 2005. History and present situation of groundwater in North China Plain[J]. Chinese Journal of Nature, 27(6): 311−315 (in Chinese).

    Google Scholar

    [64] Zhu T, Rao Z, Guo F, Zhan N, Wang Y, Arandiyan H, Li X J. 2018. Simultaneous determination of 32 polycyclic aromatic hydrocarbon derivatives and parent PAHs using Gas Chromatography–Mass Spectrometry: Application in groundwater screening[J]. Bulletin of Environmental Contamination and Toxicology, 101: 664−671. doi: 10.1007/s00128-018-2462-x

    CrossRef Google Scholar

    [65] 曹玉清, 胡宽瑢. 2009. 地下水化学动力学与生态环境区划分[M]. 北京: 科学出版社.

    Google Scholar

    [66] 陈毅. 2018. 白洋淀流域平原区地下水–孔隙水的水化学特征和水文地球化学过程[D]. 北京: 中国地质大学(北京), 1–91.

    Google Scholar

    [67] 窦妍. 2010. 鄂尔多斯盆地北部白垩系地下水水文地球化学演化及循环规律研究[D]. 西安: 长安大学, 1–160.

    Google Scholar

    [68] 郭海朋, 白晋斌, 张有全, 王丽亚, 石菊松, 李文鹏, 张作辰, 王云龙, 朱菊艳, 王海刚. 2017. 华北平原典型地段地面沉降演化特征与机理研究[J]. 中国地质, 44(6): 1115−1127. doi: 10.12029/gc20170606

    CrossRef Google Scholar

    [69] 郭淑君, 于蕾, 任政委, 王春辉, 明园园. 2021. 高密度电阻率法在雄安新区起步区第四系地质结构精细划分中的应用研究[J]. 华北地质, 44(1): 45−51.

    Google Scholar

    [70] 郭志娟, 周亚龙, 王乔林, 王成文, 宋云涛, 刘飞, 杨峥, 孔牧. 2021. 雄安新区土壤重金属污染特征及健康风险[J]. 中国环境科学, 41(1): 431−441. doi: 10.3969/j.issn.1000-6923.2021.01.049

    CrossRef Google Scholar

    [71] 韩博, 夏雨波, 马震, 王小丹, 郭旭, 林良俊, 裴艳东. 2023. 雄安新区工程地质层组划分、三维地质结构构建及其在城市规划建设中的应用[J]. 中国地质, 50(6): 1903−1918. doi: 10.12029/gc20210305004

    CrossRef Google Scholar

    [72] 何登发, 单帅强, 张煜颖, 鲁人齐, 张锐锋, 崔永谦. 2018. 雄安新区的三维地质结构: 来自反射地震资料的约束[J]. 中国科学: 地球科学, 48(9): 1207−1222.

    Google Scholar

    [73] 贾红霞, 肖昕, 张双, 白新雷, 孙宗连. 2010. 地球化学环境与常见地方病[J]. 能源与环境, (2): 46−48. doi: 10.3969/j.issn.1672-9064.2010.02.021

    CrossRef Google Scholar

    [74] 孔晓乐, 王仕琴, 赵焕, 袁瑞强. 2015. 华北低平原区地下水中氟分布特征及形成原因: 以南皮县为例[J]. 环境科学, 36(11): 4051−4059.

    Google Scholar

    [75] 李英, 吴平, 张勃, 黄小琴, 韩强强, 李阳, 徐兆祥, 余堃. 2020. 灵武市北部高氟地下水的分布特征及影响因素[J]. 环境化学, 39(9): 2520−2528. doi: 10.7524/j.issn.0254-6108.2019063002

    CrossRef Google Scholar

    [76] 李勇, 高旭波, 张鑫, 罗文婷, 胡钦红. 2017. 运城盆地高砷区地下水–沉积物中砷的地球化学特征研究[J]. 安全与环境工程, 24(5): 68−74.

    Google Scholar

    [77] 林年丰. 1991. 医学环境地球化学[M]. 长春: 吉林科学技术出版社, 239–240.

    Google Scholar

    [78] 刘丙国. 2013. 人群环境健康调查评价与应用研究[D]. 青岛: 中国石油大学(华东), 1–105.

    Google Scholar

    [79] 刘宏伟, 王国明, 高明达. 2023. 太行山前平原浅层地下水年龄及其对含水层固有脆弱性的指示意义[J]. 华北地质, 46(2): 63−68.

    Google Scholar

    [80] 刘开明, 胥勤勉, 段连峰, 牛文超, 滕飞, 王小丹, 张伟, 董杰. 2020. 雄安新区西部GB014孔第四纪地层结构与演化过程[J]. 科学通报, 65(20): 2145−2160.

    Google Scholar

    [81] 刘志远, 李晓, 张云鹏, 吉云平, 杨劲松, 王克冰. 2021. 河北省顺平县太行山山前平原区浅层地下水及界河冲积扇电性特征研究[J]. 工程地球物理学报, 18(6): 930−937. doi: 10.3969/j.issn.1672-7940.2021.06.016

    CrossRef Google Scholar

    [82] 罗卫, 黄满湘. 2004. 地质环境与地方病[J]. 地质灾害与环境保护, 15(4): 1−4,14. doi: 10.3969/j.issn.1006-4362.2004.04.001

    CrossRef Google Scholar

    [83] 马岩, 李洪强, 张杰, 孙晟, 夏雨波, 冯杰, 龙慧, 张京卯. 2020. 雄安新区城市地下空间探测技术研究[J]. 地球学报, 41(4): 535−542. doi: 10.3975/cagsb.2020.071001

    CrossRef Google Scholar

    [84] 孟瑞芳, 杨会峰, 包锡麟, 徐步云, 李磊, 李谨丞. 2024. 京津冀平原非常规水资源利用前景分析及其生态环境效应[J]. 中国地质, 51(1): 221−233. doi: 10.12029/gc20220615001

    CrossRef Google Scholar

    [85] 陶甄, 刘淑均. 1984. 环境污染物对健康的影响—几种污染物人群接触的阈限值[J]. 环境科学动态, (2): 31−32.

    Google Scholar

    [86] 田梦莎. 2016. 巴中市恩阳区凤凰庙红层区浅层地下水水文地球化学特征[D]. 成都: 成都理工大学, 1–80.

    Google Scholar

    [87] 王金金. 2020. 北京平谷平原区浅层地下水化学特征演化研究[D]. 成都: 成都理工大学, 1–80.

    Google Scholar

    [88] 邢丽娜. 2012. 华北平原典型剖面上地下水化学特征和水文地球化学过程[D]. 北京: 中国地质大学(北京), 1–67.

    Google Scholar

    [89] 邢丽娜, 郭华明, 魏亮, 詹燕红, 侯春堂, 李瑞敏, 王轶. 2012. 华北平原浅层含氟地下水演化特点及成因[J]. 地球科学与环境学报, 34(4): 57−67. doi: 10.3969/j.issn.1672-6561.2012.04.008

    CrossRef Google Scholar

    [90] 邢怡, 张素荣, 刘继红, 王昌宇. 2019. 农作物根系土对农产品安全的影响分析—以保定东部地区为例[J]. 地质调查与研究, 42(3): 219−224,234.

    Google Scholar

    [91] 袁翰卿, 李巧, 陶洪飞, 马合木江·艾合买提, 杨文新, 宿彦鹏. 2020. 新疆奎屯河流域地下水砷富集因素[J]. 环境化学, 39(2): 524−530. doi: 10.7524/j.issn.0254-6108.2019051403

    CrossRef Google Scholar

    [92] 张卓, 柳富田, 陈社明. 2023. 氢氧、锶钙和锂硼同位素在高氟地下水研究中的应用[J]. 华北地质, 46(3): 49−56.

    Google Scholar

    [93] 张宗祜, 施德鸿, 任福弘, 殷正宙, 孙继朝, 张翠云. 1997. 论华北平原第四系地下水系统之演化[J]. 中国科学(D辑: 地球科学), 27(2): 168−173.

    Google Scholar

    [94] 张宗祜, 沈照理, 薛禹群, 任福弘, 施德鸿, 殷正宙, 钟佐燊, 孙兴和. 2000. 华北平原地下水环境演化[M]. 北京: 地质出版社.

    Google Scholar

    [95] 张宗祜. 2005. 华北大平原地下水的历史和现状[J]. 自然杂志, 27(6): 311−315. doi: 10.3969/j.issn.0253-9608.2005.06.001

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(2)

Article Metrics

Article views(117) PDF downloads(8) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint